hcd.h 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793
  1. /*
  2. * hcd.h - DesignWare HS OTG Controller host-mode declarations
  3. *
  4. * Copyright (C) 2004-2013 Synopsys, Inc.
  5. *
  6. * Redistribution and use in source and binary forms, with or without
  7. * modification, are permitted provided that the following conditions
  8. * are met:
  9. * 1. Redistributions of source code must retain the above copyright
  10. * notice, this list of conditions, and the following disclaimer,
  11. * without modification.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. The names of the above-listed copyright holders may not be used
  16. * to endorse or promote products derived from this software without
  17. * specific prior written permission.
  18. *
  19. * ALTERNATIVELY, this software may be distributed under the terms of the
  20. * GNU General Public License ("GPL") as published by the Free Software
  21. * Foundation; either version 2 of the License, or (at your option) any
  22. * later version.
  23. *
  24. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25. * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26. * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28. * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29. * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30. * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31. * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32. * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33. * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34. * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35. */
  36. #ifndef __DWC2_HCD_H__
  37. #define __DWC2_HCD_H__
  38. #include "usb-compat.h"
  39. /*
  40. * This file contains the structures, constants, and interfaces for the
  41. * Host Contoller Driver (HCD)
  42. *
  43. * The Host Controller Driver (HCD) is responsible for translating requests
  44. * from the USB Driver into the appropriate actions on the DWC_otg controller.
  45. * It isolates the USBD from the specifics of the controller by providing an
  46. * API to the USBD.
  47. */
  48. struct dwc2_qh;
  49. /**
  50. * struct dwc2_host_chan - Software host channel descriptor
  51. *
  52. * @hc_num: Host channel number, used for register address lookup
  53. * @dev_addr: Address of the device
  54. * @ep_num: Endpoint of the device
  55. * @ep_is_in: Endpoint direction
  56. * @speed: Device speed. One of the following values:
  57. * - USB_SPEED_LOW
  58. * - USB_SPEED_FULL
  59. * - USB_SPEED_HIGH
  60. * @ep_type: Endpoint type. One of the following values:
  61. * - USB_ENDPOINT_XFER_CONTROL: 0
  62. * - USB_ENDPOINT_XFER_ISOC: 1
  63. * - USB_ENDPOINT_XFER_BULK: 2
  64. * - USB_ENDPOINT_XFER_INTR: 3
  65. * @max_packet: Max packet size in bytes
  66. * @data_pid_start: PID for initial transaction.
  67. * 0: DATA0
  68. * 1: DATA2
  69. * 2: DATA1
  70. * 3: MDATA (non-Control EP),
  71. * SETUP (Control EP)
  72. * @multi_count: Number of additional periodic transactions per
  73. * (micro)frame
  74. * @xfer_buf: Pointer to current transfer buffer position
  75. * @xfer_dma: DMA address of xfer_buf
  76. * @align_buf: In Buffer DMA mode this will be used if xfer_buf is not
  77. * DWORD aligned
  78. * @xfer_len: Total number of bytes to transfer
  79. * @xfer_count: Number of bytes transferred so far
  80. * @start_pkt_count: Packet count at start of transfer
  81. * @xfer_started: True if the transfer has been started
  82. * @ping: True if a PING request should be issued on this channel
  83. * @error_state: True if the error count for this transaction is non-zero
  84. * @halt_on_queue: True if this channel should be halted the next time a
  85. * request is queued for the channel. This is necessary in
  86. * slave mode if no request queue space is available when
  87. * an attempt is made to halt the channel.
  88. * @halt_pending: True if the host channel has been halted, but the core
  89. * is not finished flushing queued requests
  90. * @do_split: Enable split for the channel
  91. * @complete_split: Enable complete split
  92. * @hub_addr: Address of high speed hub for the split
  93. * @hub_port: Port of the low/full speed device for the split
  94. * @xact_pos: Split transaction position. One of the following values:
  95. * - DWC2_HCSPLT_XACTPOS_MID
  96. * - DWC2_HCSPLT_XACTPOS_BEGIN
  97. * - DWC2_HCSPLT_XACTPOS_END
  98. * - DWC2_HCSPLT_XACTPOS_ALL
  99. * @requests: Number of requests issued for this channel since it was
  100. * assigned to the current transfer (not counting PINGs)
  101. * @schinfo: Scheduling micro-frame bitmap
  102. * @ntd: Number of transfer descriptors for the transfer
  103. * @halt_status: Reason for halting the host channel
  104. * @hcint Contents of the HCINT register when the interrupt came
  105. * @qh: QH for the transfer being processed by this channel
  106. * @hc_list_entry: For linking to list of host channels
  107. * @desc_list_addr: Current QH's descriptor list DMA address
  108. * @desc_list_sz: Current QH's descriptor list size
  109. * @split_order_list_entry: List entry for keeping track of the order of splits
  110. *
  111. * This structure represents the state of a single host channel when acting in
  112. * host mode. It contains the data items needed to transfer packets to an
  113. * endpoint via a host channel.
  114. */
  115. struct dwc2_host_chan {
  116. u8 hc_num;
  117. unsigned dev_addr:7;
  118. unsigned ep_num:4;
  119. unsigned ep_is_in:1;
  120. unsigned speed:4;
  121. unsigned ep_type:2;
  122. unsigned max_packet:11;
  123. unsigned data_pid_start:2;
  124. #define DWC2_HC_PID_DATA0 TSIZ_SC_MC_PID_DATA0
  125. #define DWC2_HC_PID_DATA2 TSIZ_SC_MC_PID_DATA2
  126. #define DWC2_HC_PID_DATA1 TSIZ_SC_MC_PID_DATA1
  127. #define DWC2_HC_PID_MDATA TSIZ_SC_MC_PID_MDATA
  128. #define DWC2_HC_PID_SETUP TSIZ_SC_MC_PID_SETUP
  129. unsigned multi_count:2;
  130. u8 *xfer_buf;
  131. dma_addr_t xfer_dma;
  132. dma_addr_t align_buf;
  133. u32 xfer_len;
  134. u32 xfer_count;
  135. u16 start_pkt_count;
  136. u8 xfer_started;
  137. u8 do_ping;
  138. u8 error_state;
  139. u8 halt_on_queue;
  140. u8 halt_pending;
  141. u8 do_split;
  142. u8 complete_split;
  143. u8 hub_addr;
  144. u8 hub_port;
  145. u8 xact_pos;
  146. #define DWC2_HCSPLT_XACTPOS_MID HCSPLT_XACTPOS_MID
  147. #define DWC2_HCSPLT_XACTPOS_END HCSPLT_XACTPOS_END
  148. #define DWC2_HCSPLT_XACTPOS_BEGIN HCSPLT_XACTPOS_BEGIN
  149. #define DWC2_HCSPLT_XACTPOS_ALL HCSPLT_XACTPOS_ALL
  150. u8 requests;
  151. u8 schinfo;
  152. u16 ntd;
  153. enum dwc2_halt_status halt_status;
  154. u32 hcint;
  155. struct dwc2_qh *qh;
  156. ListItem_t hc_list_entry;
  157. ListItem_t split_order_list_entry;
  158. };
  159. struct dwc2_hcd_pipe_info {
  160. u8 dev_addr;
  161. u8 ep_num;
  162. u8 pipe_type;
  163. u8 pipe_dir;
  164. u16 mps;
  165. };
  166. struct dwc2_qtd;
  167. struct dwc2_hcd_urb {
  168. void *priv;
  169. struct dwc2_qtd *qtd;
  170. void *buf;
  171. dma_addr_t dma;
  172. void *setup_packet;
  173. dma_addr_t setup_dma;
  174. u32 length;
  175. u32 actual_length;
  176. int status;
  177. u32 error_count;
  178. u32 packet_count;
  179. u32 flags;
  180. u16 interval;
  181. ListItem_t free_list_entry;
  182. struct dwc2_hcd_pipe_info pipe_info;
  183. };
  184. /* Phases for control transfers */
  185. enum dwc2_control_phase {
  186. DWC2_CONTROL_SETUP,
  187. DWC2_CONTROL_DATA,
  188. DWC2_CONTROL_STATUS,
  189. };
  190. /* Transaction types */
  191. enum dwc2_transaction_type {
  192. DWC2_TRANSACTION_NONE,
  193. DWC2_TRANSACTION_PERIODIC,
  194. DWC2_TRANSACTION_NON_PERIODIC,
  195. DWC2_TRANSACTION_ALL,
  196. };
  197. /* The number of elements per LS bitmap (per port on multi_tt) */
  198. #define DWC2_ELEMENTS_PER_LS_BITMAP DIV_ROUND_UP(DWC2_LS_SCHEDULE_SLICES, \
  199. BITS_PER_LONG)
  200. /**
  201. * struct dwc2_tt - dwc2 data associated with a usb_tt
  202. *
  203. * @refcount: Number of Queue Heads (QHs) holding a reference.
  204. * @usb_tt: Pointer back to the official usb_tt.
  205. * @periodic_bitmaps: Bitmap for which parts of the 1ms frame are accounted
  206. * for already. Each is DWC2_ELEMENTS_PER_LS_BITMAP
  207. * elements (so sizeof(long) times that in bytes).
  208. *
  209. * This structure is stored in the hcpriv of the official usb_tt.
  210. */
  211. struct dwc2_tt {
  212. int refcount;
  213. struct usb_tt *usb_tt;
  214. unsigned long periodic_bitmaps[];
  215. };
  216. /**
  217. * struct dwc2_hs_transfer_time - Info about a transfer on the high speed bus.
  218. *
  219. * @start_schedule_usecs: The start time on the main bus schedule. Note that
  220. * the main bus schedule is tightly packed and this
  221. * time should be interpreted as tightly packed (so
  222. * uFrame 0 starts at 0 us, uFrame 1 starts at 100 us
  223. * instead of 125 us).
  224. * @duration_us: How long this transfer goes.
  225. */
  226. struct dwc2_hs_transfer_time {
  227. u32 start_schedule_us;
  228. u16 duration_us;
  229. };
  230. /**
  231. * struct dwc2_qh - Software queue head structure
  232. *
  233. * @hsotg: The HCD state structure for the DWC OTG controller
  234. * @ep_type: Endpoint type. One of the following values:
  235. * - USB_ENDPOINT_XFER_CONTROL
  236. * - USB_ENDPOINT_XFER_BULK
  237. * - USB_ENDPOINT_XFER_INT
  238. * - USB_ENDPOINT_XFER_ISOC
  239. * @ep_is_in: Endpoint direction
  240. * @maxp: Value from wMaxPacketSize field of Endpoint Descriptor
  241. * @dev_speed: Device speed. One of the following values:
  242. * - USB_SPEED_LOW
  243. * - USB_SPEED_FULL
  244. * - USB_SPEED_HIGH
  245. * @data_toggle: Determines the PID of the next data packet for
  246. * non-controltransfers. Ignored for control transfers.
  247. * One of the following values:
  248. * - DWC2_HC_PID_DATA0
  249. * - DWC2_HC_PID_DATA1
  250. * @ping_state: Ping state
  251. * @do_split: Full/low speed endpoint on high-speed hub requires split
  252. * @td_first: Index of first activated isochronous transfer descriptor
  253. * @td_last: Index of last activated isochronous transfer descriptor
  254. * @host_us: Bandwidth in microseconds per transfer as seen by host
  255. * @device_us: Bandwidth in microseconds per transfer as seen by device
  256. * @host_interval: Interval between transfers as seen by the host. If
  257. * the host is high speed and the device is low speed this
  258. * will be 8 times device interval.
  259. * @device_interval: Interval between transfers as seen by the device.
  260. * interval.
  261. * @next_active_frame: (Micro)frame _before_ we next need to put something on
  262. * the bus. We'll move the qh to active here. If the
  263. * host is in high speed mode this will be a uframe. If
  264. * the host is in low speed mode this will be a full frame.
  265. * @start_active_frame: If we are partway through a split transfer, this will be
  266. * what next_active_frame was when we started. Otherwise
  267. * it should always be the same as next_active_frame.
  268. * @num_hs_transfers: Number of transfers in hs_transfers.
  269. * Normally this is 1 but can be more than one for splits.
  270. * Always >= 1 unless the host is in low/full speed mode.
  271. * @hs_transfers: Transfers that are scheduled as seen by the high speed
  272. * bus. Not used if host is in low or full speed mode (but
  273. * note that it IS USED if the device is low or full speed
  274. * as long as the HOST is in high speed mode).
  275. * @ls_start_schedule_slice: Start time (in slices) on the low speed bus
  276. * schedule that's being used by this device. This
  277. * will be on the periodic_bitmap in a
  278. * "struct dwc2_tt". Not used if this device is high
  279. * speed. Note that this is in "schedule slice" which
  280. * is tightly packed.
  281. * @ls_duration_us: Duration on the low speed bus schedule.
  282. * @ntd: Actual number of transfer descriptors in a list
  283. * @dw_align_buf: Used instead of original buffer if its physical address
  284. * is not dword-aligned
  285. * @dw_align_buf_dma: DMA address for dw_align_buf
  286. * @qtd_list: List of QTDs for this QH
  287. * @channel: Host channel currently processing transfers for this QH
  288. * @qh_list_entry: Entry for QH in either the periodic or non-periodic
  289. * schedule
  290. * @desc_list: List of transfer descriptors
  291. * @desc_list_dma: Physical address of desc_list
  292. * @desc_list_sz: Size of descriptors list
  293. * @n_bytes: Xfer Bytes array. Each element corresponds to a transfer
  294. * descriptor and indicates original XferSize value for the
  295. * descriptor
  296. * @unreserve_timer: Timer for releasing periodic reservation.
  297. * @dwc2_tt: Pointer to our tt info (or NULL if no tt).
  298. * @ttport: Port number within our tt.
  299. * @tt_buffer_dirty True if clear_tt_buffer_complete is pending
  300. * @unreserve_pending: True if we planned to unreserve but haven't yet.
  301. * @schedule_low_speed: True if we have a low/full speed component (either the
  302. * host is in low/full speed mode or do_split).
  303. *
  304. * A Queue Head (QH) holds the static characteristics of an endpoint and
  305. * maintains a list of transfers (QTDs) for that endpoint. A QH structure may
  306. * be entered in either the non-periodic or periodic schedule.
  307. */
  308. struct dwc2_qh {
  309. struct dwc2_hsotg *hsotg;
  310. u8 ep_type;
  311. u8 ep_is_in;
  312. u16 maxp;
  313. u8 dev_speed;
  314. u8 data_toggle;
  315. u8 ping_state;
  316. u8 do_split;
  317. u8 td_first;
  318. u8 td_last;
  319. u16 host_us;
  320. u16 device_us;
  321. u16 host_interval;
  322. u16 device_interval;
  323. u16 next_active_frame;
  324. u16 start_active_frame;
  325. s16 num_hs_transfers;
  326. struct dwc2_hs_transfer_time hs_transfers[DWC2_HS_SCHEDULE_UFRAMES];
  327. u32 ls_start_schedule_slice;
  328. u16 ntd;
  329. u8 *dw_align_buf;
  330. dma_addr_t dw_align_buf_dma;
  331. List_t qtd_list;
  332. struct dwc2_host_chan *channel;
  333. ListItem_t qh_list_entry;
  334. u32 *n_bytes;
  335. struct timer_list unreserve_timer;
  336. struct dwc2_tt *dwc_tt;
  337. int ttport;
  338. unsigned tt_buffer_dirty:1;
  339. unsigned unreserve_pending:1;
  340. unsigned schedule_low_speed:1;
  341. };
  342. /**
  343. * struct dwc2_qtd - Software queue transfer descriptor (QTD)
  344. *
  345. * @control_phase: Current phase for control transfers (Setup, Data, or
  346. * Status)
  347. * @in_process: Indicates if this QTD is currently processed by HW
  348. * @data_toggle: Determines the PID of the next data packet for the
  349. * data phase of control transfers. Ignored for other
  350. * transfer types. One of the following values:
  351. * - DWC2_HC_PID_DATA0
  352. * - DWC2_HC_PID_DATA1
  353. * @complete_split: Keeps track of the current split type for FS/LS
  354. * endpoints on a HS Hub
  355. * @isoc_split_pos: Position of the ISOC split in full/low speed
  356. * @isoc_frame_index: Index of the next frame descriptor for an isochronous
  357. * transfer. A frame descriptor describes the buffer
  358. * position and length of the data to be transferred in the
  359. * next scheduled (micro)frame of an isochronous transfer.
  360. * It also holds status for that transaction. The frame
  361. * index starts at 0.
  362. * @isoc_split_offset: Position of the ISOC split in the buffer for the
  363. * current frame
  364. * @ssplit_out_xfer_count: How many bytes transferred during SSPLIT OUT
  365. * @error_count: Holds the number of bus errors that have occurred for
  366. * a transaction within this transfer
  367. * @n_desc: Number of DMA descriptors for this QTD
  368. * @isoc_frame_index_last: Last activated frame (packet) index, used in
  369. * descriptor DMA mode only
  370. * @urb: URB for this transfer
  371. * @qh: Queue head for this QTD
  372. * @qtd_list_entry: For linking to the QH's list of QTDs
  373. *
  374. * A Queue Transfer Descriptor (QTD) holds the state of a bulk, control,
  375. * interrupt, or isochronous transfer. A single QTD is created for each URB
  376. * (of one of these types) submitted to the HCD. The transfer associated with
  377. * a QTD may require one or multiple transactions.
  378. *
  379. * A QTD is linked to a Queue Head, which is entered in either the
  380. * non-periodic or periodic schedule for execution. When a QTD is chosen for
  381. * execution, some or all of its transactions may be executed. After
  382. * execution, the state of the QTD is updated. The QTD may be retired if all
  383. * its transactions are complete or if an error occurred. Otherwise, it
  384. * remains in the schedule so more transactions can be executed later.
  385. */
  386. struct dwc2_qtd {
  387. enum dwc2_control_phase control_phase;
  388. u8 in_process;
  389. u8 data_toggle;
  390. u8 complete_split;
  391. u8 isoc_split_pos;
  392. u32 ssplit_out_xfer_count;
  393. u8 error_count;
  394. u8 n_desc;
  395. struct dwc2_hcd_urb *urb;
  396. struct dwc2_qh *qh;
  397. ListItem_t qtd_list_entry;
  398. };
  399. #ifdef DEBUG
  400. struct hc_xfer_info {
  401. struct dwc2_hsotg *hsotg;
  402. struct dwc2_host_chan *chan;
  403. };
  404. #endif
  405. u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg);
  406. /* Gets the struct usb_hcd that contains a struct dwc2_hsotg */
  407. static inline struct usb_hcd *dwc2_hsotg_to_hcd(struct dwc2_hsotg *hsotg)
  408. {
  409. return (struct usb_hcd *)hsotg->priv;
  410. }
  411. /*
  412. * Inline used to disable one channel interrupt. Channel interrupts are
  413. * disabled when the channel is halted or released by the interrupt handler.
  414. * There is no need to handle further interrupts of that type until the
  415. * channel is re-assigned. In fact, subsequent handling may cause crashes
  416. * because the channel structures are cleaned up when the channel is released.
  417. */
  418. static inline void disable_hc_int(struct dwc2_hsotg *hsotg, int chnum, u32 intr)
  419. {
  420. u32 mask = dwc2_readl(hsotg->regs + HCINTMSK(chnum));
  421. mask &= ~intr;
  422. dwc2_writel(mask, hsotg->regs + HCINTMSK(chnum));
  423. }
  424. void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan);
  425. void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
  426. enum dwc2_halt_status halt_status);
  427. void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
  428. struct dwc2_host_chan *chan);
  429. /*
  430. * Reads HPRT0 in preparation to modify. It keeps the WC bits 0 so that if they
  431. * are read as 1, they won't clear when written back.
  432. */
  433. static inline u32 dwc2_read_hprt0(struct dwc2_hsotg *hsotg)
  434. {
  435. u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
  436. hprt0 &= ~(HPRT0_ENA | HPRT0_CONNDET | HPRT0_ENACHG | HPRT0_OVRCURRCHG);
  437. return hprt0;
  438. }
  439. static inline u8 dwc2_hcd_get_ep_num(struct dwc2_hcd_pipe_info *pipe)
  440. {
  441. return pipe->ep_num;
  442. }
  443. static inline u8 dwc2_hcd_get_pipe_type(struct dwc2_hcd_pipe_info *pipe)
  444. {
  445. return pipe->pipe_type;
  446. }
  447. static inline u16 dwc2_hcd_get_mps(struct dwc2_hcd_pipe_info *pipe)
  448. {
  449. return pipe->mps;
  450. }
  451. static inline u8 dwc2_hcd_get_dev_addr(struct dwc2_hcd_pipe_info *pipe)
  452. {
  453. return pipe->dev_addr;
  454. }
  455. static inline u8 dwc2_hcd_is_pipe_bulk(struct dwc2_hcd_pipe_info *pipe)
  456. {
  457. return pipe->pipe_type == USB_ENDPOINT_XFER_BULK;
  458. }
  459. static inline u8 dwc2_hcd_is_pipe_control(struct dwc2_hcd_pipe_info *pipe)
  460. {
  461. return pipe->pipe_type == USB_ENDPOINT_XFER_CONTROL;
  462. }
  463. static inline u8 dwc2_hcd_is_pipe_in(struct dwc2_hcd_pipe_info *pipe)
  464. {
  465. return pipe->pipe_dir == USB_DIR_IN;
  466. }
  467. static inline u8 dwc2_hcd_is_pipe_out(struct dwc2_hcd_pipe_info *pipe)
  468. {
  469. return !dwc2_hcd_is_pipe_in(pipe);
  470. }
  471. void dwc2_hcd_irq(struct dwc2_hsotg *hsotg);
  472. int dwc2_hcd_init(struct dwc2_hsotg *hsotg, struct usb_hcd *hcd);
  473. void dwc2_hcd_remove(struct dwc2_hsotg *hsotg);
  474. /* Transaction Execution Functions */
  475. enum dwc2_transaction_type dwc2_hcd_select_transactions(
  476. struct dwc2_hsotg *hsotg);
  477. void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
  478. enum dwc2_transaction_type tr_type);
  479. /* Schedule Queue Functions */
  480. /* Implemented in hcd_queue.c */
  481. struct dwc2_qh *dwc2_hcd_qh_create(struct dwc2_hsotg *hsotg,
  482. struct dwc2_hcd_urb *urb,
  483. gfp_t mem_flags);
  484. void dwc2_hcd_qh_free(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  485. int dwc2_hcd_qh_add(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  486. void dwc2_hcd_qh_unlink(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  487. void dwc2_hcd_qh_deactivate(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
  488. int sched_csplit);
  489. void dwc2_hcd_qtd_init(struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb);
  490. int dwc2_hcd_qtd_add(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
  491. struct dwc2_qh *qh);
  492. /* Unlinks and frees a QTD */
  493. static inline void dwc2_hcd_qtd_unlink_and_free(struct dwc2_hsotg *hsotg,
  494. struct dwc2_qtd *qtd,
  495. struct dwc2_qh *qh)
  496. {
  497. list_del(&qtd->qtd_list_entry);
  498. list_add_tail(&qtd->qtd_list_entry, &hsotg->free_qtd_list);
  499. qtd = NULL;
  500. }
  501. /* Descriptor DMA support functions */
  502. void dwc2_hcd_start_xfer_ddma(struct dwc2_hsotg *hsotg,
  503. struct dwc2_qh *qh);
  504. void dwc2_hcd_complete_xfer_ddma(struct dwc2_hsotg *hsotg,
  505. struct dwc2_host_chan *chan, int chnum,
  506. enum dwc2_halt_status halt_status);
  507. int dwc2_hcd_qh_init_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh,
  508. gfp_t mem_flags);
  509. void dwc2_hcd_qh_free_ddma(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh);
  510. /* Check if QH is non-periodic */
  511. #define dwc2_qh_is_non_per(_qh_ptr_) \
  512. ((_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_BULK || \
  513. (_qh_ptr_)->ep_type == USB_ENDPOINT_XFER_CONTROL)
  514. #ifdef CONFIG_USB_DWC2_DEBUG_PERIODIC
  515. static inline bool dbg_hc(struct dwc2_host_chan *hc) { return true; }
  516. static inline bool dbg_qh(struct dwc2_qh *qh) { return true; }
  517. static inline bool dbg_urb(struct urb *urb) { return true; }
  518. static inline bool dbg_perio(void) { return true; }
  519. #else /* !CONFIG_USB_DWC2_DEBUG_PERIODIC */
  520. static inline bool dbg_hc(struct dwc2_host_chan *hc)
  521. {
  522. return hc->ep_type == USB_ENDPOINT_XFER_BULK ||
  523. hc->ep_type == USB_ENDPOINT_XFER_CONTROL;
  524. }
  525. static inline bool dbg_qh(struct dwc2_qh *qh)
  526. {
  527. return qh->ep_type == USB_ENDPOINT_XFER_BULK ||
  528. qh->ep_type == USB_ENDPOINT_XFER_CONTROL;
  529. }
  530. static inline bool dbg_urb(struct urb *urb)
  531. {
  532. return true;
  533. /*return usb_pipetype(urb->pipe) == PIPE_BULK ||
  534. usb_pipetype(urb->pipe) == PIPE_CONTROL;*/
  535. }
  536. static inline bool dbg_perio(void) { return false; }
  537. #endif
  538. /* High bandwidth multiplier as encoded in highspeed endpoint descriptors */
  539. #define dwc2_hb_mult(wmaxpacketsize) (1 + (((wmaxpacketsize) >> 11) & 0x03))
  540. /* Packet size for any kind of endpoint descriptor */
  541. #define dwc2_max_packet(wmaxpacketsize) ((wmaxpacketsize) & 0x07ff)
  542. /*
  543. * Returns true if frame1 index is greater than frame2 index. The comparison
  544. * is done modulo FRLISTEN_64_SIZE. This accounts for the rollover of the
  545. * frame number when the max index frame number is reached.
  546. */
  547. static inline bool dwc2_frame_idx_num_gt(u16 fr_idx1, u16 fr_idx2)
  548. {
  549. u16 diff = fr_idx1 - fr_idx2;
  550. u16 sign = diff & (FRLISTEN_64_SIZE >> 1);
  551. return diff && !sign;
  552. }
  553. /*
  554. * Returns true if frame1 is less than or equal to frame2. The comparison is
  555. * done modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the
  556. * frame number when the max frame number is reached.
  557. */
  558. static inline int dwc2_frame_num_le(u16 frame1, u16 frame2)
  559. {
  560. return ((frame2 - frame1) & HFNUM_MAX_FRNUM) <= (HFNUM_MAX_FRNUM >> 1);
  561. }
  562. /*
  563. * Returns true if frame1 is greater than frame2. The comparison is done
  564. * modulo HFNUM_MAX_FRNUM. This accounts for the rollover of the frame
  565. * number when the max frame number is reached.
  566. */
  567. static inline int dwc2_frame_num_gt(u16 frame1, u16 frame2)
  568. {
  569. return (frame1 != frame2) &&
  570. ((frame1 - frame2) & HFNUM_MAX_FRNUM) < (HFNUM_MAX_FRNUM >> 1);
  571. }
  572. /*
  573. * Increments frame by the amount specified by inc. The addition is done
  574. * modulo HFNUM_MAX_FRNUM. Returns the incremented value.
  575. */
  576. static inline u16 dwc2_frame_num_inc(u16 frame, u16 inc)
  577. {
  578. return (frame + inc) & HFNUM_MAX_FRNUM;
  579. }
  580. static inline u16 dwc2_frame_num_dec(u16 frame, u16 dec)
  581. {
  582. return (frame + HFNUM_MAX_FRNUM + 1 - dec) & HFNUM_MAX_FRNUM;
  583. }
  584. static inline u16 dwc2_full_frame_num(u16 frame)
  585. {
  586. return (frame & HFNUM_MAX_FRNUM) >> 3;
  587. }
  588. static inline u16 dwc2_micro_frame_num(u16 frame)
  589. {
  590. return frame & 0x7;
  591. }
  592. /*
  593. * Returns the Core Interrupt Status register contents, ANDed with the Core
  594. * Interrupt Mask register contents
  595. */
  596. static inline u32 dwc2_read_core_intr(struct dwc2_hsotg *hsotg)
  597. {
  598. return dwc2_readl(hsotg->regs + GINTSTS) &
  599. dwc2_readl(hsotg->regs + GINTMSK);
  600. }
  601. static inline u32 dwc2_hcd_urb_get_status(struct dwc2_hcd_urb *dwc2_urb)
  602. {
  603. return dwc2_urb->status;
  604. }
  605. static inline u32 dwc2_hcd_urb_get_actual_length(
  606. struct dwc2_hcd_urb *dwc2_urb)
  607. {
  608. return dwc2_urb->actual_length;
  609. }
  610. static inline u32 dwc2_hcd_urb_get_error_count(struct dwc2_hcd_urb *dwc2_urb)
  611. {
  612. return dwc2_urb->error_count;
  613. }
  614. static inline int dwc2_hcd_is_bandwidth_allocated(struct dwc2_hsotg *hsotg,
  615. struct usb_host_endpoint *ep)
  616. {
  617. struct dwc2_qh *qh = (struct dwc2_qh *)ep->hcpriv;
  618. if (qh && !list_item_empty(&qh->qh_list_entry))
  619. return 1;
  620. return 0;
  621. }
  622. static inline u16 dwc2_hcd_get_ep_bandwidth(struct dwc2_hsotg *hsotg,
  623. struct usb_host_endpoint *ep)
  624. {
  625. struct dwc2_qh *qh = (struct dwc2_qh *)ep->hcpriv;
  626. if (!qh) {
  627. WARN_ON(1);
  628. return 0;
  629. }
  630. return qh->host_us;
  631. }
  632. void dwc2_hcd_save_data_toggle(struct dwc2_hsotg *hsotg,
  633. struct dwc2_host_chan *chan, int chnum,
  634. struct dwc2_qtd *qtd);
  635. /* HCD Core API */
  636. /**
  637. * dwc2_handle_hcd_intr() - Called on every hardware interrupt
  638. *
  639. * @hsotg: The DWC2 HCD
  640. *
  641. * Returns IRQ_HANDLED if interrupt is handled
  642. * Return IRQ_NONE if interrupt is not handled
  643. */
  644. irqreturn_t dwc2_handle_hcd_intr(struct dwc2_hsotg *hsotg);
  645. /**
  646. * dwc2_hcd_stop() - Halts the DWC_otg host mode operation
  647. *
  648. * @hsotg: The DWC2 HCD
  649. */
  650. void dwc2_hcd_stop(struct dwc2_hsotg *hsotg);
  651. /**
  652. * dwc2_hcd_is_b_host() - Returns 1 if core currently is acting as B host,
  653. * and 0 otherwise
  654. *
  655. * @hsotg: The DWC2 HCD
  656. */
  657. int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg);
  658. /* URB interface */
  659. /* Transfer flags */
  660. #define URB_GIVEBACK_ASAP 0x1
  661. #define URB_SEND_ZERO_PACKET 0x2
  662. /* Host driver callbacks */
  663. struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg,
  664. void *context, gfp_t mem_flags,
  665. int *ttport);
  666. void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg,
  667. struct dwc2_tt *dwc_tt);
  668. int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context);
  669. void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
  670. int status);
  671. #ifdef DEBUG
  672. /*
  673. * Macro to sample the remaining PHY clocks left in the current frame. This
  674. * may be used during debugging to determine the average time it takes to
  675. * execute sections of code. There are two possible sample points, "a" and
  676. * "b", so the _letter_ argument must be one of these values.
  677. *
  678. * To dump the average sample times, read the "hcd_frrem" sysfs attribute. For
  679. * example, "cat /sys/devices/lm0/hcd_frrem".
  680. */
  681. #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) \
  682. do { \
  683. struct hfnum_data _hfnum_; \
  684. struct dwc2_qtd *_qtd_; \
  685. \
  686. _qtd_ = list_entry((_qh_)->qtd_list.next, struct dwc2_qtd, \
  687. qtd_list_entry); \
  688. if (usb_pipeint(_qtd_->urb->pipe) && \
  689. (_qh_)->start_active_frame != 0 && !_qtd_->complete_split) { \
  690. _hfnum_.d32 = dwc2_readl((_hcd_)->regs + HFNUM); \
  691. switch (_hfnum_.b.frnum & 0x7) { \
  692. case 7: \
  693. (_hcd_)->hfnum_7_samples_##_letter_++; \
  694. (_hcd_)->hfnum_7_frrem_accum_##_letter_ += \
  695. _hfnum_.b.frrem; \
  696. break; \
  697. case 0: \
  698. (_hcd_)->hfnum_0_samples_##_letter_++; \
  699. (_hcd_)->hfnum_0_frrem_accum_##_letter_ += \
  700. _hfnum_.b.frrem; \
  701. break; \
  702. default: \
  703. (_hcd_)->hfnum_other_samples_##_letter_++; \
  704. (_hcd_)->hfnum_other_frrem_accum_##_letter_ += \
  705. _hfnum_.b.frrem; \
  706. break; \
  707. } \
  708. } \
  709. } while (0)
  710. #else
  711. #define dwc2_sample_frrem(_hcd_, _qh_, _letter_) do {} while (0)
  712. #endif
  713. void dwc2_hcd_start_isr(struct dwc2_hsotg *hsotg);
  714. #endif /* __DWC2_HCD_H__ */