md5.c 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. #include "md5.h"
  2. #include <string.h>
  3. #include "stdio.h"
  4. /*
  5. * 32-bit integer manipulation macros (little endian)
  6. */
  7. #ifndef GET_ULONG_LE
  8. #define GET_ULONG_LE(n,b,i) \
  9. { \
  10. (n) = ( (unsigned long) (b)[(i) ] ) \
  11. | ( (unsigned long) (b)[(i) + 1] << 8 ) \
  12. | ( (unsigned long) (b)[(i) + 2] << 16 ) \
  13. | ( (unsigned long) (b)[(i) + 3] << 24 ); \
  14. }
  15. #endif
  16. #ifndef PUT_ULONG_LE
  17. #define PUT_ULONG_LE(n,b,i) \
  18. { \
  19. (b)[(i) ] = (unsigned char) ( (n) ); \
  20. (b)[(i) + 1] = (unsigned char) ( (n) >> 8 ); \
  21. (b)[(i) + 2] = (unsigned char) ( (n) >> 16 ); \
  22. (b)[(i) + 3] = (unsigned char) ( (n) >> 24 ); \
  23. }
  24. #endif
  25. /*
  26. * MD5 context setup
  27. */
  28. void md5_starts(md5_context* ctx)
  29. {
  30. ctx->total[0] = 0;
  31. ctx->total[1] = 0;
  32. ctx->state[0] = 0x67452301;
  33. ctx->state[1] = 0xEFCDAB89;
  34. ctx->state[2] = 0x98BADCFE;
  35. ctx->state[3] = 0x10325476;
  36. }
  37. static void md5_process(md5_context* ctx, const unsigned char data[64])
  38. {
  39. unsigned long X[16], A, B, C, D;
  40. GET_ULONG_LE(X[0], data, 0);
  41. GET_ULONG_LE(X[1], data, 4);
  42. GET_ULONG_LE(X[2], data, 8);
  43. GET_ULONG_LE(X[3], data, 12);
  44. GET_ULONG_LE(X[4], data, 16);
  45. GET_ULONG_LE(X[5], data, 20);
  46. GET_ULONG_LE(X[6], data, 24);
  47. GET_ULONG_LE(X[7], data, 28);
  48. GET_ULONG_LE(X[8], data, 32);
  49. GET_ULONG_LE(X[9], data, 36);
  50. GET_ULONG_LE(X[10], data, 40);
  51. GET_ULONG_LE(X[11], data, 44);
  52. GET_ULONG_LE(X[12], data, 48);
  53. GET_ULONG_LE(X[13], data, 52);
  54. GET_ULONG_LE(X[14], data, 56);
  55. GET_ULONG_LE(X[15], data, 60);
  56. #define S(x,n) ((x << n) | ((x & 0xFFFFFFFF) >> (32 - n)))
  57. #define P(a,b,c,d,k,s,t) \
  58. { \
  59. a += F(b,c,d) + X[k] + t; a = S(a,s) + b; \
  60. }
  61. A = ctx->state[0];
  62. B = ctx->state[1];
  63. C = ctx->state[2];
  64. D = ctx->state[3];
  65. #define F(x,y,z) (z ^ (x & (y ^ z)))
  66. P(A, B, C, D, 0, 7, 0xD76AA478);
  67. P(D, A, B, C, 1, 12, 0xE8C7B756);
  68. P(C, D, A, B, 2, 17, 0x242070DB);
  69. P(B, C, D, A, 3, 22, 0xC1BDCEEE);
  70. P(A, B, C, D, 4, 7, 0xF57C0FAF);
  71. P(D, A, B, C, 5, 12, 0x4787C62A);
  72. P(C, D, A, B, 6, 17, 0xA8304613);
  73. P(B, C, D, A, 7, 22, 0xFD469501);
  74. P(A, B, C, D, 8, 7, 0x698098D8);
  75. P(D, A, B, C, 9, 12, 0x8B44F7AF);
  76. P(C, D, A, B, 10, 17, 0xFFFF5BB1);
  77. P(B, C, D, A, 11, 22, 0x895CD7BE);
  78. P(A, B, C, D, 12, 7, 0x6B901122);
  79. P(D, A, B, C, 13, 12, 0xFD987193);
  80. P(C, D, A, B, 14, 17, 0xA679438E);
  81. P(B, C, D, A, 15, 22, 0x49B40821);
  82. #undef F
  83. #define F(x,y,z) (y ^ (z & (x ^ y)))
  84. P(A, B, C, D, 1, 5, 0xF61E2562);
  85. P(D, A, B, C, 6, 9, 0xC040B340);
  86. P(C, D, A, B, 11, 14, 0x265E5A51);
  87. P(B, C, D, A, 0, 20, 0xE9B6C7AA);
  88. P(A, B, C, D, 5, 5, 0xD62F105D);
  89. P(D, A, B, C, 10, 9, 0x02441453);
  90. P(C, D, A, B, 15, 14, 0xD8A1E681);
  91. P(B, C, D, A, 4, 20, 0xE7D3FBC8);
  92. P(A, B, C, D, 9, 5, 0x21E1CDE6);
  93. P(D, A, B, C, 14, 9, 0xC33707D6);
  94. P(C, D, A, B, 3, 14, 0xF4D50D87);
  95. P(B, C, D, A, 8, 20, 0x455A14ED);
  96. P(A, B, C, D, 13, 5, 0xA9E3E905);
  97. P(D, A, B, C, 2, 9, 0xFCEFA3F8);
  98. P(C, D, A, B, 7, 14, 0x676F02D9);
  99. P(B, C, D, A, 12, 20, 0x8D2A4C8A);
  100. #undef F
  101. #define F(x,y,z) (x ^ y ^ z)
  102. P(A, B, C, D, 5, 4, 0xFFFA3942);
  103. P(D, A, B, C, 8, 11, 0x8771F681);
  104. P(C, D, A, B, 11, 16, 0x6D9D6122);
  105. P(B, C, D, A, 14, 23, 0xFDE5380C);
  106. P(A, B, C, D, 1, 4, 0xA4BEEA44);
  107. P(D, A, B, C, 4, 11, 0x4BDECFA9);
  108. P(C, D, A, B, 7, 16, 0xF6BB4B60);
  109. P(B, C, D, A, 10, 23, 0xBEBFBC70);
  110. P(A, B, C, D, 13, 4, 0x289B7EC6);
  111. P(D, A, B, C, 0, 11, 0xEAA127FA);
  112. P(C, D, A, B, 3, 16, 0xD4EF3085);
  113. P(B, C, D, A, 6, 23, 0x04881D05);
  114. P(A, B, C, D, 9, 4, 0xD9D4D039);
  115. P(D, A, B, C, 12, 11, 0xE6DB99E5);
  116. P(C, D, A, B, 15, 16, 0x1FA27CF8);
  117. P(B, C, D, A, 2, 23, 0xC4AC5665);
  118. #undef F
  119. #define F(x,y,z) (y ^ (x | ~z))
  120. P(A, B, C, D, 0, 6, 0xF4292244);
  121. P(D, A, B, C, 7, 10, 0x432AFF97);
  122. P(C, D, A, B, 14, 15, 0xAB9423A7);
  123. P(B, C, D, A, 5, 21, 0xFC93A039);
  124. P(A, B, C, D, 12, 6, 0x655B59C3);
  125. P(D, A, B, C, 3, 10, 0x8F0CCC92);
  126. P(C, D, A, B, 10, 15, 0xFFEFF47D);
  127. P(B, C, D, A, 1, 21, 0x85845DD1);
  128. P(A, B, C, D, 8, 6, 0x6FA87E4F);
  129. P(D, A, B, C, 15, 10, 0xFE2CE6E0);
  130. P(C, D, A, B, 6, 15, 0xA3014314);
  131. P(B, C, D, A, 13, 21, 0x4E0811A1);
  132. P(A, B, C, D, 4, 6, 0xF7537E82);
  133. P(D, A, B, C, 11, 10, 0xBD3AF235);
  134. P(C, D, A, B, 2, 15, 0x2AD7D2BB);
  135. P(B, C, D, A, 9, 21, 0xEB86D391);
  136. #undef F
  137. ctx->state[0] += A;
  138. ctx->state[1] += B;
  139. ctx->state[2] += C;
  140. ctx->state[3] += D;
  141. }
  142. /*
  143. * MD5 process buffer
  144. */
  145. void md5_update(md5_context* ctx, const unsigned char* input, int ilen)
  146. {
  147. int fill;
  148. unsigned long left;
  149. if (ilen <= 0)
  150. return;
  151. left = ctx->total[0] & 0x3F;
  152. fill = 64 - left;
  153. ctx->total[0] += ilen;
  154. ctx->total[0] &= 0xFFFFFFFF;
  155. if (ctx->total[0] < (unsigned long)ilen)
  156. ctx->total[1]++;
  157. if (left && ilen >= fill)
  158. {
  159. memcpy((void*)(ctx->buffer + left),
  160. input, fill);
  161. md5_process(ctx, ctx->buffer);
  162. input += fill;
  163. ilen -= fill;
  164. left = 0;
  165. }
  166. while (ilen >= 64)
  167. {
  168. md5_process(ctx, input);
  169. input += 64;
  170. ilen -= 64;
  171. }
  172. if (ilen > 0)
  173. {
  174. memcpy((void*)(ctx->buffer + left),
  175. input, ilen);
  176. }
  177. }
  178. static const unsigned char md5_padding[64] =
  179. {
  180. 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  181. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  182. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  183. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
  184. };
  185. /*
  186. * MD5 final digest
  187. */
  188. void md5_finish(md5_context* ctx, unsigned char output[16])
  189. {
  190. unsigned long last, padn;
  191. unsigned long high, low;
  192. unsigned char msglen[8];
  193. high = (ctx->total[0] >> 29)
  194. | (ctx->total[1] << 3);
  195. low = (ctx->total[0] << 3);
  196. PUT_ULONG_LE(low, msglen, 0);
  197. PUT_ULONG_LE(high, msglen, 4);
  198. last = ctx->total[0] & 0x3F;
  199. padn = (last < 56) ? (56 - last) : (120 - last);
  200. md5_update(ctx, md5_padding, padn);
  201. md5_update(ctx, msglen, 8);
  202. PUT_ULONG_LE(ctx->state[0], output, 0);
  203. PUT_ULONG_LE(ctx->state[1], output, 4);
  204. PUT_ULONG_LE(ctx->state[2], output, 8);
  205. PUT_ULONG_LE(ctx->state[3], output, 12);
  206. }
  207. /*
  208. * output = MD5( input buffer )
  209. */
  210. void md5(unsigned char* input, int ilen, unsigned char output[16])
  211. {
  212. md5_context ctx;
  213. memset(&ctx, 0, sizeof(md5_context));
  214. md5_starts(&ctx);
  215. md5_update(&ctx, input, ilen);
  216. md5_finish(&ctx, output);
  217. }