blk-mq.h 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. #ifndef INT_BLK_MQ_H
  3. #define INT_BLK_MQ_H
  4. #include <linux/blk-mq.h>
  5. #include "blk-stat.h"
  6. struct blk_mq_tag_set;
  7. struct blk_mq_ctxs {
  8. struct kobject kobj;
  9. struct blk_mq_ctx __percpu *queue_ctx;
  10. };
  11. /**
  12. * struct blk_mq_ctx - State for a software queue facing the submitting CPUs
  13. */
  14. struct blk_mq_ctx {
  15. struct {
  16. spinlock_t lock;
  17. struct list_head rq_lists[HCTX_MAX_TYPES];
  18. } ____cacheline_aligned_in_smp;
  19. unsigned int cpu;
  20. unsigned short index_hw[HCTX_MAX_TYPES];
  21. struct blk_mq_hw_ctx *hctxs[HCTX_MAX_TYPES];
  22. struct request_queue *queue;
  23. struct blk_mq_ctxs *ctxs;
  24. struct kobject kobj;
  25. } ____cacheline_aligned_in_smp;
  26. enum {
  27. BLK_MQ_NO_TAG = -1U,
  28. BLK_MQ_TAG_MIN = 1,
  29. BLK_MQ_TAG_MAX = BLK_MQ_NO_TAG - 1,
  30. };
  31. #define BLK_MQ_CPU_WORK_BATCH (8)
  32. typedef unsigned int __bitwise blk_insert_t;
  33. #define BLK_MQ_INSERT_AT_HEAD ((__force blk_insert_t)0x01)
  34. void blk_mq_submit_bio(struct bio *bio);
  35. int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
  36. unsigned int flags);
  37. void blk_mq_exit_queue(struct request_queue *q);
  38. int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr);
  39. void blk_mq_wake_waiters(struct request_queue *q);
  40. bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *,
  41. unsigned int);
  42. void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list);
  43. struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
  44. struct blk_mq_ctx *start);
  45. void blk_mq_put_rq_ref(struct request *rq);
  46. /*
  47. * Internal helpers for allocating/freeing the request map
  48. */
  49. void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
  50. unsigned int hctx_idx);
  51. void blk_mq_free_rq_map(struct blk_mq_tags *tags);
  52. struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
  53. unsigned int hctx_idx, unsigned int depth);
  54. void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
  55. struct blk_mq_tags *tags,
  56. unsigned int hctx_idx);
  57. /*
  58. * CPU -> queue mappings
  59. */
  60. extern int blk_mq_hw_queue_to_node(struct blk_mq_queue_map *qmap, unsigned int);
  61. /*
  62. * blk_mq_map_queue_type() - map (hctx_type,cpu) to hardware queue
  63. * @q: request queue
  64. * @type: the hctx type index
  65. * @cpu: CPU
  66. */
  67. static inline struct blk_mq_hw_ctx *blk_mq_map_queue_type(struct request_queue *q,
  68. enum hctx_type type,
  69. unsigned int cpu)
  70. {
  71. return xa_load(&q->hctx_table, q->tag_set->map[type].mq_map[cpu]);
  72. }
  73. static inline enum hctx_type blk_mq_get_hctx_type(blk_opf_t opf)
  74. {
  75. enum hctx_type type = HCTX_TYPE_DEFAULT;
  76. /*
  77. * The caller ensure that if REQ_POLLED, poll must be enabled.
  78. */
  79. if (opf & REQ_POLLED)
  80. type = HCTX_TYPE_POLL;
  81. else if ((opf & REQ_OP_MASK) == REQ_OP_READ)
  82. type = HCTX_TYPE_READ;
  83. return type;
  84. }
  85. /*
  86. * blk_mq_map_queue() - map (cmd_flags,type) to hardware queue
  87. * @q: request queue
  88. * @opf: operation type (REQ_OP_*) and flags (e.g. REQ_POLLED).
  89. * @ctx: software queue cpu ctx
  90. */
  91. static inline struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q,
  92. blk_opf_t opf,
  93. struct blk_mq_ctx *ctx)
  94. {
  95. return ctx->hctxs[blk_mq_get_hctx_type(opf)];
  96. }
  97. /*
  98. * sysfs helpers
  99. */
  100. extern void blk_mq_sysfs_init(struct request_queue *q);
  101. extern void blk_mq_sysfs_deinit(struct request_queue *q);
  102. int blk_mq_sysfs_register(struct gendisk *disk);
  103. void blk_mq_sysfs_unregister(struct gendisk *disk);
  104. int blk_mq_sysfs_register_hctxs(struct request_queue *q);
  105. void blk_mq_sysfs_unregister_hctxs(struct request_queue *q);
  106. extern void blk_mq_hctx_kobj_init(struct blk_mq_hw_ctx *hctx);
  107. void blk_mq_free_plug_rqs(struct blk_plug *plug);
  108. void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule);
  109. void blk_mq_cancel_work_sync(struct request_queue *q);
  110. void blk_mq_release(struct request_queue *q);
  111. static inline struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
  112. unsigned int cpu)
  113. {
  114. return per_cpu_ptr(q->queue_ctx, cpu);
  115. }
  116. /*
  117. * This assumes per-cpu software queueing queues. They could be per-node
  118. * as well, for instance. For now this is hardcoded as-is. Note that we don't
  119. * care about preemption, since we know the ctx's are persistent. This does
  120. * mean that we can't rely on ctx always matching the currently running CPU.
  121. */
  122. static inline struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
  123. {
  124. return __blk_mq_get_ctx(q, raw_smp_processor_id());
  125. }
  126. struct blk_mq_alloc_data {
  127. /* input parameter */
  128. struct request_queue *q;
  129. blk_mq_req_flags_t flags;
  130. unsigned int shallow_depth;
  131. blk_opf_t cmd_flags;
  132. req_flags_t rq_flags;
  133. /* allocate multiple requests/tags in one go */
  134. unsigned int nr_tags;
  135. struct rq_list *cached_rqs;
  136. /* input & output parameter */
  137. struct blk_mq_ctx *ctx;
  138. struct blk_mq_hw_ctx *hctx;
  139. };
  140. struct blk_mq_tags *blk_mq_init_tags(unsigned int nr_tags,
  141. unsigned int reserved_tags, int node, int alloc_policy);
  142. void blk_mq_free_tags(struct blk_mq_tags *tags);
  143. int blk_mq_init_bitmaps(struct sbitmap_queue *bitmap_tags,
  144. struct sbitmap_queue *breserved_tags, unsigned int queue_depth,
  145. unsigned int reserved, int node, int alloc_policy);
  146. unsigned int blk_mq_get_tag(struct blk_mq_alloc_data *data);
  147. unsigned long blk_mq_get_tags(struct blk_mq_alloc_data *data, int nr_tags,
  148. unsigned int *offset);
  149. void blk_mq_put_tag(struct blk_mq_tags *tags, struct blk_mq_ctx *ctx,
  150. unsigned int tag);
  151. void blk_mq_put_tags(struct blk_mq_tags *tags, int *tag_array, int nr_tags);
  152. int blk_mq_tag_update_depth(struct blk_mq_hw_ctx *hctx,
  153. struct blk_mq_tags **tags, unsigned int depth, bool can_grow);
  154. void blk_mq_tag_resize_shared_tags(struct blk_mq_tag_set *set,
  155. unsigned int size);
  156. void blk_mq_tag_update_sched_shared_tags(struct request_queue *q);
  157. void blk_mq_tag_wakeup_all(struct blk_mq_tags *tags, bool);
  158. void blk_mq_queue_tag_busy_iter(struct request_queue *q, busy_tag_iter_fn *fn,
  159. void *priv);
  160. void blk_mq_all_tag_iter(struct blk_mq_tags *tags, busy_tag_iter_fn *fn,
  161. void *priv);
  162. static inline struct sbq_wait_state *bt_wait_ptr(struct sbitmap_queue *bt,
  163. struct blk_mq_hw_ctx *hctx)
  164. {
  165. if (!hctx)
  166. return &bt->ws[0];
  167. return sbq_wait_ptr(bt, &hctx->wait_index);
  168. }
  169. void __blk_mq_tag_busy(struct blk_mq_hw_ctx *);
  170. void __blk_mq_tag_idle(struct blk_mq_hw_ctx *);
  171. static inline void blk_mq_tag_busy(struct blk_mq_hw_ctx *hctx)
  172. {
  173. if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
  174. __blk_mq_tag_busy(hctx);
  175. }
  176. static inline void blk_mq_tag_idle(struct blk_mq_hw_ctx *hctx)
  177. {
  178. if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
  179. __blk_mq_tag_idle(hctx);
  180. }
  181. static inline bool blk_mq_tag_is_reserved(struct blk_mq_tags *tags,
  182. unsigned int tag)
  183. {
  184. return tag < tags->nr_reserved_tags;
  185. }
  186. static inline bool blk_mq_is_shared_tags(unsigned int flags)
  187. {
  188. return flags & BLK_MQ_F_TAG_HCTX_SHARED;
  189. }
  190. static inline struct blk_mq_tags *blk_mq_tags_from_data(struct blk_mq_alloc_data *data)
  191. {
  192. if (data->rq_flags & RQF_SCHED_TAGS)
  193. return data->hctx->sched_tags;
  194. return data->hctx->tags;
  195. }
  196. static inline bool blk_mq_hctx_stopped(struct blk_mq_hw_ctx *hctx)
  197. {
  198. /* Fast path: hardware queue is not stopped most of the time. */
  199. if (likely(!test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
  200. return false;
  201. /*
  202. * This barrier is used to order adding of dispatch list before and
  203. * the test of BLK_MQ_S_STOPPED below. Pairs with the memory barrier
  204. * in blk_mq_start_stopped_hw_queue() so that dispatch code could
  205. * either see BLK_MQ_S_STOPPED is cleared or dispatch list is not
  206. * empty to avoid missing dispatching requests.
  207. */
  208. smp_mb();
  209. return test_bit(BLK_MQ_S_STOPPED, &hctx->state);
  210. }
  211. static inline bool blk_mq_hw_queue_mapped(struct blk_mq_hw_ctx *hctx)
  212. {
  213. return hctx->nr_ctx && hctx->tags;
  214. }
  215. unsigned int blk_mq_in_flight(struct request_queue *q,
  216. struct block_device *part);
  217. void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
  218. unsigned int inflight[2]);
  219. static inline void blk_mq_put_dispatch_budget(struct request_queue *q,
  220. int budget_token)
  221. {
  222. if (q->mq_ops->put_budget)
  223. q->mq_ops->put_budget(q, budget_token);
  224. }
  225. static inline int blk_mq_get_dispatch_budget(struct request_queue *q)
  226. {
  227. if (q->mq_ops->get_budget)
  228. return q->mq_ops->get_budget(q);
  229. return 0;
  230. }
  231. static inline void blk_mq_set_rq_budget_token(struct request *rq, int token)
  232. {
  233. if (token < 0)
  234. return;
  235. if (rq->q->mq_ops->set_rq_budget_token)
  236. rq->q->mq_ops->set_rq_budget_token(rq, token);
  237. }
  238. static inline int blk_mq_get_rq_budget_token(struct request *rq)
  239. {
  240. if (rq->q->mq_ops->get_rq_budget_token)
  241. return rq->q->mq_ops->get_rq_budget_token(rq);
  242. return -1;
  243. }
  244. static inline void __blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
  245. int val)
  246. {
  247. if (blk_mq_is_shared_tags(hctx->flags))
  248. atomic_add(val, &hctx->queue->nr_active_requests_shared_tags);
  249. else
  250. atomic_add(val, &hctx->nr_active);
  251. }
  252. static inline void __blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
  253. {
  254. __blk_mq_add_active_requests(hctx, 1);
  255. }
  256. static inline void __blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
  257. int val)
  258. {
  259. if (blk_mq_is_shared_tags(hctx->flags))
  260. atomic_sub(val, &hctx->queue->nr_active_requests_shared_tags);
  261. else
  262. atomic_sub(val, &hctx->nr_active);
  263. }
  264. static inline void __blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
  265. {
  266. __blk_mq_sub_active_requests(hctx, 1);
  267. }
  268. static inline void blk_mq_add_active_requests(struct blk_mq_hw_ctx *hctx,
  269. int val)
  270. {
  271. if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
  272. __blk_mq_add_active_requests(hctx, val);
  273. }
  274. static inline void blk_mq_inc_active_requests(struct blk_mq_hw_ctx *hctx)
  275. {
  276. if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
  277. __blk_mq_inc_active_requests(hctx);
  278. }
  279. static inline void blk_mq_sub_active_requests(struct blk_mq_hw_ctx *hctx,
  280. int val)
  281. {
  282. if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
  283. __blk_mq_sub_active_requests(hctx, val);
  284. }
  285. static inline void blk_mq_dec_active_requests(struct blk_mq_hw_ctx *hctx)
  286. {
  287. if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
  288. __blk_mq_dec_active_requests(hctx);
  289. }
  290. static inline int __blk_mq_active_requests(struct blk_mq_hw_ctx *hctx)
  291. {
  292. if (blk_mq_is_shared_tags(hctx->flags))
  293. return atomic_read(&hctx->queue->nr_active_requests_shared_tags);
  294. return atomic_read(&hctx->nr_active);
  295. }
  296. static inline void __blk_mq_put_driver_tag(struct blk_mq_hw_ctx *hctx,
  297. struct request *rq)
  298. {
  299. blk_mq_dec_active_requests(hctx);
  300. blk_mq_put_tag(hctx->tags, rq->mq_ctx, rq->tag);
  301. rq->tag = BLK_MQ_NO_TAG;
  302. }
  303. static inline void blk_mq_put_driver_tag(struct request *rq)
  304. {
  305. if (rq->tag == BLK_MQ_NO_TAG || rq->internal_tag == BLK_MQ_NO_TAG)
  306. return;
  307. __blk_mq_put_driver_tag(rq->mq_hctx, rq);
  308. }
  309. bool __blk_mq_alloc_driver_tag(struct request *rq);
  310. static inline bool blk_mq_get_driver_tag(struct request *rq)
  311. {
  312. if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
  313. return false;
  314. return true;
  315. }
  316. static inline void blk_mq_clear_mq_map(struct blk_mq_queue_map *qmap)
  317. {
  318. int cpu;
  319. for_each_possible_cpu(cpu)
  320. qmap->mq_map[cpu] = 0;
  321. }
  322. /* Free all requests on the list */
  323. static inline void blk_mq_free_requests(struct list_head *list)
  324. {
  325. while (!list_empty(list)) {
  326. struct request *rq = list_entry_rq(list->next);
  327. list_del_init(&rq->queuelist);
  328. blk_mq_free_request(rq);
  329. }
  330. }
  331. /*
  332. * For shared tag users, we track the number of currently active users
  333. * and attempt to provide a fair share of the tag depth for each of them.
  334. */
  335. static inline bool hctx_may_queue(struct blk_mq_hw_ctx *hctx,
  336. struct sbitmap_queue *bt)
  337. {
  338. unsigned int depth, users;
  339. if (!hctx || !(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED))
  340. return true;
  341. /*
  342. * Don't try dividing an ant
  343. */
  344. if (bt->sb.depth == 1)
  345. return true;
  346. if (blk_mq_is_shared_tags(hctx->flags)) {
  347. struct request_queue *q = hctx->queue;
  348. if (!test_bit(QUEUE_FLAG_HCTX_ACTIVE, &q->queue_flags))
  349. return true;
  350. } else {
  351. if (!test_bit(BLK_MQ_S_TAG_ACTIVE, &hctx->state))
  352. return true;
  353. }
  354. users = READ_ONCE(hctx->tags->active_queues);
  355. if (!users)
  356. return true;
  357. /*
  358. * Allow at least some tags
  359. */
  360. depth = max((bt->sb.depth + users - 1) / users, 4U);
  361. return __blk_mq_active_requests(hctx) < depth;
  362. }
  363. /* run the code block in @dispatch_ops with rcu/srcu read lock held */
  364. #define __blk_mq_run_dispatch_ops(q, check_sleep, dispatch_ops) \
  365. do { \
  366. if ((q)->tag_set->flags & BLK_MQ_F_BLOCKING) { \
  367. struct blk_mq_tag_set *__tag_set = (q)->tag_set; \
  368. int srcu_idx; \
  369. \
  370. might_sleep_if(check_sleep); \
  371. srcu_idx = srcu_read_lock(__tag_set->srcu); \
  372. (dispatch_ops); \
  373. srcu_read_unlock(__tag_set->srcu, srcu_idx); \
  374. } else { \
  375. rcu_read_lock(); \
  376. (dispatch_ops); \
  377. rcu_read_unlock(); \
  378. } \
  379. } while (0)
  380. #define blk_mq_run_dispatch_ops(q, dispatch_ops) \
  381. __blk_mq_run_dispatch_ops(q, true, dispatch_ops) \
  382. static inline bool blk_mq_can_poll(struct request_queue *q)
  383. {
  384. return (q->limits.features & BLK_FEAT_POLL) &&
  385. q->tag_set->map[HCTX_TYPE_POLL].nr_queues;
  386. }
  387. #endif