repaper.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * DRM driver for Pervasive Displays RePaper branded e-ink panels
  4. *
  5. * Copyright 2013-2017 Pervasive Displays, Inc.
  6. * Copyright 2017 Noralf Trønnes
  7. *
  8. * The driver supports:
  9. * Material Film: Aurora Mb (V231)
  10. * Driver IC: G2 (eTC)
  11. *
  12. * The controller code was taken from the userspace driver:
  13. * https://github.com/repaper/gratis
  14. */
  15. #include <linux/delay.h>
  16. #include <linux/gpio/consumer.h>
  17. #include <linux/module.h>
  18. #include <linux/property.h>
  19. #include <linux/sched/clock.h>
  20. #include <linux/spi/spi.h>
  21. #include <linux/thermal.h>
  22. #include <drm/drm_atomic_helper.h>
  23. #include <drm/drm_connector.h>
  24. #include <drm/drm_damage_helper.h>
  25. #include <drm/drm_drv.h>
  26. #include <drm/drm_fb_dma_helper.h>
  27. #include <drm/drm_fbdev_dma.h>
  28. #include <drm/drm_format_helper.h>
  29. #include <drm/drm_framebuffer.h>
  30. #include <drm/drm_gem_atomic_helper.h>
  31. #include <drm/drm_gem_dma_helper.h>
  32. #include <drm/drm_gem_framebuffer_helper.h>
  33. #include <drm/drm_managed.h>
  34. #include <drm/drm_modes.h>
  35. #include <drm/drm_rect.h>
  36. #include <drm/drm_probe_helper.h>
  37. #include <drm/drm_simple_kms_helper.h>
  38. #define REPAPER_RID_G2_COG_ID 0x12
  39. enum repaper_model {
  40. /* 0 is reserved to avoid clashing with NULL */
  41. E1144CS021 = 1,
  42. E1190CS021,
  43. E2200CS021,
  44. E2271CS021,
  45. };
  46. enum repaper_stage { /* Image pixel -> Display pixel */
  47. REPAPER_COMPENSATE, /* B -> W, W -> B (Current Image) */
  48. REPAPER_WHITE, /* B -> N, W -> W (Current Image) */
  49. REPAPER_INVERSE, /* B -> N, W -> B (New Image) */
  50. REPAPER_NORMAL /* B -> B, W -> W (New Image) */
  51. };
  52. enum repaper_epd_border_byte {
  53. REPAPER_BORDER_BYTE_NONE,
  54. REPAPER_BORDER_BYTE_ZERO,
  55. REPAPER_BORDER_BYTE_SET,
  56. };
  57. struct repaper_epd {
  58. struct drm_device drm;
  59. struct drm_simple_display_pipe pipe;
  60. const struct drm_display_mode *mode;
  61. struct drm_connector connector;
  62. struct spi_device *spi;
  63. struct gpio_desc *panel_on;
  64. struct gpio_desc *border;
  65. struct gpio_desc *discharge;
  66. struct gpio_desc *reset;
  67. struct gpio_desc *busy;
  68. struct thermal_zone_device *thermal;
  69. unsigned int height;
  70. unsigned int width;
  71. unsigned int bytes_per_scan;
  72. const u8 *channel_select;
  73. unsigned int stage_time;
  74. unsigned int factored_stage_time;
  75. bool middle_scan;
  76. bool pre_border_byte;
  77. enum repaper_epd_border_byte border_byte;
  78. u8 *line_buffer;
  79. void *current_frame;
  80. bool cleared;
  81. bool partial;
  82. };
  83. static inline struct repaper_epd *drm_to_epd(struct drm_device *drm)
  84. {
  85. return container_of(drm, struct repaper_epd, drm);
  86. }
  87. static int repaper_spi_transfer(struct spi_device *spi, u8 header,
  88. const void *tx, void *rx, size_t len)
  89. {
  90. void *txbuf = NULL, *rxbuf = NULL;
  91. struct spi_transfer tr[2] = {};
  92. u8 *headerbuf;
  93. int ret;
  94. headerbuf = kmalloc(1, GFP_KERNEL);
  95. if (!headerbuf)
  96. return -ENOMEM;
  97. headerbuf[0] = header;
  98. tr[0].tx_buf = headerbuf;
  99. tr[0].len = 1;
  100. /* Stack allocated tx? */
  101. if (tx && len <= 32) {
  102. txbuf = kmemdup(tx, len, GFP_KERNEL);
  103. if (!txbuf) {
  104. ret = -ENOMEM;
  105. goto out_free;
  106. }
  107. }
  108. if (rx) {
  109. rxbuf = kmalloc(len, GFP_KERNEL);
  110. if (!rxbuf) {
  111. ret = -ENOMEM;
  112. goto out_free;
  113. }
  114. }
  115. tr[1].tx_buf = txbuf ? txbuf : tx;
  116. tr[1].rx_buf = rxbuf;
  117. tr[1].len = len;
  118. ndelay(80);
  119. ret = spi_sync_transfer(spi, tr, 2);
  120. if (rx && !ret)
  121. memcpy(rx, rxbuf, len);
  122. out_free:
  123. kfree(headerbuf);
  124. kfree(txbuf);
  125. kfree(rxbuf);
  126. return ret;
  127. }
  128. static int repaper_write_buf(struct spi_device *spi, u8 reg,
  129. const u8 *buf, size_t len)
  130. {
  131. int ret;
  132. ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
  133. if (ret)
  134. return ret;
  135. return repaper_spi_transfer(spi, 0x72, buf, NULL, len);
  136. }
  137. static int repaper_write_val(struct spi_device *spi, u8 reg, u8 val)
  138. {
  139. return repaper_write_buf(spi, reg, &val, 1);
  140. }
  141. static int repaper_read_val(struct spi_device *spi, u8 reg)
  142. {
  143. int ret;
  144. u8 val;
  145. ret = repaper_spi_transfer(spi, 0x70, &reg, NULL, 1);
  146. if (ret)
  147. return ret;
  148. ret = repaper_spi_transfer(spi, 0x73, NULL, &val, 1);
  149. return ret ? ret : val;
  150. }
  151. static int repaper_read_id(struct spi_device *spi)
  152. {
  153. int ret;
  154. u8 id;
  155. ret = repaper_spi_transfer(spi, 0x71, NULL, &id, 1);
  156. return ret ? ret : id;
  157. }
  158. static void repaper_spi_mosi_low(struct spi_device *spi)
  159. {
  160. const u8 buf[1] = { 0 };
  161. spi_write(spi, buf, 1);
  162. }
  163. /* pixels on display are numbered from 1 so even is actually bits 1,3,5,... */
  164. static void repaper_even_pixels(struct repaper_epd *epd, u8 **pp,
  165. const u8 *data, u8 fixed_value, const u8 *mask,
  166. enum repaper_stage stage)
  167. {
  168. unsigned int b;
  169. for (b = 0; b < (epd->width / 8); b++) {
  170. if (data) {
  171. u8 pixels = data[b] & 0xaa;
  172. u8 pixel_mask = 0xff;
  173. u8 p1, p2, p3, p4;
  174. if (mask) {
  175. pixel_mask = (mask[b] ^ pixels) & 0xaa;
  176. pixel_mask |= pixel_mask >> 1;
  177. }
  178. switch (stage) {
  179. case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
  180. pixels = 0xaa | ((pixels ^ 0xaa) >> 1);
  181. break;
  182. case REPAPER_WHITE: /* B -> N, W -> W (Current) */
  183. pixels = 0x55 + ((pixels ^ 0xaa) >> 1);
  184. break;
  185. case REPAPER_INVERSE: /* B -> N, W -> B (New) */
  186. pixels = 0x55 | (pixels ^ 0xaa);
  187. break;
  188. case REPAPER_NORMAL: /* B -> B, W -> W (New) */
  189. pixels = 0xaa | (pixels >> 1);
  190. break;
  191. }
  192. pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
  193. p1 = (pixels >> 6) & 0x03;
  194. p2 = (pixels >> 4) & 0x03;
  195. p3 = (pixels >> 2) & 0x03;
  196. p4 = (pixels >> 0) & 0x03;
  197. pixels = (p1 << 0) | (p2 << 2) | (p3 << 4) | (p4 << 6);
  198. *(*pp)++ = pixels;
  199. } else {
  200. *(*pp)++ = fixed_value;
  201. }
  202. }
  203. }
  204. /* pixels on display are numbered from 1 so odd is actually bits 0,2,4,... */
  205. static void repaper_odd_pixels(struct repaper_epd *epd, u8 **pp,
  206. const u8 *data, u8 fixed_value, const u8 *mask,
  207. enum repaper_stage stage)
  208. {
  209. unsigned int b;
  210. for (b = epd->width / 8; b > 0; b--) {
  211. if (data) {
  212. u8 pixels = data[b - 1] & 0x55;
  213. u8 pixel_mask = 0xff;
  214. if (mask) {
  215. pixel_mask = (mask[b - 1] ^ pixels) & 0x55;
  216. pixel_mask |= pixel_mask << 1;
  217. }
  218. switch (stage) {
  219. case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
  220. pixels = 0xaa | (pixels ^ 0x55);
  221. break;
  222. case REPAPER_WHITE: /* B -> N, W -> W (Current) */
  223. pixels = 0x55 + (pixels ^ 0x55);
  224. break;
  225. case REPAPER_INVERSE: /* B -> N, W -> B (New) */
  226. pixels = 0x55 | ((pixels ^ 0x55) << 1);
  227. break;
  228. case REPAPER_NORMAL: /* B -> B, W -> W (New) */
  229. pixels = 0xaa | pixels;
  230. break;
  231. }
  232. pixels = (pixels & pixel_mask) | (~pixel_mask & 0x55);
  233. *(*pp)++ = pixels;
  234. } else {
  235. *(*pp)++ = fixed_value;
  236. }
  237. }
  238. }
  239. /* interleave bits: (byte)76543210 -> (16 bit).7.6.5.4.3.2.1 */
  240. static inline u16 repaper_interleave_bits(u16 value)
  241. {
  242. value = (value | (value << 4)) & 0x0f0f;
  243. value = (value | (value << 2)) & 0x3333;
  244. value = (value | (value << 1)) & 0x5555;
  245. return value;
  246. }
  247. /* pixels on display are numbered from 1 */
  248. static void repaper_all_pixels(struct repaper_epd *epd, u8 **pp,
  249. const u8 *data, u8 fixed_value, const u8 *mask,
  250. enum repaper_stage stage)
  251. {
  252. unsigned int b;
  253. for (b = epd->width / 8; b > 0; b--) {
  254. if (data) {
  255. u16 pixels = repaper_interleave_bits(data[b - 1]);
  256. u16 pixel_mask = 0xffff;
  257. if (mask) {
  258. pixel_mask = repaper_interleave_bits(mask[b - 1]);
  259. pixel_mask = (pixel_mask ^ pixels) & 0x5555;
  260. pixel_mask |= pixel_mask << 1;
  261. }
  262. switch (stage) {
  263. case REPAPER_COMPENSATE: /* B -> W, W -> B (Current) */
  264. pixels = 0xaaaa | (pixels ^ 0x5555);
  265. break;
  266. case REPAPER_WHITE: /* B -> N, W -> W (Current) */
  267. pixels = 0x5555 + (pixels ^ 0x5555);
  268. break;
  269. case REPAPER_INVERSE: /* B -> N, W -> B (New) */
  270. pixels = 0x5555 | ((pixels ^ 0x5555) << 1);
  271. break;
  272. case REPAPER_NORMAL: /* B -> B, W -> W (New) */
  273. pixels = 0xaaaa | pixels;
  274. break;
  275. }
  276. pixels = (pixels & pixel_mask) | (~pixel_mask & 0x5555);
  277. *(*pp)++ = pixels >> 8;
  278. *(*pp)++ = pixels;
  279. } else {
  280. *(*pp)++ = fixed_value;
  281. *(*pp)++ = fixed_value;
  282. }
  283. }
  284. }
  285. /* output one line of scan and data bytes to the display */
  286. static void repaper_one_line(struct repaper_epd *epd, unsigned int line,
  287. const u8 *data, u8 fixed_value, const u8 *mask,
  288. enum repaper_stage stage)
  289. {
  290. u8 *p = epd->line_buffer;
  291. unsigned int b;
  292. repaper_spi_mosi_low(epd->spi);
  293. if (epd->pre_border_byte)
  294. *p++ = 0x00;
  295. if (epd->middle_scan) {
  296. /* data bytes */
  297. repaper_odd_pixels(epd, &p, data, fixed_value, mask, stage);
  298. /* scan line */
  299. for (b = epd->bytes_per_scan; b > 0; b--) {
  300. if (line / 4 == b - 1)
  301. *p++ = 0x03 << (2 * (line & 0x03));
  302. else
  303. *p++ = 0x00;
  304. }
  305. /* data bytes */
  306. repaper_even_pixels(epd, &p, data, fixed_value, mask, stage);
  307. } else {
  308. /*
  309. * even scan line, but as lines on display are numbered from 1,
  310. * line: 1,3,5,...
  311. */
  312. for (b = 0; b < epd->bytes_per_scan; b++) {
  313. if (0 != (line & 0x01) && line / 8 == b)
  314. *p++ = 0xc0 >> (line & 0x06);
  315. else
  316. *p++ = 0x00;
  317. }
  318. /* data bytes */
  319. repaper_all_pixels(epd, &p, data, fixed_value, mask, stage);
  320. /*
  321. * odd scan line, but as lines on display are numbered from 1,
  322. * line: 0,2,4,6,...
  323. */
  324. for (b = epd->bytes_per_scan; b > 0; b--) {
  325. if (0 == (line & 0x01) && line / 8 == b - 1)
  326. *p++ = 0x03 << (line & 0x06);
  327. else
  328. *p++ = 0x00;
  329. }
  330. }
  331. switch (epd->border_byte) {
  332. case REPAPER_BORDER_BYTE_NONE:
  333. break;
  334. case REPAPER_BORDER_BYTE_ZERO:
  335. *p++ = 0x00;
  336. break;
  337. case REPAPER_BORDER_BYTE_SET:
  338. switch (stage) {
  339. case REPAPER_COMPENSATE:
  340. case REPAPER_WHITE:
  341. case REPAPER_INVERSE:
  342. *p++ = 0x00;
  343. break;
  344. case REPAPER_NORMAL:
  345. *p++ = 0xaa;
  346. break;
  347. }
  348. break;
  349. }
  350. repaper_write_buf(epd->spi, 0x0a, epd->line_buffer,
  351. p - epd->line_buffer);
  352. /* Output data to panel */
  353. repaper_write_val(epd->spi, 0x02, 0x07);
  354. repaper_spi_mosi_low(epd->spi);
  355. }
  356. static void repaper_frame_fixed(struct repaper_epd *epd, u8 fixed_value,
  357. enum repaper_stage stage)
  358. {
  359. unsigned int line;
  360. for (line = 0; line < epd->height; line++)
  361. repaper_one_line(epd, line, NULL, fixed_value, NULL, stage);
  362. }
  363. static void repaper_frame_data(struct repaper_epd *epd, const u8 *image,
  364. const u8 *mask, enum repaper_stage stage)
  365. {
  366. unsigned int line;
  367. if (!mask) {
  368. for (line = 0; line < epd->height; line++) {
  369. repaper_one_line(epd, line,
  370. &image[line * (epd->width / 8)],
  371. 0, NULL, stage);
  372. }
  373. } else {
  374. for (line = 0; line < epd->height; line++) {
  375. size_t n = line * epd->width / 8;
  376. repaper_one_line(epd, line, &image[n], 0, &mask[n],
  377. stage);
  378. }
  379. }
  380. }
  381. static void repaper_frame_fixed_repeat(struct repaper_epd *epd, u8 fixed_value,
  382. enum repaper_stage stage)
  383. {
  384. u64 start = local_clock();
  385. u64 end = start + ((u64)epd->factored_stage_time * 1000 * 1000);
  386. do {
  387. repaper_frame_fixed(epd, fixed_value, stage);
  388. } while (local_clock() < end);
  389. }
  390. static void repaper_frame_data_repeat(struct repaper_epd *epd, const u8 *image,
  391. const u8 *mask, enum repaper_stage stage)
  392. {
  393. u64 start = local_clock();
  394. u64 end = start + ((u64)epd->factored_stage_time * 1000 * 1000);
  395. do {
  396. repaper_frame_data(epd, image, mask, stage);
  397. } while (local_clock() < end);
  398. }
  399. static void repaper_get_temperature(struct repaper_epd *epd)
  400. {
  401. int ret, temperature = 0;
  402. unsigned int factor10x;
  403. if (!epd->thermal)
  404. return;
  405. ret = thermal_zone_get_temp(epd->thermal, &temperature);
  406. if (ret) {
  407. DRM_DEV_ERROR(&epd->spi->dev, "Failed to get temperature (%d)\n", ret);
  408. return;
  409. }
  410. temperature /= 1000;
  411. if (temperature <= -10)
  412. factor10x = 170;
  413. else if (temperature <= -5)
  414. factor10x = 120;
  415. else if (temperature <= 5)
  416. factor10x = 80;
  417. else if (temperature <= 10)
  418. factor10x = 40;
  419. else if (temperature <= 15)
  420. factor10x = 30;
  421. else if (temperature <= 20)
  422. factor10x = 20;
  423. else if (temperature <= 40)
  424. factor10x = 10;
  425. else
  426. factor10x = 7;
  427. epd->factored_stage_time = epd->stage_time * factor10x / 10;
  428. }
  429. static int repaper_fb_dirty(struct drm_framebuffer *fb,
  430. struct drm_format_conv_state *fmtcnv_state)
  431. {
  432. struct drm_gem_dma_object *dma_obj = drm_fb_dma_get_gem_obj(fb, 0);
  433. struct repaper_epd *epd = drm_to_epd(fb->dev);
  434. unsigned int dst_pitch = 0;
  435. struct iosys_map dst, vmap;
  436. struct drm_rect clip;
  437. int idx, ret = 0;
  438. u8 *buf = NULL;
  439. if (!drm_dev_enter(fb->dev, &idx))
  440. return -ENODEV;
  441. /* repaper can't do partial updates */
  442. clip.x1 = 0;
  443. clip.x2 = fb->width;
  444. clip.y1 = 0;
  445. clip.y2 = fb->height;
  446. repaper_get_temperature(epd);
  447. DRM_DEBUG("Flushing [FB:%d] st=%ums\n", fb->base.id,
  448. epd->factored_stage_time);
  449. buf = kmalloc(fb->width * fb->height / 8, GFP_KERNEL);
  450. if (!buf) {
  451. ret = -ENOMEM;
  452. goto out_exit;
  453. }
  454. ret = drm_gem_fb_begin_cpu_access(fb, DMA_FROM_DEVICE);
  455. if (ret)
  456. goto out_free;
  457. iosys_map_set_vaddr(&dst, buf);
  458. iosys_map_set_vaddr(&vmap, dma_obj->vaddr);
  459. drm_fb_xrgb8888_to_mono(&dst, &dst_pitch, &vmap, fb, &clip, fmtcnv_state);
  460. drm_gem_fb_end_cpu_access(fb, DMA_FROM_DEVICE);
  461. if (epd->partial) {
  462. repaper_frame_data_repeat(epd, buf, epd->current_frame,
  463. REPAPER_NORMAL);
  464. } else if (epd->cleared) {
  465. repaper_frame_data_repeat(epd, epd->current_frame, NULL,
  466. REPAPER_COMPENSATE);
  467. repaper_frame_data_repeat(epd, epd->current_frame, NULL,
  468. REPAPER_WHITE);
  469. repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
  470. repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
  471. epd->partial = true;
  472. } else {
  473. /* Clear display (anything -> white) */
  474. repaper_frame_fixed_repeat(epd, 0xff, REPAPER_COMPENSATE);
  475. repaper_frame_fixed_repeat(epd, 0xff, REPAPER_WHITE);
  476. repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_INVERSE);
  477. repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_NORMAL);
  478. /* Assuming a clear (white) screen output an image */
  479. repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_COMPENSATE);
  480. repaper_frame_fixed_repeat(epd, 0xaa, REPAPER_WHITE);
  481. repaper_frame_data_repeat(epd, buf, NULL, REPAPER_INVERSE);
  482. repaper_frame_data_repeat(epd, buf, NULL, REPAPER_NORMAL);
  483. epd->cleared = true;
  484. epd->partial = true;
  485. }
  486. memcpy(epd->current_frame, buf, fb->width * fb->height / 8);
  487. /*
  488. * An extra frame write is needed if pixels are set in the bottom line,
  489. * or else grey lines rises up from the pixels
  490. */
  491. if (epd->pre_border_byte) {
  492. unsigned int x;
  493. for (x = 0; x < (fb->width / 8); x++)
  494. if (buf[x + (fb->width * (fb->height - 1) / 8)]) {
  495. repaper_frame_data_repeat(epd, buf,
  496. epd->current_frame,
  497. REPAPER_NORMAL);
  498. break;
  499. }
  500. }
  501. out_free:
  502. kfree(buf);
  503. out_exit:
  504. drm_dev_exit(idx);
  505. return ret;
  506. }
  507. static void power_off(struct repaper_epd *epd)
  508. {
  509. /* Turn off power and all signals */
  510. gpiod_set_value_cansleep(epd->reset, 0);
  511. gpiod_set_value_cansleep(epd->panel_on, 0);
  512. if (epd->border)
  513. gpiod_set_value_cansleep(epd->border, 0);
  514. /* Ensure SPI MOSI and CLOCK are Low before CS Low */
  515. repaper_spi_mosi_low(epd->spi);
  516. /* Discharge pulse */
  517. gpiod_set_value_cansleep(epd->discharge, 1);
  518. msleep(150);
  519. gpiod_set_value_cansleep(epd->discharge, 0);
  520. }
  521. static enum drm_mode_status repaper_pipe_mode_valid(struct drm_simple_display_pipe *pipe,
  522. const struct drm_display_mode *mode)
  523. {
  524. struct drm_crtc *crtc = &pipe->crtc;
  525. struct repaper_epd *epd = drm_to_epd(crtc->dev);
  526. return drm_crtc_helper_mode_valid_fixed(crtc, mode, epd->mode);
  527. }
  528. static void repaper_pipe_enable(struct drm_simple_display_pipe *pipe,
  529. struct drm_crtc_state *crtc_state,
  530. struct drm_plane_state *plane_state)
  531. {
  532. struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev);
  533. struct spi_device *spi = epd->spi;
  534. struct device *dev = &spi->dev;
  535. bool dc_ok = false;
  536. int i, ret, idx;
  537. if (!drm_dev_enter(pipe->crtc.dev, &idx))
  538. return;
  539. DRM_DEBUG_DRIVER("\n");
  540. /* Power up sequence */
  541. gpiod_set_value_cansleep(epd->reset, 0);
  542. gpiod_set_value_cansleep(epd->panel_on, 0);
  543. gpiod_set_value_cansleep(epd->discharge, 0);
  544. if (epd->border)
  545. gpiod_set_value_cansleep(epd->border, 0);
  546. repaper_spi_mosi_low(spi);
  547. usleep_range(5000, 10000);
  548. gpiod_set_value_cansleep(epd->panel_on, 1);
  549. /*
  550. * This delay comes from the repaper.org userspace driver, it's not
  551. * mentioned in the datasheet.
  552. */
  553. usleep_range(10000, 15000);
  554. gpiod_set_value_cansleep(epd->reset, 1);
  555. if (epd->border)
  556. gpiod_set_value_cansleep(epd->border, 1);
  557. usleep_range(5000, 10000);
  558. gpiod_set_value_cansleep(epd->reset, 0);
  559. usleep_range(5000, 10000);
  560. gpiod_set_value_cansleep(epd->reset, 1);
  561. usleep_range(5000, 10000);
  562. /* Wait for COG to become ready */
  563. for (i = 100; i > 0; i--) {
  564. if (!gpiod_get_value_cansleep(epd->busy))
  565. break;
  566. usleep_range(10, 100);
  567. }
  568. if (!i) {
  569. DRM_DEV_ERROR(dev, "timeout waiting for panel to become ready.\n");
  570. power_off(epd);
  571. goto out_exit;
  572. }
  573. repaper_read_id(spi);
  574. ret = repaper_read_id(spi);
  575. if (ret != REPAPER_RID_G2_COG_ID) {
  576. if (ret < 0)
  577. dev_err(dev, "failed to read chip (%d)\n", ret);
  578. else
  579. dev_err(dev, "wrong COG ID 0x%02x\n", ret);
  580. power_off(epd);
  581. goto out_exit;
  582. }
  583. /* Disable OE */
  584. repaper_write_val(spi, 0x02, 0x40);
  585. ret = repaper_read_val(spi, 0x0f);
  586. if (ret < 0 || !(ret & 0x80)) {
  587. if (ret < 0)
  588. DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret);
  589. else
  590. DRM_DEV_ERROR(dev, "panel is reported broken\n");
  591. power_off(epd);
  592. goto out_exit;
  593. }
  594. /* Power saving mode */
  595. repaper_write_val(spi, 0x0b, 0x02);
  596. /* Channel select */
  597. repaper_write_buf(spi, 0x01, epd->channel_select, 8);
  598. /* High power mode osc */
  599. repaper_write_val(spi, 0x07, 0xd1);
  600. /* Power setting */
  601. repaper_write_val(spi, 0x08, 0x02);
  602. /* Vcom level */
  603. repaper_write_val(spi, 0x09, 0xc2);
  604. /* Power setting */
  605. repaper_write_val(spi, 0x04, 0x03);
  606. /* Driver latch on */
  607. repaper_write_val(spi, 0x03, 0x01);
  608. /* Driver latch off */
  609. repaper_write_val(spi, 0x03, 0x00);
  610. usleep_range(5000, 10000);
  611. /* Start chargepump */
  612. for (i = 0; i < 4; ++i) {
  613. /* Charge pump positive voltage on - VGH/VDL on */
  614. repaper_write_val(spi, 0x05, 0x01);
  615. msleep(240);
  616. /* Charge pump negative voltage on - VGL/VDL on */
  617. repaper_write_val(spi, 0x05, 0x03);
  618. msleep(40);
  619. /* Charge pump Vcom on - Vcom driver on */
  620. repaper_write_val(spi, 0x05, 0x0f);
  621. msleep(40);
  622. /* check DC/DC */
  623. ret = repaper_read_val(spi, 0x0f);
  624. if (ret < 0) {
  625. DRM_DEV_ERROR(dev, "failed to read chip (%d)\n", ret);
  626. power_off(epd);
  627. goto out_exit;
  628. }
  629. if (ret & 0x40) {
  630. dc_ok = true;
  631. break;
  632. }
  633. }
  634. if (!dc_ok) {
  635. DRM_DEV_ERROR(dev, "dc/dc failed\n");
  636. power_off(epd);
  637. goto out_exit;
  638. }
  639. /*
  640. * Output enable to disable
  641. * The userspace driver sets this to 0x04, but the datasheet says 0x06
  642. */
  643. repaper_write_val(spi, 0x02, 0x04);
  644. epd->partial = false;
  645. out_exit:
  646. drm_dev_exit(idx);
  647. }
  648. static void repaper_pipe_disable(struct drm_simple_display_pipe *pipe)
  649. {
  650. struct repaper_epd *epd = drm_to_epd(pipe->crtc.dev);
  651. struct spi_device *spi = epd->spi;
  652. unsigned int line;
  653. /*
  654. * This callback is not protected by drm_dev_enter/exit since we want to
  655. * turn off the display on regular driver unload. It's highly unlikely
  656. * that the underlying SPI controller is gone should this be called after
  657. * unplug.
  658. */
  659. DRM_DEBUG_DRIVER("\n");
  660. /* Nothing frame */
  661. for (line = 0; line < epd->height; line++)
  662. repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
  663. REPAPER_COMPENSATE);
  664. /* 2.7" */
  665. if (epd->border) {
  666. /* Dummy line */
  667. repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
  668. REPAPER_COMPENSATE);
  669. msleep(25);
  670. gpiod_set_value_cansleep(epd->border, 0);
  671. msleep(200);
  672. gpiod_set_value_cansleep(epd->border, 1);
  673. } else {
  674. /* Border dummy line */
  675. repaper_one_line(epd, 0x7fffu, NULL, 0x00, NULL,
  676. REPAPER_NORMAL);
  677. msleep(200);
  678. }
  679. /* not described in datasheet */
  680. repaper_write_val(spi, 0x0b, 0x00);
  681. /* Latch reset turn on */
  682. repaper_write_val(spi, 0x03, 0x01);
  683. /* Power off charge pump Vcom */
  684. repaper_write_val(spi, 0x05, 0x03);
  685. /* Power off charge pump neg voltage */
  686. repaper_write_val(spi, 0x05, 0x01);
  687. msleep(120);
  688. /* Discharge internal */
  689. repaper_write_val(spi, 0x04, 0x80);
  690. /* turn off all charge pumps */
  691. repaper_write_val(spi, 0x05, 0x00);
  692. /* Turn off osc */
  693. repaper_write_val(spi, 0x07, 0x01);
  694. msleep(50);
  695. power_off(epd);
  696. }
  697. static void repaper_pipe_update(struct drm_simple_display_pipe *pipe,
  698. struct drm_plane_state *old_state)
  699. {
  700. struct drm_plane_state *state = pipe->plane.state;
  701. struct drm_format_conv_state fmtcnv_state = DRM_FORMAT_CONV_STATE_INIT;
  702. struct drm_rect rect;
  703. if (!pipe->crtc.state->active)
  704. return;
  705. if (drm_atomic_helper_damage_merged(old_state, state, &rect))
  706. repaper_fb_dirty(state->fb, &fmtcnv_state);
  707. drm_format_conv_state_release(&fmtcnv_state);
  708. }
  709. static const struct drm_simple_display_pipe_funcs repaper_pipe_funcs = {
  710. .mode_valid = repaper_pipe_mode_valid,
  711. .enable = repaper_pipe_enable,
  712. .disable = repaper_pipe_disable,
  713. .update = repaper_pipe_update,
  714. };
  715. static int repaper_connector_get_modes(struct drm_connector *connector)
  716. {
  717. struct repaper_epd *epd = drm_to_epd(connector->dev);
  718. return drm_connector_helper_get_modes_fixed(connector, epd->mode);
  719. }
  720. static const struct drm_connector_helper_funcs repaper_connector_hfuncs = {
  721. .get_modes = repaper_connector_get_modes,
  722. };
  723. static const struct drm_connector_funcs repaper_connector_funcs = {
  724. .reset = drm_atomic_helper_connector_reset,
  725. .fill_modes = drm_helper_probe_single_connector_modes,
  726. .destroy = drm_connector_cleanup,
  727. .atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
  728. .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
  729. };
  730. static const struct drm_mode_config_funcs repaper_mode_config_funcs = {
  731. .fb_create = drm_gem_fb_create_with_dirty,
  732. .atomic_check = drm_atomic_helper_check,
  733. .atomic_commit = drm_atomic_helper_commit,
  734. };
  735. static const uint32_t repaper_formats[] = {
  736. DRM_FORMAT_XRGB8888,
  737. };
  738. static const struct drm_display_mode repaper_e1144cs021_mode = {
  739. DRM_SIMPLE_MODE(128, 96, 29, 22),
  740. };
  741. static const u8 repaper_e1144cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
  742. 0x00, 0x0f, 0xff, 0x00 };
  743. static const struct drm_display_mode repaper_e1190cs021_mode = {
  744. DRM_SIMPLE_MODE(144, 128, 36, 32),
  745. };
  746. static const u8 repaper_e1190cs021_cs[] = { 0x00, 0x00, 0x00, 0x03,
  747. 0xfc, 0x00, 0x00, 0xff };
  748. static const struct drm_display_mode repaper_e2200cs021_mode = {
  749. DRM_SIMPLE_MODE(200, 96, 46, 22),
  750. };
  751. static const u8 repaper_e2200cs021_cs[] = { 0x00, 0x00, 0x00, 0x00,
  752. 0x01, 0xff, 0xe0, 0x00 };
  753. static const struct drm_display_mode repaper_e2271cs021_mode = {
  754. DRM_SIMPLE_MODE(264, 176, 57, 38),
  755. };
  756. static const u8 repaper_e2271cs021_cs[] = { 0x00, 0x00, 0x00, 0x7f,
  757. 0xff, 0xfe, 0x00, 0x00 };
  758. DEFINE_DRM_GEM_DMA_FOPS(repaper_fops);
  759. static const struct drm_driver repaper_driver = {
  760. .driver_features = DRIVER_GEM | DRIVER_MODESET | DRIVER_ATOMIC,
  761. .fops = &repaper_fops,
  762. DRM_GEM_DMA_DRIVER_OPS_VMAP,
  763. .name = "repaper",
  764. .desc = "Pervasive Displays RePaper e-ink panels",
  765. .date = "20170405",
  766. .major = 1,
  767. .minor = 0,
  768. };
  769. static const struct of_device_id repaper_of_match[] = {
  770. { .compatible = "pervasive,e1144cs021", .data = (void *)E1144CS021 },
  771. { .compatible = "pervasive,e1190cs021", .data = (void *)E1190CS021 },
  772. { .compatible = "pervasive,e2200cs021", .data = (void *)E2200CS021 },
  773. { .compatible = "pervasive,e2271cs021", .data = (void *)E2271CS021 },
  774. {},
  775. };
  776. MODULE_DEVICE_TABLE(of, repaper_of_match);
  777. static const struct spi_device_id repaper_id[] = {
  778. { "e1144cs021", E1144CS021 },
  779. { "e1190cs021", E1190CS021 },
  780. { "e2200cs021", E2200CS021 },
  781. { "e2271cs021", E2271CS021 },
  782. { },
  783. };
  784. MODULE_DEVICE_TABLE(spi, repaper_id);
  785. static int repaper_probe(struct spi_device *spi)
  786. {
  787. const struct drm_display_mode *mode;
  788. const struct spi_device_id *spi_id;
  789. struct device *dev = &spi->dev;
  790. enum repaper_model model;
  791. const char *thermal_zone;
  792. struct repaper_epd *epd;
  793. size_t line_buffer_size;
  794. struct drm_device *drm;
  795. const void *match;
  796. int ret;
  797. match = device_get_match_data(dev);
  798. if (match) {
  799. model = (enum repaper_model)(uintptr_t)match;
  800. } else {
  801. spi_id = spi_get_device_id(spi);
  802. model = (enum repaper_model)spi_id->driver_data;
  803. }
  804. /* The SPI device is used to allocate dma memory */
  805. if (!dev->coherent_dma_mask) {
  806. ret = dma_coerce_mask_and_coherent(dev, DMA_BIT_MASK(32));
  807. if (ret) {
  808. dev_warn(dev, "Failed to set dma mask %d\n", ret);
  809. return ret;
  810. }
  811. }
  812. epd = devm_drm_dev_alloc(dev, &repaper_driver,
  813. struct repaper_epd, drm);
  814. if (IS_ERR(epd))
  815. return PTR_ERR(epd);
  816. drm = &epd->drm;
  817. ret = drmm_mode_config_init(drm);
  818. if (ret)
  819. return ret;
  820. drm->mode_config.funcs = &repaper_mode_config_funcs;
  821. epd->spi = spi;
  822. epd->panel_on = devm_gpiod_get(dev, "panel-on", GPIOD_OUT_LOW);
  823. if (IS_ERR(epd->panel_on)) {
  824. ret = PTR_ERR(epd->panel_on);
  825. if (ret != -EPROBE_DEFER)
  826. DRM_DEV_ERROR(dev, "Failed to get gpio 'panel-on'\n");
  827. return ret;
  828. }
  829. epd->discharge = devm_gpiod_get(dev, "discharge", GPIOD_OUT_LOW);
  830. if (IS_ERR(epd->discharge)) {
  831. ret = PTR_ERR(epd->discharge);
  832. if (ret != -EPROBE_DEFER)
  833. DRM_DEV_ERROR(dev, "Failed to get gpio 'discharge'\n");
  834. return ret;
  835. }
  836. epd->reset = devm_gpiod_get(dev, "reset", GPIOD_OUT_LOW);
  837. if (IS_ERR(epd->reset)) {
  838. ret = PTR_ERR(epd->reset);
  839. if (ret != -EPROBE_DEFER)
  840. DRM_DEV_ERROR(dev, "Failed to get gpio 'reset'\n");
  841. return ret;
  842. }
  843. epd->busy = devm_gpiod_get(dev, "busy", GPIOD_IN);
  844. if (IS_ERR(epd->busy)) {
  845. ret = PTR_ERR(epd->busy);
  846. if (ret != -EPROBE_DEFER)
  847. DRM_DEV_ERROR(dev, "Failed to get gpio 'busy'\n");
  848. return ret;
  849. }
  850. if (!device_property_read_string(dev, "pervasive,thermal-zone",
  851. &thermal_zone)) {
  852. epd->thermal = thermal_zone_get_zone_by_name(thermal_zone);
  853. if (IS_ERR(epd->thermal)) {
  854. DRM_DEV_ERROR(dev, "Failed to get thermal zone: %s\n", thermal_zone);
  855. return PTR_ERR(epd->thermal);
  856. }
  857. }
  858. switch (model) {
  859. case E1144CS021:
  860. mode = &repaper_e1144cs021_mode;
  861. epd->channel_select = repaper_e1144cs021_cs;
  862. epd->stage_time = 480;
  863. epd->bytes_per_scan = 96 / 4;
  864. epd->middle_scan = true; /* data-scan-data */
  865. epd->pre_border_byte = false;
  866. epd->border_byte = REPAPER_BORDER_BYTE_ZERO;
  867. break;
  868. case E1190CS021:
  869. mode = &repaper_e1190cs021_mode;
  870. epd->channel_select = repaper_e1190cs021_cs;
  871. epd->stage_time = 480;
  872. epd->bytes_per_scan = 128 / 4 / 2;
  873. epd->middle_scan = false; /* scan-data-scan */
  874. epd->pre_border_byte = false;
  875. epd->border_byte = REPAPER_BORDER_BYTE_SET;
  876. break;
  877. case E2200CS021:
  878. mode = &repaper_e2200cs021_mode;
  879. epd->channel_select = repaper_e2200cs021_cs;
  880. epd->stage_time = 480;
  881. epd->bytes_per_scan = 96 / 4;
  882. epd->middle_scan = true; /* data-scan-data */
  883. epd->pre_border_byte = true;
  884. epd->border_byte = REPAPER_BORDER_BYTE_NONE;
  885. break;
  886. case E2271CS021:
  887. epd->border = devm_gpiod_get(dev, "border", GPIOD_OUT_LOW);
  888. if (IS_ERR(epd->border)) {
  889. ret = PTR_ERR(epd->border);
  890. if (ret != -EPROBE_DEFER)
  891. DRM_DEV_ERROR(dev, "Failed to get gpio 'border'\n");
  892. return ret;
  893. }
  894. mode = &repaper_e2271cs021_mode;
  895. epd->channel_select = repaper_e2271cs021_cs;
  896. epd->stage_time = 630;
  897. epd->bytes_per_scan = 176 / 4;
  898. epd->middle_scan = true; /* data-scan-data */
  899. epd->pre_border_byte = true;
  900. epd->border_byte = REPAPER_BORDER_BYTE_NONE;
  901. break;
  902. default:
  903. return -ENODEV;
  904. }
  905. epd->mode = mode;
  906. epd->width = mode->hdisplay;
  907. epd->height = mode->vdisplay;
  908. epd->factored_stage_time = epd->stage_time;
  909. line_buffer_size = 2 * epd->width / 8 + epd->bytes_per_scan + 2;
  910. epd->line_buffer = devm_kzalloc(dev, line_buffer_size, GFP_KERNEL);
  911. if (!epd->line_buffer)
  912. return -ENOMEM;
  913. epd->current_frame = devm_kzalloc(dev, epd->width * epd->height / 8,
  914. GFP_KERNEL);
  915. if (!epd->current_frame)
  916. return -ENOMEM;
  917. drm->mode_config.min_width = mode->hdisplay;
  918. drm->mode_config.max_width = mode->hdisplay;
  919. drm->mode_config.min_height = mode->vdisplay;
  920. drm->mode_config.max_height = mode->vdisplay;
  921. drm_connector_helper_add(&epd->connector, &repaper_connector_hfuncs);
  922. ret = drm_connector_init(drm, &epd->connector, &repaper_connector_funcs,
  923. DRM_MODE_CONNECTOR_SPI);
  924. if (ret)
  925. return ret;
  926. ret = drm_simple_display_pipe_init(drm, &epd->pipe, &repaper_pipe_funcs,
  927. repaper_formats, ARRAY_SIZE(repaper_formats),
  928. NULL, &epd->connector);
  929. if (ret)
  930. return ret;
  931. drm_mode_config_reset(drm);
  932. ret = drm_dev_register(drm, 0);
  933. if (ret)
  934. return ret;
  935. spi_set_drvdata(spi, drm);
  936. DRM_DEBUG_DRIVER("SPI speed: %uMHz\n", spi->max_speed_hz / 1000000);
  937. drm_fbdev_dma_setup(drm, 0);
  938. return 0;
  939. }
  940. static void repaper_remove(struct spi_device *spi)
  941. {
  942. struct drm_device *drm = spi_get_drvdata(spi);
  943. drm_dev_unplug(drm);
  944. drm_atomic_helper_shutdown(drm);
  945. }
  946. static void repaper_shutdown(struct spi_device *spi)
  947. {
  948. drm_atomic_helper_shutdown(spi_get_drvdata(spi));
  949. }
  950. static struct spi_driver repaper_spi_driver = {
  951. .driver = {
  952. .name = "repaper",
  953. .of_match_table = repaper_of_match,
  954. },
  955. .id_table = repaper_id,
  956. .probe = repaper_probe,
  957. .remove = repaper_remove,
  958. .shutdown = repaper_shutdown,
  959. };
  960. module_spi_driver(repaper_spi_driver);
  961. MODULE_DESCRIPTION("Pervasive Displays RePaper DRM driver");
  962. MODULE_AUTHOR("Noralf Trønnes");
  963. MODULE_LICENSE("GPL");