fsl_imx8_ddr_perf.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright 2017 NXP
  4. * Copyright 2016 Freescale Semiconductor, Inc.
  5. */
  6. #include <linux/bitfield.h>
  7. #include <linux/init.h>
  8. #include <linux/interrupt.h>
  9. #include <linux/io.h>
  10. #include <linux/module.h>
  11. #include <linux/of.h>
  12. #include <linux/of_irq.h>
  13. #include <linux/perf_event.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/slab.h>
  16. #define COUNTER_CNTL 0x0
  17. #define COUNTER_READ 0x20
  18. #define COUNTER_DPCR1 0x30
  19. #define COUNTER_MUX_CNTL 0x50
  20. #define COUNTER_MASK_COMP 0x54
  21. #define CNTL_OVER 0x1
  22. #define CNTL_CLEAR 0x2
  23. #define CNTL_EN 0x4
  24. #define CNTL_EN_MASK 0xFFFFFFFB
  25. #define CNTL_CLEAR_MASK 0xFFFFFFFD
  26. #define CNTL_OVER_MASK 0xFFFFFFFE
  27. #define CNTL_CP_SHIFT 16
  28. #define CNTL_CP_MASK (0xFF << CNTL_CP_SHIFT)
  29. #define CNTL_CSV_SHIFT 24
  30. #define CNTL_CSV_MASK (0xFFU << CNTL_CSV_SHIFT)
  31. #define READ_PORT_SHIFT 0
  32. #define READ_PORT_MASK (0x7 << READ_PORT_SHIFT)
  33. #define READ_CHANNEL_REVERT 0x00000008 /* bit 3 for read channel select */
  34. #define WRITE_PORT_SHIFT 8
  35. #define WRITE_PORT_MASK (0x7 << WRITE_PORT_SHIFT)
  36. #define WRITE_CHANNEL_REVERT 0x00000800 /* bit 11 for write channel select */
  37. #define EVENT_CYCLES_ID 0
  38. #define EVENT_CYCLES_COUNTER 0
  39. #define NUM_COUNTERS 4
  40. /* For removing bias if cycle counter CNTL.CP is set to 0xf0 */
  41. #define CYCLES_COUNTER_MASK 0x0FFFFFFF
  42. #define AXI_MASKING_REVERT 0xffff0000 /* AXI_MASKING(MSB 16bits) + AXI_ID(LSB 16bits) */
  43. #define to_ddr_pmu(p) container_of(p, struct ddr_pmu, pmu)
  44. #define DDR_PERF_DEV_NAME "imx8_ddr"
  45. #define DDR_CPUHP_CB_NAME DDR_PERF_DEV_NAME "_perf_pmu"
  46. static DEFINE_IDA(ddr_ida);
  47. /* DDR Perf hardware feature */
  48. #define DDR_CAP_AXI_ID_FILTER 0x1 /* support AXI ID filter */
  49. #define DDR_CAP_AXI_ID_FILTER_ENHANCED 0x3 /* support enhanced AXI ID filter */
  50. #define DDR_CAP_AXI_ID_PORT_CHANNEL_FILTER 0x4 /* support AXI ID PORT CHANNEL filter */
  51. struct fsl_ddr_devtype_data {
  52. unsigned int quirks; /* quirks needed for different DDR Perf core */
  53. const char *identifier; /* system PMU identifier for userspace */
  54. };
  55. static const struct fsl_ddr_devtype_data imx8_devtype_data;
  56. static const struct fsl_ddr_devtype_data imx8m_devtype_data = {
  57. .quirks = DDR_CAP_AXI_ID_FILTER,
  58. };
  59. static const struct fsl_ddr_devtype_data imx8mq_devtype_data = {
  60. .quirks = DDR_CAP_AXI_ID_FILTER,
  61. .identifier = "i.MX8MQ",
  62. };
  63. static const struct fsl_ddr_devtype_data imx8mm_devtype_data = {
  64. .quirks = DDR_CAP_AXI_ID_FILTER,
  65. .identifier = "i.MX8MM",
  66. };
  67. static const struct fsl_ddr_devtype_data imx8mn_devtype_data = {
  68. .quirks = DDR_CAP_AXI_ID_FILTER,
  69. .identifier = "i.MX8MN",
  70. };
  71. static const struct fsl_ddr_devtype_data imx8mp_devtype_data = {
  72. .quirks = DDR_CAP_AXI_ID_FILTER_ENHANCED,
  73. .identifier = "i.MX8MP",
  74. };
  75. static const struct fsl_ddr_devtype_data imx8dxl_devtype_data = {
  76. .quirks = DDR_CAP_AXI_ID_PORT_CHANNEL_FILTER,
  77. .identifier = "i.MX8DXL",
  78. };
  79. static const struct of_device_id imx_ddr_pmu_dt_ids[] = {
  80. { .compatible = "fsl,imx8-ddr-pmu", .data = &imx8_devtype_data},
  81. { .compatible = "fsl,imx8m-ddr-pmu", .data = &imx8m_devtype_data},
  82. { .compatible = "fsl,imx8mq-ddr-pmu", .data = &imx8mq_devtype_data},
  83. { .compatible = "fsl,imx8mm-ddr-pmu", .data = &imx8mm_devtype_data},
  84. { .compatible = "fsl,imx8mn-ddr-pmu", .data = &imx8mn_devtype_data},
  85. { .compatible = "fsl,imx8mp-ddr-pmu", .data = &imx8mp_devtype_data},
  86. { .compatible = "fsl,imx8dxl-ddr-pmu", .data = &imx8dxl_devtype_data},
  87. { /* sentinel */ }
  88. };
  89. MODULE_DEVICE_TABLE(of, imx_ddr_pmu_dt_ids);
  90. struct ddr_pmu {
  91. struct pmu pmu;
  92. void __iomem *base;
  93. unsigned int cpu;
  94. struct hlist_node node;
  95. struct device *dev;
  96. struct perf_event *events[NUM_COUNTERS];
  97. enum cpuhp_state cpuhp_state;
  98. const struct fsl_ddr_devtype_data *devtype_data;
  99. int irq;
  100. int id;
  101. int active_counter;
  102. };
  103. static ssize_t ddr_perf_identifier_show(struct device *dev,
  104. struct device_attribute *attr,
  105. char *page)
  106. {
  107. struct ddr_pmu *pmu = dev_get_drvdata(dev);
  108. return sysfs_emit(page, "%s\n", pmu->devtype_data->identifier);
  109. }
  110. static umode_t ddr_perf_identifier_attr_visible(struct kobject *kobj,
  111. struct attribute *attr,
  112. int n)
  113. {
  114. struct device *dev = kobj_to_dev(kobj);
  115. struct ddr_pmu *pmu = dev_get_drvdata(dev);
  116. if (!pmu->devtype_data->identifier)
  117. return 0;
  118. return attr->mode;
  119. };
  120. static struct device_attribute ddr_perf_identifier_attr =
  121. __ATTR(identifier, 0444, ddr_perf_identifier_show, NULL);
  122. static struct attribute *ddr_perf_identifier_attrs[] = {
  123. &ddr_perf_identifier_attr.attr,
  124. NULL,
  125. };
  126. static const struct attribute_group ddr_perf_identifier_attr_group = {
  127. .attrs = ddr_perf_identifier_attrs,
  128. .is_visible = ddr_perf_identifier_attr_visible,
  129. };
  130. enum ddr_perf_filter_capabilities {
  131. PERF_CAP_AXI_ID_FILTER = 0,
  132. PERF_CAP_AXI_ID_FILTER_ENHANCED,
  133. PERF_CAP_AXI_ID_PORT_CHANNEL_FILTER,
  134. PERF_CAP_AXI_ID_FEAT_MAX,
  135. };
  136. static u32 ddr_perf_filter_cap_get(struct ddr_pmu *pmu, int cap)
  137. {
  138. u32 quirks = pmu->devtype_data->quirks;
  139. switch (cap) {
  140. case PERF_CAP_AXI_ID_FILTER:
  141. return !!(quirks & DDR_CAP_AXI_ID_FILTER);
  142. case PERF_CAP_AXI_ID_FILTER_ENHANCED:
  143. quirks &= DDR_CAP_AXI_ID_FILTER_ENHANCED;
  144. return quirks == DDR_CAP_AXI_ID_FILTER_ENHANCED;
  145. case PERF_CAP_AXI_ID_PORT_CHANNEL_FILTER:
  146. return !!(quirks & DDR_CAP_AXI_ID_PORT_CHANNEL_FILTER);
  147. default:
  148. WARN(1, "unknown filter cap %d\n", cap);
  149. }
  150. return 0;
  151. }
  152. static ssize_t ddr_perf_filter_cap_show(struct device *dev,
  153. struct device_attribute *attr,
  154. char *buf)
  155. {
  156. struct ddr_pmu *pmu = dev_get_drvdata(dev);
  157. struct dev_ext_attribute *ea =
  158. container_of(attr, struct dev_ext_attribute, attr);
  159. int cap = (long)ea->var;
  160. return sysfs_emit(buf, "%u\n", ddr_perf_filter_cap_get(pmu, cap));
  161. }
  162. #define PERF_EXT_ATTR_ENTRY(_name, _func, _var) \
  163. (&((struct dev_ext_attribute) { \
  164. __ATTR(_name, 0444, _func, NULL), (void *)_var \
  165. }).attr.attr)
  166. #define PERF_FILTER_EXT_ATTR_ENTRY(_name, _var) \
  167. PERF_EXT_ATTR_ENTRY(_name, ddr_perf_filter_cap_show, _var)
  168. static struct attribute *ddr_perf_filter_cap_attr[] = {
  169. PERF_FILTER_EXT_ATTR_ENTRY(filter, PERF_CAP_AXI_ID_FILTER),
  170. PERF_FILTER_EXT_ATTR_ENTRY(enhanced_filter, PERF_CAP_AXI_ID_FILTER_ENHANCED),
  171. PERF_FILTER_EXT_ATTR_ENTRY(super_filter, PERF_CAP_AXI_ID_PORT_CHANNEL_FILTER),
  172. NULL,
  173. };
  174. static const struct attribute_group ddr_perf_filter_cap_attr_group = {
  175. .name = "caps",
  176. .attrs = ddr_perf_filter_cap_attr,
  177. };
  178. static ssize_t ddr_perf_cpumask_show(struct device *dev,
  179. struct device_attribute *attr, char *buf)
  180. {
  181. struct ddr_pmu *pmu = dev_get_drvdata(dev);
  182. return cpumap_print_to_pagebuf(true, buf, cpumask_of(pmu->cpu));
  183. }
  184. static struct device_attribute ddr_perf_cpumask_attr =
  185. __ATTR(cpumask, 0444, ddr_perf_cpumask_show, NULL);
  186. static struct attribute *ddr_perf_cpumask_attrs[] = {
  187. &ddr_perf_cpumask_attr.attr,
  188. NULL,
  189. };
  190. static const struct attribute_group ddr_perf_cpumask_attr_group = {
  191. .attrs = ddr_perf_cpumask_attrs,
  192. };
  193. static ssize_t
  194. ddr_pmu_event_show(struct device *dev, struct device_attribute *attr,
  195. char *page)
  196. {
  197. struct perf_pmu_events_attr *pmu_attr;
  198. pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
  199. return sysfs_emit(page, "event=0x%02llx\n", pmu_attr->id);
  200. }
  201. #define IMX8_DDR_PMU_EVENT_ATTR(_name, _id) \
  202. PMU_EVENT_ATTR_ID(_name, ddr_pmu_event_show, _id)
  203. static struct attribute *ddr_perf_events_attrs[] = {
  204. IMX8_DDR_PMU_EVENT_ATTR(cycles, EVENT_CYCLES_ID),
  205. IMX8_DDR_PMU_EVENT_ATTR(selfresh, 0x01),
  206. IMX8_DDR_PMU_EVENT_ATTR(read-accesses, 0x04),
  207. IMX8_DDR_PMU_EVENT_ATTR(write-accesses, 0x05),
  208. IMX8_DDR_PMU_EVENT_ATTR(read-queue-depth, 0x08),
  209. IMX8_DDR_PMU_EVENT_ATTR(write-queue-depth, 0x09),
  210. IMX8_DDR_PMU_EVENT_ATTR(lp-read-credit-cnt, 0x10),
  211. IMX8_DDR_PMU_EVENT_ATTR(hp-read-credit-cnt, 0x11),
  212. IMX8_DDR_PMU_EVENT_ATTR(write-credit-cnt, 0x12),
  213. IMX8_DDR_PMU_EVENT_ATTR(read-command, 0x20),
  214. IMX8_DDR_PMU_EVENT_ATTR(write-command, 0x21),
  215. IMX8_DDR_PMU_EVENT_ATTR(read-modify-write-command, 0x22),
  216. IMX8_DDR_PMU_EVENT_ATTR(hp-read, 0x23),
  217. IMX8_DDR_PMU_EVENT_ATTR(hp-req-nocredit, 0x24),
  218. IMX8_DDR_PMU_EVENT_ATTR(hp-xact-credit, 0x25),
  219. IMX8_DDR_PMU_EVENT_ATTR(lp-req-nocredit, 0x26),
  220. IMX8_DDR_PMU_EVENT_ATTR(lp-xact-credit, 0x27),
  221. IMX8_DDR_PMU_EVENT_ATTR(wr-xact-credit, 0x29),
  222. IMX8_DDR_PMU_EVENT_ATTR(read-cycles, 0x2a),
  223. IMX8_DDR_PMU_EVENT_ATTR(write-cycles, 0x2b),
  224. IMX8_DDR_PMU_EVENT_ATTR(read-write-transition, 0x30),
  225. IMX8_DDR_PMU_EVENT_ATTR(precharge, 0x31),
  226. IMX8_DDR_PMU_EVENT_ATTR(activate, 0x32),
  227. IMX8_DDR_PMU_EVENT_ATTR(load-mode, 0x33),
  228. IMX8_DDR_PMU_EVENT_ATTR(perf-mwr, 0x34),
  229. IMX8_DDR_PMU_EVENT_ATTR(read, 0x35),
  230. IMX8_DDR_PMU_EVENT_ATTR(read-activate, 0x36),
  231. IMX8_DDR_PMU_EVENT_ATTR(refresh, 0x37),
  232. IMX8_DDR_PMU_EVENT_ATTR(write, 0x38),
  233. IMX8_DDR_PMU_EVENT_ATTR(raw-hazard, 0x39),
  234. IMX8_DDR_PMU_EVENT_ATTR(axid-read, 0x41),
  235. IMX8_DDR_PMU_EVENT_ATTR(axid-write, 0x42),
  236. NULL,
  237. };
  238. static const struct attribute_group ddr_perf_events_attr_group = {
  239. .name = "events",
  240. .attrs = ddr_perf_events_attrs,
  241. };
  242. PMU_FORMAT_ATTR(event, "config:0-7");
  243. PMU_FORMAT_ATTR(axi_id, "config1:0-15");
  244. PMU_FORMAT_ATTR(axi_mask, "config1:16-31");
  245. PMU_FORMAT_ATTR(axi_port, "config2:0-2");
  246. PMU_FORMAT_ATTR(axi_channel, "config2:3-3");
  247. static struct attribute *ddr_perf_format_attrs[] = {
  248. &format_attr_event.attr,
  249. &format_attr_axi_id.attr,
  250. &format_attr_axi_mask.attr,
  251. &format_attr_axi_port.attr,
  252. &format_attr_axi_channel.attr,
  253. NULL,
  254. };
  255. static const struct attribute_group ddr_perf_format_attr_group = {
  256. .name = "format",
  257. .attrs = ddr_perf_format_attrs,
  258. };
  259. static const struct attribute_group *attr_groups[] = {
  260. &ddr_perf_events_attr_group,
  261. &ddr_perf_format_attr_group,
  262. &ddr_perf_cpumask_attr_group,
  263. &ddr_perf_filter_cap_attr_group,
  264. &ddr_perf_identifier_attr_group,
  265. NULL,
  266. };
  267. static bool ddr_perf_is_filtered(struct perf_event *event)
  268. {
  269. return event->attr.config == 0x41 || event->attr.config == 0x42;
  270. }
  271. static u32 ddr_perf_filter_val(struct perf_event *event)
  272. {
  273. return event->attr.config1;
  274. }
  275. static bool ddr_perf_filters_compatible(struct perf_event *a,
  276. struct perf_event *b)
  277. {
  278. if (!ddr_perf_is_filtered(a))
  279. return true;
  280. if (!ddr_perf_is_filtered(b))
  281. return true;
  282. return ddr_perf_filter_val(a) == ddr_perf_filter_val(b);
  283. }
  284. static bool ddr_perf_is_enhanced_filtered(struct perf_event *event)
  285. {
  286. unsigned int filt;
  287. struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
  288. filt = pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER_ENHANCED;
  289. return (filt == DDR_CAP_AXI_ID_FILTER_ENHANCED) &&
  290. ddr_perf_is_filtered(event);
  291. }
  292. static u32 ddr_perf_alloc_counter(struct ddr_pmu *pmu, int event)
  293. {
  294. int i;
  295. /*
  296. * Always map cycle event to counter 0
  297. * Cycles counter is dedicated for cycle event
  298. * can't used for the other events
  299. */
  300. if (event == EVENT_CYCLES_ID) {
  301. if (pmu->events[EVENT_CYCLES_COUNTER] == NULL)
  302. return EVENT_CYCLES_COUNTER;
  303. else
  304. return -ENOENT;
  305. }
  306. for (i = 1; i < NUM_COUNTERS; i++) {
  307. if (pmu->events[i] == NULL)
  308. return i;
  309. }
  310. return -ENOENT;
  311. }
  312. static void ddr_perf_free_counter(struct ddr_pmu *pmu, int counter)
  313. {
  314. pmu->events[counter] = NULL;
  315. }
  316. static u32 ddr_perf_read_counter(struct ddr_pmu *pmu, int counter)
  317. {
  318. struct perf_event *event = pmu->events[counter];
  319. void __iomem *base = pmu->base;
  320. /*
  321. * return bytes instead of bursts from ddr transaction for
  322. * axid-read and axid-write event if PMU core supports enhanced
  323. * filter.
  324. */
  325. base += ddr_perf_is_enhanced_filtered(event) ? COUNTER_DPCR1 :
  326. COUNTER_READ;
  327. return readl_relaxed(base + counter * 4);
  328. }
  329. static int ddr_perf_event_init(struct perf_event *event)
  330. {
  331. struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
  332. struct hw_perf_event *hwc = &event->hw;
  333. struct perf_event *sibling;
  334. if (event->attr.type != event->pmu->type)
  335. return -ENOENT;
  336. if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
  337. return -EOPNOTSUPP;
  338. if (event->cpu < 0) {
  339. dev_warn(pmu->dev, "Can't provide per-task data!\n");
  340. return -EOPNOTSUPP;
  341. }
  342. /*
  343. * We must NOT create groups containing mixed PMUs, although software
  344. * events are acceptable (for example to create a CCN group
  345. * periodically read when a hrtimer aka cpu-clock leader triggers).
  346. */
  347. if (event->group_leader->pmu != event->pmu &&
  348. !is_software_event(event->group_leader))
  349. return -EINVAL;
  350. if (pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER) {
  351. if (!ddr_perf_filters_compatible(event, event->group_leader))
  352. return -EINVAL;
  353. for_each_sibling_event(sibling, event->group_leader) {
  354. if (!ddr_perf_filters_compatible(event, sibling))
  355. return -EINVAL;
  356. }
  357. }
  358. for_each_sibling_event(sibling, event->group_leader) {
  359. if (sibling->pmu != event->pmu &&
  360. !is_software_event(sibling))
  361. return -EINVAL;
  362. }
  363. event->cpu = pmu->cpu;
  364. hwc->idx = -1;
  365. return 0;
  366. }
  367. static void ddr_perf_counter_enable(struct ddr_pmu *pmu, int config,
  368. int counter, bool enable)
  369. {
  370. u8 reg = counter * 4 + COUNTER_CNTL;
  371. int val;
  372. if (enable) {
  373. /*
  374. * cycle counter is special which should firstly write 0 then
  375. * write 1 into CLEAR bit to clear it. Other counters only
  376. * need write 0 into CLEAR bit and it turns out to be 1 by
  377. * hardware. Below enable flow is harmless for all counters.
  378. */
  379. writel(0, pmu->base + reg);
  380. val = CNTL_EN | CNTL_CLEAR;
  381. val |= FIELD_PREP(CNTL_CSV_MASK, config);
  382. /*
  383. * On i.MX8MP we need to bias the cycle counter to overflow more often.
  384. * We do this by initializing bits [23:16] of the counter value via the
  385. * COUNTER_CTRL Counter Parameter (CP) field.
  386. */
  387. if (pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER_ENHANCED) {
  388. if (counter == EVENT_CYCLES_COUNTER)
  389. val |= FIELD_PREP(CNTL_CP_MASK, 0xf0);
  390. }
  391. writel(val, pmu->base + reg);
  392. } else {
  393. /* Disable counter */
  394. val = readl_relaxed(pmu->base + reg) & CNTL_EN_MASK;
  395. writel(val, pmu->base + reg);
  396. }
  397. }
  398. static bool ddr_perf_counter_overflow(struct ddr_pmu *pmu, int counter)
  399. {
  400. int val;
  401. val = readl_relaxed(pmu->base + counter * 4 + COUNTER_CNTL);
  402. return val & CNTL_OVER;
  403. }
  404. static void ddr_perf_counter_clear(struct ddr_pmu *pmu, int counter)
  405. {
  406. u8 reg = counter * 4 + COUNTER_CNTL;
  407. int val;
  408. val = readl_relaxed(pmu->base + reg);
  409. val &= ~CNTL_CLEAR;
  410. writel(val, pmu->base + reg);
  411. val |= CNTL_CLEAR;
  412. writel(val, pmu->base + reg);
  413. }
  414. static void ddr_perf_event_update(struct perf_event *event)
  415. {
  416. struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
  417. struct hw_perf_event *hwc = &event->hw;
  418. u64 new_raw_count;
  419. int counter = hwc->idx;
  420. int ret;
  421. new_raw_count = ddr_perf_read_counter(pmu, counter);
  422. /* Remove the bias applied in ddr_perf_counter_enable(). */
  423. if (pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER_ENHANCED) {
  424. if (counter == EVENT_CYCLES_COUNTER)
  425. new_raw_count &= CYCLES_COUNTER_MASK;
  426. }
  427. local64_add(new_raw_count, &event->count);
  428. /*
  429. * For legacy SoCs: event counter continue counting when overflow,
  430. * no need to clear the counter.
  431. * For new SoCs: event counter stop counting when overflow, need
  432. * clear counter to let it count again.
  433. */
  434. if (counter != EVENT_CYCLES_COUNTER) {
  435. ret = ddr_perf_counter_overflow(pmu, counter);
  436. if (ret)
  437. dev_warn_ratelimited(pmu->dev, "events lost due to counter overflow (config 0x%llx)\n",
  438. event->attr.config);
  439. }
  440. /* clear counter every time for both cycle counter and event counter */
  441. ddr_perf_counter_clear(pmu, counter);
  442. }
  443. static void ddr_perf_event_start(struct perf_event *event, int flags)
  444. {
  445. struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
  446. struct hw_perf_event *hwc = &event->hw;
  447. int counter = hwc->idx;
  448. local64_set(&hwc->prev_count, 0);
  449. ddr_perf_counter_enable(pmu, event->attr.config, counter, true);
  450. if (!pmu->active_counter++)
  451. ddr_perf_counter_enable(pmu, EVENT_CYCLES_ID,
  452. EVENT_CYCLES_COUNTER, true);
  453. hwc->state = 0;
  454. }
  455. static int ddr_perf_event_add(struct perf_event *event, int flags)
  456. {
  457. struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
  458. struct hw_perf_event *hwc = &event->hw;
  459. int counter;
  460. int cfg = event->attr.config;
  461. int cfg1 = event->attr.config1;
  462. int cfg2 = event->attr.config2;
  463. if (pmu->devtype_data->quirks & DDR_CAP_AXI_ID_FILTER) {
  464. int i;
  465. for (i = 1; i < NUM_COUNTERS; i++) {
  466. if (pmu->events[i] &&
  467. !ddr_perf_filters_compatible(event, pmu->events[i]))
  468. return -EINVAL;
  469. }
  470. if (ddr_perf_is_filtered(event)) {
  471. /* revert axi id masking(axi_mask) value */
  472. cfg1 ^= AXI_MASKING_REVERT;
  473. writel(cfg1, pmu->base + COUNTER_DPCR1);
  474. }
  475. }
  476. counter = ddr_perf_alloc_counter(pmu, cfg);
  477. if (counter < 0) {
  478. dev_dbg(pmu->dev, "There are not enough counters\n");
  479. return -EOPNOTSUPP;
  480. }
  481. if (pmu->devtype_data->quirks & DDR_CAP_AXI_ID_PORT_CHANNEL_FILTER) {
  482. if (ddr_perf_is_filtered(event)) {
  483. /* revert axi id masking(axi_mask) value */
  484. cfg1 ^= AXI_MASKING_REVERT;
  485. writel(cfg1, pmu->base + COUNTER_MASK_COMP + ((counter - 1) << 4));
  486. if (cfg == 0x41) {
  487. /* revert axi read channel(axi_channel) value */
  488. cfg2 ^= READ_CHANNEL_REVERT;
  489. cfg2 |= FIELD_PREP(READ_PORT_MASK, cfg2);
  490. } else {
  491. /* revert axi write channel(axi_channel) value */
  492. cfg2 ^= WRITE_CHANNEL_REVERT;
  493. cfg2 |= FIELD_PREP(WRITE_PORT_MASK, cfg2);
  494. }
  495. writel(cfg2, pmu->base + COUNTER_MUX_CNTL + ((counter - 1) << 4));
  496. }
  497. }
  498. pmu->events[counter] = event;
  499. hwc->idx = counter;
  500. hwc->state |= PERF_HES_STOPPED;
  501. if (flags & PERF_EF_START)
  502. ddr_perf_event_start(event, flags);
  503. return 0;
  504. }
  505. static void ddr_perf_event_stop(struct perf_event *event, int flags)
  506. {
  507. struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
  508. struct hw_perf_event *hwc = &event->hw;
  509. int counter = hwc->idx;
  510. ddr_perf_counter_enable(pmu, event->attr.config, counter, false);
  511. ddr_perf_event_update(event);
  512. if (!--pmu->active_counter)
  513. ddr_perf_counter_enable(pmu, EVENT_CYCLES_ID,
  514. EVENT_CYCLES_COUNTER, false);
  515. hwc->state |= PERF_HES_STOPPED;
  516. }
  517. static void ddr_perf_event_del(struct perf_event *event, int flags)
  518. {
  519. struct ddr_pmu *pmu = to_ddr_pmu(event->pmu);
  520. struct hw_perf_event *hwc = &event->hw;
  521. int counter = hwc->idx;
  522. ddr_perf_event_stop(event, PERF_EF_UPDATE);
  523. ddr_perf_free_counter(pmu, counter);
  524. hwc->idx = -1;
  525. }
  526. static void ddr_perf_pmu_enable(struct pmu *pmu)
  527. {
  528. }
  529. static void ddr_perf_pmu_disable(struct pmu *pmu)
  530. {
  531. }
  532. static int ddr_perf_init(struct ddr_pmu *pmu, void __iomem *base,
  533. struct device *dev)
  534. {
  535. *pmu = (struct ddr_pmu) {
  536. .pmu = (struct pmu) {
  537. .module = THIS_MODULE,
  538. .parent = dev,
  539. .capabilities = PERF_PMU_CAP_NO_EXCLUDE,
  540. .task_ctx_nr = perf_invalid_context,
  541. .attr_groups = attr_groups,
  542. .event_init = ddr_perf_event_init,
  543. .add = ddr_perf_event_add,
  544. .del = ddr_perf_event_del,
  545. .start = ddr_perf_event_start,
  546. .stop = ddr_perf_event_stop,
  547. .read = ddr_perf_event_update,
  548. .pmu_enable = ddr_perf_pmu_enable,
  549. .pmu_disable = ddr_perf_pmu_disable,
  550. },
  551. .base = base,
  552. .dev = dev,
  553. };
  554. pmu->id = ida_alloc(&ddr_ida, GFP_KERNEL);
  555. return pmu->id;
  556. }
  557. static irqreturn_t ddr_perf_irq_handler(int irq, void *p)
  558. {
  559. int i;
  560. struct ddr_pmu *pmu = (struct ddr_pmu *) p;
  561. struct perf_event *event;
  562. /* all counter will stop if cycle counter disabled */
  563. ddr_perf_counter_enable(pmu,
  564. EVENT_CYCLES_ID,
  565. EVENT_CYCLES_COUNTER,
  566. false);
  567. /*
  568. * When the cycle counter overflows, all counters are stopped,
  569. * and an IRQ is raised. If any other counter overflows, it
  570. * continues counting, and no IRQ is raised. But for new SoCs,
  571. * such as i.MX8MP, event counter would stop when overflow, so
  572. * we need use cycle counter to stop overflow of event counter.
  573. *
  574. * Cycles occur at least 4 times as often as other events, so we
  575. * can update all events on a cycle counter overflow and not
  576. * lose events.
  577. *
  578. */
  579. for (i = 0; i < NUM_COUNTERS; i++) {
  580. if (!pmu->events[i])
  581. continue;
  582. event = pmu->events[i];
  583. ddr_perf_event_update(event);
  584. }
  585. ddr_perf_counter_enable(pmu,
  586. EVENT_CYCLES_ID,
  587. EVENT_CYCLES_COUNTER,
  588. true);
  589. return IRQ_HANDLED;
  590. }
  591. static int ddr_perf_offline_cpu(unsigned int cpu, struct hlist_node *node)
  592. {
  593. struct ddr_pmu *pmu = hlist_entry_safe(node, struct ddr_pmu, node);
  594. int target;
  595. if (cpu != pmu->cpu)
  596. return 0;
  597. target = cpumask_any_but(cpu_online_mask, cpu);
  598. if (target >= nr_cpu_ids)
  599. return 0;
  600. perf_pmu_migrate_context(&pmu->pmu, cpu, target);
  601. pmu->cpu = target;
  602. WARN_ON(irq_set_affinity(pmu->irq, cpumask_of(pmu->cpu)));
  603. return 0;
  604. }
  605. static int ddr_perf_probe(struct platform_device *pdev)
  606. {
  607. struct ddr_pmu *pmu;
  608. struct device_node *np;
  609. void __iomem *base;
  610. char *name;
  611. int num;
  612. int ret;
  613. int irq;
  614. base = devm_platform_ioremap_resource(pdev, 0);
  615. if (IS_ERR(base))
  616. return PTR_ERR(base);
  617. np = pdev->dev.of_node;
  618. pmu = devm_kzalloc(&pdev->dev, sizeof(*pmu), GFP_KERNEL);
  619. if (!pmu)
  620. return -ENOMEM;
  621. num = ddr_perf_init(pmu, base, &pdev->dev);
  622. platform_set_drvdata(pdev, pmu);
  623. name = devm_kasprintf(&pdev->dev, GFP_KERNEL, DDR_PERF_DEV_NAME "%d",
  624. num);
  625. if (!name) {
  626. ret = -ENOMEM;
  627. goto cpuhp_state_err;
  628. }
  629. pmu->devtype_data = of_device_get_match_data(&pdev->dev);
  630. pmu->cpu = raw_smp_processor_id();
  631. ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
  632. DDR_CPUHP_CB_NAME,
  633. NULL,
  634. ddr_perf_offline_cpu);
  635. if (ret < 0) {
  636. dev_err(&pdev->dev, "cpuhp_setup_state_multi failed\n");
  637. goto cpuhp_state_err;
  638. }
  639. pmu->cpuhp_state = ret;
  640. /* Register the pmu instance for cpu hotplug */
  641. ret = cpuhp_state_add_instance_nocalls(pmu->cpuhp_state, &pmu->node);
  642. if (ret) {
  643. dev_err(&pdev->dev, "Error %d registering hotplug\n", ret);
  644. goto cpuhp_instance_err;
  645. }
  646. /* Request irq */
  647. irq = of_irq_get(np, 0);
  648. if (irq < 0) {
  649. dev_err(&pdev->dev, "Failed to get irq: %d", irq);
  650. ret = irq;
  651. goto ddr_perf_err;
  652. }
  653. ret = devm_request_irq(&pdev->dev, irq,
  654. ddr_perf_irq_handler,
  655. IRQF_NOBALANCING | IRQF_NO_THREAD,
  656. DDR_CPUHP_CB_NAME,
  657. pmu);
  658. if (ret < 0) {
  659. dev_err(&pdev->dev, "Request irq failed: %d", ret);
  660. goto ddr_perf_err;
  661. }
  662. pmu->irq = irq;
  663. ret = irq_set_affinity(pmu->irq, cpumask_of(pmu->cpu));
  664. if (ret) {
  665. dev_err(pmu->dev, "Failed to set interrupt affinity!\n");
  666. goto ddr_perf_err;
  667. }
  668. ret = perf_pmu_register(&pmu->pmu, name, -1);
  669. if (ret)
  670. goto ddr_perf_err;
  671. return 0;
  672. ddr_perf_err:
  673. cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node);
  674. cpuhp_instance_err:
  675. cpuhp_remove_multi_state(pmu->cpuhp_state);
  676. cpuhp_state_err:
  677. ida_free(&ddr_ida, pmu->id);
  678. dev_warn(&pdev->dev, "i.MX8 DDR Perf PMU failed (%d), disabled\n", ret);
  679. return ret;
  680. }
  681. static void ddr_perf_remove(struct platform_device *pdev)
  682. {
  683. struct ddr_pmu *pmu = platform_get_drvdata(pdev);
  684. cpuhp_state_remove_instance_nocalls(pmu->cpuhp_state, &pmu->node);
  685. cpuhp_remove_multi_state(pmu->cpuhp_state);
  686. perf_pmu_unregister(&pmu->pmu);
  687. ida_free(&ddr_ida, pmu->id);
  688. }
  689. static struct platform_driver imx_ddr_pmu_driver = {
  690. .driver = {
  691. .name = "imx-ddr-pmu",
  692. .of_match_table = imx_ddr_pmu_dt_ids,
  693. .suppress_bind_attrs = true,
  694. },
  695. .probe = ddr_perf_probe,
  696. .remove_new = ddr_perf_remove,
  697. };
  698. module_platform_driver(imx_ddr_pmu_driver);
  699. MODULE_DESCRIPTION("Freescale i.MX8 DDR Performance Monitor Driver");
  700. MODULE_LICENSE("GPL v2");