trace_events_user.c 67 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2021, Microsoft Corporation.
  4. *
  5. * Authors:
  6. * Beau Belgrave <beaub@linux.microsoft.com>
  7. */
  8. #include <linux/bitmap.h>
  9. #include <linux/cdev.h>
  10. #include <linux/hashtable.h>
  11. #include <linux/list.h>
  12. #include <linux/io.h>
  13. #include <linux/uio.h>
  14. #include <linux/ioctl.h>
  15. #include <linux/jhash.h>
  16. #include <linux/refcount.h>
  17. #include <linux/trace_events.h>
  18. #include <linux/tracefs.h>
  19. #include <linux/types.h>
  20. #include <linux/uaccess.h>
  21. #include <linux/highmem.h>
  22. #include <linux/init.h>
  23. #include <linux/user_events.h>
  24. #include "trace_dynevent.h"
  25. #include "trace_output.h"
  26. #include "trace.h"
  27. #define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
  28. #define FIELD_DEPTH_TYPE 0
  29. #define FIELD_DEPTH_NAME 1
  30. #define FIELD_DEPTH_SIZE 2
  31. /* Limit how long of an event name plus args within the subsystem. */
  32. #define MAX_EVENT_DESC 512
  33. #define EVENT_NAME(user_event) ((user_event)->reg_name)
  34. #define EVENT_TP_NAME(user_event) ((user_event)->tracepoint.name)
  35. #define MAX_FIELD_ARRAY_SIZE 1024
  36. /*
  37. * Internal bits (kernel side only) to keep track of connected probes:
  38. * These are used when status is requested in text form about an event. These
  39. * bits are compared against an internal byte on the event to determine which
  40. * probes to print out to the user.
  41. *
  42. * These do not reflect the mapped bytes between the user and kernel space.
  43. */
  44. #define EVENT_STATUS_FTRACE BIT(0)
  45. #define EVENT_STATUS_PERF BIT(1)
  46. #define EVENT_STATUS_OTHER BIT(7)
  47. /*
  48. * Stores the system name, tables, and locks for a group of events. This
  49. * allows isolation for events by various means.
  50. */
  51. struct user_event_group {
  52. char *system_name;
  53. char *system_multi_name;
  54. struct hlist_node node;
  55. struct mutex reg_mutex;
  56. DECLARE_HASHTABLE(register_table, 8);
  57. /* ID that moves forward within the group for multi-event names */
  58. u64 multi_id;
  59. };
  60. /* Group for init_user_ns mapping, top-most group */
  61. static struct user_event_group *init_group;
  62. /* Max allowed events for the whole system */
  63. static unsigned int max_user_events = 32768;
  64. /* Current number of events on the whole system */
  65. static unsigned int current_user_events;
  66. /*
  67. * Stores per-event properties, as users register events
  68. * within a file a user_event might be created if it does not
  69. * already exist. These are globally used and their lifetime
  70. * is tied to the refcnt member. These cannot go away until the
  71. * refcnt reaches one.
  72. */
  73. struct user_event {
  74. struct user_event_group *group;
  75. char *reg_name;
  76. struct tracepoint tracepoint;
  77. struct trace_event_call call;
  78. struct trace_event_class class;
  79. struct dyn_event devent;
  80. struct hlist_node node;
  81. struct list_head fields;
  82. struct list_head validators;
  83. struct work_struct put_work;
  84. refcount_t refcnt;
  85. int min_size;
  86. int reg_flags;
  87. char status;
  88. };
  89. /*
  90. * Stores per-mm/event properties that enable an address to be
  91. * updated properly for each task. As tasks are forked, we use
  92. * these to track enablement sites that are tied to an event.
  93. */
  94. struct user_event_enabler {
  95. struct list_head mm_enablers_link;
  96. struct user_event *event;
  97. unsigned long addr;
  98. /* Track enable bit, flags, etc. Aligned for bitops. */
  99. unsigned long values;
  100. };
  101. /* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
  102. #define ENABLE_VAL_BIT_MASK 0x3F
  103. /* Bit 6 is for faulting status of enablement */
  104. #define ENABLE_VAL_FAULTING_BIT 6
  105. /* Bit 7 is for freeing status of enablement */
  106. #define ENABLE_VAL_FREEING_BIT 7
  107. /* Bit 8 is for marking 32-bit on 64-bit */
  108. #define ENABLE_VAL_32_ON_64_BIT 8
  109. #define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
  110. /* Only duplicate the bit and compat values */
  111. #define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
  112. #define ENABLE_BITOPS(e) (&(e)->values)
  113. #define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
  114. #define EVENT_MULTI_FORMAT(f) ((f) & USER_EVENT_REG_MULTI_FORMAT)
  115. /* Used for asynchronous faulting in of pages */
  116. struct user_event_enabler_fault {
  117. struct work_struct work;
  118. struct user_event_mm *mm;
  119. struct user_event_enabler *enabler;
  120. int attempt;
  121. };
  122. static struct kmem_cache *fault_cache;
  123. /* Global list of memory descriptors using user_events */
  124. static LIST_HEAD(user_event_mms);
  125. static DEFINE_SPINLOCK(user_event_mms_lock);
  126. /*
  127. * Stores per-file events references, as users register events
  128. * within a file this structure is modified and freed via RCU.
  129. * The lifetime of this struct is tied to the lifetime of the file.
  130. * These are not shared and only accessible by the file that created it.
  131. */
  132. struct user_event_refs {
  133. struct rcu_head rcu;
  134. int count;
  135. struct user_event *events[];
  136. };
  137. struct user_event_file_info {
  138. struct user_event_group *group;
  139. struct user_event_refs *refs;
  140. };
  141. #define VALIDATOR_ENSURE_NULL (1 << 0)
  142. #define VALIDATOR_REL (1 << 1)
  143. struct user_event_validator {
  144. struct list_head user_event_link;
  145. int offset;
  146. int flags;
  147. };
  148. static inline void align_addr_bit(unsigned long *addr, int *bit,
  149. unsigned long *flags)
  150. {
  151. if (IS_ALIGNED(*addr, sizeof(long))) {
  152. #ifdef __BIG_ENDIAN
  153. /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
  154. if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
  155. *bit += 32;
  156. #endif
  157. return;
  158. }
  159. *addr = ALIGN_DOWN(*addr, sizeof(long));
  160. /*
  161. * We only support 32 and 64 bit values. The only time we need
  162. * to align is a 32 bit value on a 64 bit kernel, which on LE
  163. * is always 32 bits, and on BE requires no change when unaligned.
  164. */
  165. #ifdef __LITTLE_ENDIAN
  166. *bit += 32;
  167. #endif
  168. }
  169. typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
  170. void *tpdata, bool *faulted);
  171. static int user_event_parse(struct user_event_group *group, char *name,
  172. char *args, char *flags,
  173. struct user_event **newuser, int reg_flags);
  174. static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
  175. static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
  176. static void user_event_mm_put(struct user_event_mm *mm);
  177. static int destroy_user_event(struct user_event *user);
  178. static bool user_fields_match(struct user_event *user, int argc,
  179. const char **argv);
  180. static u32 user_event_key(char *name)
  181. {
  182. return jhash(name, strlen(name), 0);
  183. }
  184. static bool user_event_capable(u16 reg_flags)
  185. {
  186. /* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */
  187. if (reg_flags & USER_EVENT_REG_PERSIST) {
  188. if (!perfmon_capable())
  189. return false;
  190. }
  191. return true;
  192. }
  193. static struct user_event *user_event_get(struct user_event *user)
  194. {
  195. refcount_inc(&user->refcnt);
  196. return user;
  197. }
  198. static void delayed_destroy_user_event(struct work_struct *work)
  199. {
  200. struct user_event *user = container_of(
  201. work, struct user_event, put_work);
  202. mutex_lock(&event_mutex);
  203. if (!refcount_dec_and_test(&user->refcnt))
  204. goto out;
  205. if (destroy_user_event(user)) {
  206. /*
  207. * The only reason this would fail here is if we cannot
  208. * update the visibility of the event. In this case the
  209. * event stays in the hashtable, waiting for someone to
  210. * attempt to delete it later.
  211. */
  212. pr_warn("user_events: Unable to delete event\n");
  213. refcount_set(&user->refcnt, 1);
  214. }
  215. out:
  216. mutex_unlock(&event_mutex);
  217. }
  218. static void user_event_put(struct user_event *user, bool locked)
  219. {
  220. bool delete;
  221. if (unlikely(!user))
  222. return;
  223. /*
  224. * When the event is not enabled for auto-delete there will always
  225. * be at least 1 reference to the event. During the event creation
  226. * we initially set the refcnt to 2 to achieve this. In those cases
  227. * the caller must acquire event_mutex and after decrement check if
  228. * the refcnt is 1, meaning this is the last reference. When auto
  229. * delete is enabled, there will only be 1 ref, IE: refcnt will be
  230. * only set to 1 during creation to allow the below checks to go
  231. * through upon the last put. The last put must always be done with
  232. * the event mutex held.
  233. */
  234. if (!locked) {
  235. lockdep_assert_not_held(&event_mutex);
  236. delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
  237. } else {
  238. lockdep_assert_held(&event_mutex);
  239. delete = refcount_dec_and_test(&user->refcnt);
  240. }
  241. if (!delete)
  242. return;
  243. /*
  244. * We now have the event_mutex in all cases, which ensures that
  245. * no new references will be taken until event_mutex is released.
  246. * New references come through find_user_event(), which requires
  247. * the event_mutex to be held.
  248. */
  249. if (user->reg_flags & USER_EVENT_REG_PERSIST) {
  250. /* We should not get here when persist flag is set */
  251. pr_alert("BUG: Auto-delete engaged on persistent event\n");
  252. goto out;
  253. }
  254. /*
  255. * Unfortunately we have to attempt the actual destroy in a work
  256. * queue. This is because not all cases handle a trace_event_call
  257. * being removed within the class->reg() operation for unregister.
  258. */
  259. INIT_WORK(&user->put_work, delayed_destroy_user_event);
  260. /*
  261. * Since the event is still in the hashtable, we have to re-inc
  262. * the ref count to 1. This count will be decremented and checked
  263. * in the work queue to ensure it's still the last ref. This is
  264. * needed because a user-process could register the same event in
  265. * between the time of event_mutex release and the work queue
  266. * running the delayed destroy. If we removed the item now from
  267. * the hashtable, this would result in a timing window where a
  268. * user process would fail a register because the trace_event_call
  269. * register would fail in the tracing layers.
  270. */
  271. refcount_set(&user->refcnt, 1);
  272. if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
  273. /*
  274. * If we fail we must wait for an admin to attempt delete or
  275. * another register/close of the event, whichever is first.
  276. */
  277. pr_warn("user_events: Unable to queue delayed destroy\n");
  278. }
  279. out:
  280. /* Ensure if we didn't have event_mutex before we unlock it */
  281. if (!locked)
  282. mutex_unlock(&event_mutex);
  283. }
  284. static void user_event_group_destroy(struct user_event_group *group)
  285. {
  286. kfree(group->system_name);
  287. kfree(group->system_multi_name);
  288. kfree(group);
  289. }
  290. static char *user_event_group_system_name(void)
  291. {
  292. char *system_name;
  293. int len = sizeof(USER_EVENTS_SYSTEM) + 1;
  294. system_name = kmalloc(len, GFP_KERNEL);
  295. if (!system_name)
  296. return NULL;
  297. snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
  298. return system_name;
  299. }
  300. static char *user_event_group_system_multi_name(void)
  301. {
  302. return kstrdup(USER_EVENTS_MULTI_SYSTEM, GFP_KERNEL);
  303. }
  304. static struct user_event_group *current_user_event_group(void)
  305. {
  306. return init_group;
  307. }
  308. static struct user_event_group *user_event_group_create(void)
  309. {
  310. struct user_event_group *group;
  311. group = kzalloc(sizeof(*group), GFP_KERNEL);
  312. if (!group)
  313. return NULL;
  314. group->system_name = user_event_group_system_name();
  315. if (!group->system_name)
  316. goto error;
  317. group->system_multi_name = user_event_group_system_multi_name();
  318. if (!group->system_multi_name)
  319. goto error;
  320. mutex_init(&group->reg_mutex);
  321. hash_init(group->register_table);
  322. return group;
  323. error:
  324. if (group)
  325. user_event_group_destroy(group);
  326. return NULL;
  327. };
  328. static void user_event_enabler_destroy(struct user_event_enabler *enabler,
  329. bool locked)
  330. {
  331. list_del_rcu(&enabler->mm_enablers_link);
  332. /* No longer tracking the event via the enabler */
  333. user_event_put(enabler->event, locked);
  334. kfree(enabler);
  335. }
  336. static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
  337. int attempt)
  338. {
  339. bool unlocked;
  340. int ret;
  341. /*
  342. * Normally this is low, ensure that it cannot be taken advantage of by
  343. * bad user processes to cause excessive looping.
  344. */
  345. if (attempt > 10)
  346. return -EFAULT;
  347. mmap_read_lock(mm->mm);
  348. /* Ensure MM has tasks, cannot use after exit_mm() */
  349. if (refcount_read(&mm->tasks) == 0) {
  350. ret = -ENOENT;
  351. goto out;
  352. }
  353. ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
  354. &unlocked);
  355. out:
  356. mmap_read_unlock(mm->mm);
  357. return ret;
  358. }
  359. static int user_event_enabler_write(struct user_event_mm *mm,
  360. struct user_event_enabler *enabler,
  361. bool fixup_fault, int *attempt);
  362. static void user_event_enabler_fault_fixup(struct work_struct *work)
  363. {
  364. struct user_event_enabler_fault *fault = container_of(
  365. work, struct user_event_enabler_fault, work);
  366. struct user_event_enabler *enabler = fault->enabler;
  367. struct user_event_mm *mm = fault->mm;
  368. unsigned long uaddr = enabler->addr;
  369. int attempt = fault->attempt;
  370. int ret;
  371. ret = user_event_mm_fault_in(mm, uaddr, attempt);
  372. if (ret && ret != -ENOENT) {
  373. struct user_event *user = enabler->event;
  374. pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
  375. mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
  376. }
  377. /* Prevent state changes from racing */
  378. mutex_lock(&event_mutex);
  379. /* User asked for enabler to be removed during fault */
  380. if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
  381. user_event_enabler_destroy(enabler, true);
  382. goto out;
  383. }
  384. /*
  385. * If we managed to get the page, re-issue the write. We do not
  386. * want to get into a possible infinite loop, which is why we only
  387. * attempt again directly if the page came in. If we couldn't get
  388. * the page here, then we will try again the next time the event is
  389. * enabled/disabled.
  390. */
  391. clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
  392. if (!ret) {
  393. mmap_read_lock(mm->mm);
  394. user_event_enabler_write(mm, enabler, true, &attempt);
  395. mmap_read_unlock(mm->mm);
  396. }
  397. out:
  398. mutex_unlock(&event_mutex);
  399. /* In all cases we no longer need the mm or fault */
  400. user_event_mm_put(mm);
  401. kmem_cache_free(fault_cache, fault);
  402. }
  403. static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
  404. struct user_event_enabler *enabler,
  405. int attempt)
  406. {
  407. struct user_event_enabler_fault *fault;
  408. fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
  409. if (!fault)
  410. return false;
  411. INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
  412. fault->mm = user_event_mm_get(mm);
  413. fault->enabler = enabler;
  414. fault->attempt = attempt;
  415. /* Don't try to queue in again while we have a pending fault */
  416. set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
  417. if (!schedule_work(&fault->work)) {
  418. /* Allow another attempt later */
  419. clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
  420. user_event_mm_put(mm);
  421. kmem_cache_free(fault_cache, fault);
  422. return false;
  423. }
  424. return true;
  425. }
  426. static int user_event_enabler_write(struct user_event_mm *mm,
  427. struct user_event_enabler *enabler,
  428. bool fixup_fault, int *attempt)
  429. {
  430. unsigned long uaddr = enabler->addr;
  431. unsigned long *ptr;
  432. struct page *page;
  433. void *kaddr;
  434. int bit = ENABLE_BIT(enabler);
  435. int ret;
  436. lockdep_assert_held(&event_mutex);
  437. mmap_assert_locked(mm->mm);
  438. *attempt += 1;
  439. /* Ensure MM has tasks, cannot use after exit_mm() */
  440. if (refcount_read(&mm->tasks) == 0)
  441. return -ENOENT;
  442. if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
  443. test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
  444. return -EBUSY;
  445. align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler));
  446. ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
  447. &page, NULL);
  448. if (unlikely(ret <= 0)) {
  449. if (!fixup_fault)
  450. return -EFAULT;
  451. if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
  452. pr_warn("user_events: Unable to queue fault handler\n");
  453. return -EFAULT;
  454. }
  455. kaddr = kmap_local_page(page);
  456. ptr = kaddr + (uaddr & ~PAGE_MASK);
  457. /* Update bit atomically, user tracers must be atomic as well */
  458. if (enabler->event && enabler->event->status)
  459. set_bit(bit, ptr);
  460. else
  461. clear_bit(bit, ptr);
  462. kunmap_local(kaddr);
  463. unpin_user_pages_dirty_lock(&page, 1, true);
  464. return 0;
  465. }
  466. static bool user_event_enabler_exists(struct user_event_mm *mm,
  467. unsigned long uaddr, unsigned char bit)
  468. {
  469. struct user_event_enabler *enabler;
  470. list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
  471. if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
  472. return true;
  473. }
  474. return false;
  475. }
  476. static void user_event_enabler_update(struct user_event *user)
  477. {
  478. struct user_event_enabler *enabler;
  479. struct user_event_mm *next;
  480. struct user_event_mm *mm;
  481. int attempt;
  482. lockdep_assert_held(&event_mutex);
  483. /*
  484. * We need to build a one-shot list of all the mms that have an
  485. * enabler for the user_event passed in. This list is only valid
  486. * while holding the event_mutex. The only reason for this is due
  487. * to the global mm list being RCU protected and we use methods
  488. * which can wait (mmap_read_lock and pin_user_pages_remote).
  489. *
  490. * NOTE: user_event_mm_get_all() increments the ref count of each
  491. * mm that is added to the list to prevent removal timing windows.
  492. * We must always put each mm after they are used, which may wait.
  493. */
  494. mm = user_event_mm_get_all(user);
  495. while (mm) {
  496. next = mm->next;
  497. mmap_read_lock(mm->mm);
  498. list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
  499. if (enabler->event == user) {
  500. attempt = 0;
  501. user_event_enabler_write(mm, enabler, true, &attempt);
  502. }
  503. }
  504. mmap_read_unlock(mm->mm);
  505. user_event_mm_put(mm);
  506. mm = next;
  507. }
  508. }
  509. static bool user_event_enabler_dup(struct user_event_enabler *orig,
  510. struct user_event_mm *mm)
  511. {
  512. struct user_event_enabler *enabler;
  513. /* Skip pending frees */
  514. if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
  515. return true;
  516. enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
  517. if (!enabler)
  518. return false;
  519. enabler->event = user_event_get(orig->event);
  520. enabler->addr = orig->addr;
  521. /* Only dup part of value (ignore future flags, etc) */
  522. enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
  523. /* Enablers not exposed yet, RCU not required */
  524. list_add(&enabler->mm_enablers_link, &mm->enablers);
  525. return true;
  526. }
  527. static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
  528. {
  529. refcount_inc(&mm->refcnt);
  530. return mm;
  531. }
  532. static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
  533. {
  534. struct user_event_mm *found = NULL;
  535. struct user_event_enabler *enabler;
  536. struct user_event_mm *mm;
  537. /*
  538. * We use the mm->next field to build a one-shot list from the global
  539. * RCU protected list. To build this list the event_mutex must be held.
  540. * This lets us build a list without requiring allocs that could fail
  541. * when user based events are most wanted for diagnostics.
  542. */
  543. lockdep_assert_held(&event_mutex);
  544. /*
  545. * We do not want to block fork/exec while enablements are being
  546. * updated, so we use RCU to walk the current tasks that have used
  547. * user_events ABI for 1 or more events. Each enabler found in each
  548. * task that matches the event being updated has a write to reflect
  549. * the kernel state back into the process. Waits/faults must not occur
  550. * during this. So we scan the list under RCU for all the mm that have
  551. * the event within it. This is needed because mm_read_lock() can wait.
  552. * Each user mm returned has a ref inc to handle remove RCU races.
  553. */
  554. rcu_read_lock();
  555. list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
  556. list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
  557. if (enabler->event == user) {
  558. mm->next = found;
  559. found = user_event_mm_get(mm);
  560. break;
  561. }
  562. }
  563. }
  564. rcu_read_unlock();
  565. return found;
  566. }
  567. static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
  568. {
  569. struct user_event_mm *user_mm;
  570. user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
  571. if (!user_mm)
  572. return NULL;
  573. user_mm->mm = t->mm;
  574. INIT_LIST_HEAD(&user_mm->enablers);
  575. refcount_set(&user_mm->refcnt, 1);
  576. refcount_set(&user_mm->tasks, 1);
  577. /*
  578. * The lifetime of the memory descriptor can slightly outlast
  579. * the task lifetime if a ref to the user_event_mm is taken
  580. * between list_del_rcu() and call_rcu(). Therefore we need
  581. * to take a reference to it to ensure it can live this long
  582. * under this corner case. This can also occur in clones that
  583. * outlast the parent.
  584. */
  585. mmgrab(user_mm->mm);
  586. return user_mm;
  587. }
  588. static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
  589. {
  590. unsigned long flags;
  591. spin_lock_irqsave(&user_event_mms_lock, flags);
  592. list_add_rcu(&user_mm->mms_link, &user_event_mms);
  593. spin_unlock_irqrestore(&user_event_mms_lock, flags);
  594. t->user_event_mm = user_mm;
  595. }
  596. static struct user_event_mm *current_user_event_mm(void)
  597. {
  598. struct user_event_mm *user_mm = current->user_event_mm;
  599. if (user_mm)
  600. goto inc;
  601. user_mm = user_event_mm_alloc(current);
  602. if (!user_mm)
  603. goto error;
  604. user_event_mm_attach(user_mm, current);
  605. inc:
  606. refcount_inc(&user_mm->refcnt);
  607. error:
  608. return user_mm;
  609. }
  610. static void user_event_mm_destroy(struct user_event_mm *mm)
  611. {
  612. struct user_event_enabler *enabler, *next;
  613. list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
  614. user_event_enabler_destroy(enabler, false);
  615. mmdrop(mm->mm);
  616. kfree(mm);
  617. }
  618. static void user_event_mm_put(struct user_event_mm *mm)
  619. {
  620. if (mm && refcount_dec_and_test(&mm->refcnt))
  621. user_event_mm_destroy(mm);
  622. }
  623. static void delayed_user_event_mm_put(struct work_struct *work)
  624. {
  625. struct user_event_mm *mm;
  626. mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
  627. user_event_mm_put(mm);
  628. }
  629. void user_event_mm_remove(struct task_struct *t)
  630. {
  631. struct user_event_mm *mm;
  632. unsigned long flags;
  633. might_sleep();
  634. mm = t->user_event_mm;
  635. t->user_event_mm = NULL;
  636. /* Clone will increment the tasks, only remove if last clone */
  637. if (!refcount_dec_and_test(&mm->tasks))
  638. return;
  639. /* Remove the mm from the list, so it can no longer be enabled */
  640. spin_lock_irqsave(&user_event_mms_lock, flags);
  641. list_del_rcu(&mm->mms_link);
  642. spin_unlock_irqrestore(&user_event_mms_lock, flags);
  643. /*
  644. * We need to wait for currently occurring writes to stop within
  645. * the mm. This is required since exit_mm() snaps the current rss
  646. * stats and clears them. On the final mmdrop(), check_mm() will
  647. * report a bug if these increment.
  648. *
  649. * All writes/pins are done under mmap_read lock, take the write
  650. * lock to ensure in-progress faults have completed. Faults that
  651. * are pending but yet to run will check the task count and skip
  652. * the fault since the mm is going away.
  653. */
  654. mmap_write_lock(mm->mm);
  655. mmap_write_unlock(mm->mm);
  656. /*
  657. * Put for mm must be done after RCU delay to handle new refs in
  658. * between the list_del_rcu() and now. This ensures any get refs
  659. * during rcu_read_lock() are accounted for during list removal.
  660. *
  661. * CPU A | CPU B
  662. * ---------------------------------------------------------------
  663. * user_event_mm_remove() | rcu_read_lock();
  664. * list_del_rcu() | list_for_each_entry_rcu();
  665. * call_rcu() | refcount_inc();
  666. * . | rcu_read_unlock();
  667. * schedule_work() | .
  668. * user_event_mm_put() | .
  669. *
  670. * mmdrop() cannot be called in the softirq context of call_rcu()
  671. * so we use a work queue after call_rcu() to run within.
  672. */
  673. INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
  674. queue_rcu_work(system_wq, &mm->put_rwork);
  675. }
  676. void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
  677. {
  678. struct user_event_mm *mm = user_event_mm_alloc(t);
  679. struct user_event_enabler *enabler;
  680. if (!mm)
  681. return;
  682. rcu_read_lock();
  683. list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
  684. if (!user_event_enabler_dup(enabler, mm))
  685. goto error;
  686. }
  687. rcu_read_unlock();
  688. user_event_mm_attach(mm, t);
  689. return;
  690. error:
  691. rcu_read_unlock();
  692. user_event_mm_destroy(mm);
  693. }
  694. static bool current_user_event_enabler_exists(unsigned long uaddr,
  695. unsigned char bit)
  696. {
  697. struct user_event_mm *user_mm = current_user_event_mm();
  698. bool exists;
  699. if (!user_mm)
  700. return false;
  701. exists = user_event_enabler_exists(user_mm, uaddr, bit);
  702. user_event_mm_put(user_mm);
  703. return exists;
  704. }
  705. static struct user_event_enabler
  706. *user_event_enabler_create(struct user_reg *reg, struct user_event *user,
  707. int *write_result)
  708. {
  709. struct user_event_enabler *enabler;
  710. struct user_event_mm *user_mm;
  711. unsigned long uaddr = (unsigned long)reg->enable_addr;
  712. int attempt = 0;
  713. user_mm = current_user_event_mm();
  714. if (!user_mm)
  715. return NULL;
  716. enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
  717. if (!enabler)
  718. goto out;
  719. enabler->event = user;
  720. enabler->addr = uaddr;
  721. enabler->values = reg->enable_bit;
  722. #if BITS_PER_LONG >= 64
  723. if (reg->enable_size == 4)
  724. set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
  725. #endif
  726. retry:
  727. /* Prevents state changes from racing with new enablers */
  728. mutex_lock(&event_mutex);
  729. /* Attempt to reflect the current state within the process */
  730. mmap_read_lock(user_mm->mm);
  731. *write_result = user_event_enabler_write(user_mm, enabler, false,
  732. &attempt);
  733. mmap_read_unlock(user_mm->mm);
  734. /*
  735. * If the write works, then we will track the enabler. A ref to the
  736. * underlying user_event is held by the enabler to prevent it going
  737. * away while the enabler is still in use by a process. The ref is
  738. * removed when the enabler is destroyed. This means a event cannot
  739. * be forcefully deleted from the system until all tasks using it
  740. * exit or run exec(), which includes forks and clones.
  741. */
  742. if (!*write_result) {
  743. user_event_get(user);
  744. list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
  745. }
  746. mutex_unlock(&event_mutex);
  747. if (*write_result) {
  748. /* Attempt to fault-in and retry if it worked */
  749. if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
  750. goto retry;
  751. kfree(enabler);
  752. enabler = NULL;
  753. }
  754. out:
  755. user_event_mm_put(user_mm);
  756. return enabler;
  757. }
  758. static __always_inline __must_check
  759. bool user_event_last_ref(struct user_event *user)
  760. {
  761. int last = 0;
  762. if (user->reg_flags & USER_EVENT_REG_PERSIST)
  763. last = 1;
  764. return refcount_read(&user->refcnt) == last;
  765. }
  766. static __always_inline __must_check
  767. size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
  768. {
  769. size_t ret;
  770. pagefault_disable();
  771. ret = copy_from_iter_nocache(addr, bytes, i);
  772. pagefault_enable();
  773. return ret;
  774. }
  775. static struct list_head *user_event_get_fields(struct trace_event_call *call)
  776. {
  777. struct user_event *user = (struct user_event *)call->data;
  778. return &user->fields;
  779. }
  780. /*
  781. * Parses a register command for user_events
  782. * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
  783. *
  784. * Example event named 'test' with a 20 char 'msg' field with an unsigned int
  785. * 'id' field after:
  786. * test char[20] msg;unsigned int id
  787. *
  788. * NOTE: Offsets are from the user data perspective, they are not from the
  789. * trace_entry/buffer perspective. We automatically add the common properties
  790. * sizes to the offset for the user.
  791. *
  792. * Upon success user_event has its ref count increased by 1.
  793. */
  794. static int user_event_parse_cmd(struct user_event_group *group,
  795. char *raw_command, struct user_event **newuser,
  796. int reg_flags)
  797. {
  798. char *name = raw_command;
  799. char *args = strpbrk(name, " ");
  800. char *flags;
  801. if (args)
  802. *args++ = '\0';
  803. flags = strpbrk(name, ":");
  804. if (flags)
  805. *flags++ = '\0';
  806. return user_event_parse(group, name, args, flags, newuser, reg_flags);
  807. }
  808. static int user_field_array_size(const char *type)
  809. {
  810. const char *start = strchr(type, '[');
  811. char val[8];
  812. char *bracket;
  813. int size = 0;
  814. if (start == NULL)
  815. return -EINVAL;
  816. if (strscpy(val, start + 1, sizeof(val)) <= 0)
  817. return -EINVAL;
  818. bracket = strchr(val, ']');
  819. if (!bracket)
  820. return -EINVAL;
  821. *bracket = '\0';
  822. if (kstrtouint(val, 0, &size))
  823. return -EINVAL;
  824. if (size > MAX_FIELD_ARRAY_SIZE)
  825. return -EINVAL;
  826. return size;
  827. }
  828. static int user_field_size(const char *type)
  829. {
  830. /* long is not allowed from a user, since it's ambigious in size */
  831. if (strcmp(type, "s64") == 0)
  832. return sizeof(s64);
  833. if (strcmp(type, "u64") == 0)
  834. return sizeof(u64);
  835. if (strcmp(type, "s32") == 0)
  836. return sizeof(s32);
  837. if (strcmp(type, "u32") == 0)
  838. return sizeof(u32);
  839. if (strcmp(type, "int") == 0)
  840. return sizeof(int);
  841. if (strcmp(type, "unsigned int") == 0)
  842. return sizeof(unsigned int);
  843. if (strcmp(type, "s16") == 0)
  844. return sizeof(s16);
  845. if (strcmp(type, "u16") == 0)
  846. return sizeof(u16);
  847. if (strcmp(type, "short") == 0)
  848. return sizeof(short);
  849. if (strcmp(type, "unsigned short") == 0)
  850. return sizeof(unsigned short);
  851. if (strcmp(type, "s8") == 0)
  852. return sizeof(s8);
  853. if (strcmp(type, "u8") == 0)
  854. return sizeof(u8);
  855. if (strcmp(type, "char") == 0)
  856. return sizeof(char);
  857. if (strcmp(type, "unsigned char") == 0)
  858. return sizeof(unsigned char);
  859. if (str_has_prefix(type, "char["))
  860. return user_field_array_size(type);
  861. if (str_has_prefix(type, "unsigned char["))
  862. return user_field_array_size(type);
  863. if (str_has_prefix(type, "__data_loc "))
  864. return sizeof(u32);
  865. if (str_has_prefix(type, "__rel_loc "))
  866. return sizeof(u32);
  867. /* Uknown basic type, error */
  868. return -EINVAL;
  869. }
  870. static void user_event_destroy_validators(struct user_event *user)
  871. {
  872. struct user_event_validator *validator, *next;
  873. struct list_head *head = &user->validators;
  874. list_for_each_entry_safe(validator, next, head, user_event_link) {
  875. list_del(&validator->user_event_link);
  876. kfree(validator);
  877. }
  878. }
  879. static void user_event_destroy_fields(struct user_event *user)
  880. {
  881. struct ftrace_event_field *field, *next;
  882. struct list_head *head = &user->fields;
  883. list_for_each_entry_safe(field, next, head, link) {
  884. list_del(&field->link);
  885. kfree(field);
  886. }
  887. }
  888. static int user_event_add_field(struct user_event *user, const char *type,
  889. const char *name, int offset, int size,
  890. int is_signed, int filter_type)
  891. {
  892. struct user_event_validator *validator;
  893. struct ftrace_event_field *field;
  894. int validator_flags = 0;
  895. field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
  896. if (!field)
  897. return -ENOMEM;
  898. if (str_has_prefix(type, "__data_loc "))
  899. goto add_validator;
  900. if (str_has_prefix(type, "__rel_loc ")) {
  901. validator_flags |= VALIDATOR_REL;
  902. goto add_validator;
  903. }
  904. goto add_field;
  905. add_validator:
  906. if (strstr(type, "char") != NULL)
  907. validator_flags |= VALIDATOR_ENSURE_NULL;
  908. validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
  909. if (!validator) {
  910. kfree(field);
  911. return -ENOMEM;
  912. }
  913. validator->flags = validator_flags;
  914. validator->offset = offset;
  915. /* Want sequential access when validating */
  916. list_add_tail(&validator->user_event_link, &user->validators);
  917. add_field:
  918. field->type = type;
  919. field->name = name;
  920. field->offset = offset;
  921. field->size = size;
  922. field->is_signed = is_signed;
  923. field->filter_type = filter_type;
  924. if (filter_type == FILTER_OTHER)
  925. field->filter_type = filter_assign_type(type);
  926. list_add(&field->link, &user->fields);
  927. /*
  928. * Min size from user writes that are required, this does not include
  929. * the size of trace_entry (common fields).
  930. */
  931. user->min_size = (offset + size) - sizeof(struct trace_entry);
  932. return 0;
  933. }
  934. /*
  935. * Parses the values of a field within the description
  936. * Format: type name [size]
  937. */
  938. static int user_event_parse_field(char *field, struct user_event *user,
  939. u32 *offset)
  940. {
  941. char *part, *type, *name;
  942. u32 depth = 0, saved_offset = *offset;
  943. int len, size = -EINVAL;
  944. bool is_struct = false;
  945. field = skip_spaces(field);
  946. if (*field == '\0')
  947. return 0;
  948. /* Handle types that have a space within */
  949. len = str_has_prefix(field, "unsigned ");
  950. if (len)
  951. goto skip_next;
  952. len = str_has_prefix(field, "struct ");
  953. if (len) {
  954. is_struct = true;
  955. goto skip_next;
  956. }
  957. len = str_has_prefix(field, "__data_loc unsigned ");
  958. if (len)
  959. goto skip_next;
  960. len = str_has_prefix(field, "__data_loc ");
  961. if (len)
  962. goto skip_next;
  963. len = str_has_prefix(field, "__rel_loc unsigned ");
  964. if (len)
  965. goto skip_next;
  966. len = str_has_prefix(field, "__rel_loc ");
  967. if (len)
  968. goto skip_next;
  969. goto parse;
  970. skip_next:
  971. type = field;
  972. field = strpbrk(field + len, " ");
  973. if (field == NULL)
  974. return -EINVAL;
  975. *field++ = '\0';
  976. depth++;
  977. parse:
  978. name = NULL;
  979. while ((part = strsep(&field, " ")) != NULL) {
  980. switch (depth++) {
  981. case FIELD_DEPTH_TYPE:
  982. type = part;
  983. break;
  984. case FIELD_DEPTH_NAME:
  985. name = part;
  986. break;
  987. case FIELD_DEPTH_SIZE:
  988. if (!is_struct)
  989. return -EINVAL;
  990. if (kstrtou32(part, 10, &size))
  991. return -EINVAL;
  992. break;
  993. default:
  994. return -EINVAL;
  995. }
  996. }
  997. if (depth < FIELD_DEPTH_SIZE || !name)
  998. return -EINVAL;
  999. if (depth == FIELD_DEPTH_SIZE)
  1000. size = user_field_size(type);
  1001. if (size == 0)
  1002. return -EINVAL;
  1003. if (size < 0)
  1004. return size;
  1005. *offset = saved_offset + size;
  1006. return user_event_add_field(user, type, name, saved_offset, size,
  1007. type[0] != 'u', FILTER_OTHER);
  1008. }
  1009. static int user_event_parse_fields(struct user_event *user, char *args)
  1010. {
  1011. char *field;
  1012. u32 offset = sizeof(struct trace_entry);
  1013. int ret = -EINVAL;
  1014. if (args == NULL)
  1015. return 0;
  1016. while ((field = strsep(&args, ";")) != NULL) {
  1017. ret = user_event_parse_field(field, user, &offset);
  1018. if (ret)
  1019. break;
  1020. }
  1021. return ret;
  1022. }
  1023. static struct trace_event_fields user_event_fields_array[1];
  1024. static const char *user_field_format(const char *type)
  1025. {
  1026. if (strcmp(type, "s64") == 0)
  1027. return "%lld";
  1028. if (strcmp(type, "u64") == 0)
  1029. return "%llu";
  1030. if (strcmp(type, "s32") == 0)
  1031. return "%d";
  1032. if (strcmp(type, "u32") == 0)
  1033. return "%u";
  1034. if (strcmp(type, "int") == 0)
  1035. return "%d";
  1036. if (strcmp(type, "unsigned int") == 0)
  1037. return "%u";
  1038. if (strcmp(type, "s16") == 0)
  1039. return "%d";
  1040. if (strcmp(type, "u16") == 0)
  1041. return "%u";
  1042. if (strcmp(type, "short") == 0)
  1043. return "%d";
  1044. if (strcmp(type, "unsigned short") == 0)
  1045. return "%u";
  1046. if (strcmp(type, "s8") == 0)
  1047. return "%d";
  1048. if (strcmp(type, "u8") == 0)
  1049. return "%u";
  1050. if (strcmp(type, "char") == 0)
  1051. return "%d";
  1052. if (strcmp(type, "unsigned char") == 0)
  1053. return "%u";
  1054. if (strstr(type, "char[") != NULL)
  1055. return "%s";
  1056. /* Unknown, likely struct, allowed treat as 64-bit */
  1057. return "%llu";
  1058. }
  1059. static bool user_field_is_dyn_string(const char *type, const char **str_func)
  1060. {
  1061. if (str_has_prefix(type, "__data_loc ")) {
  1062. *str_func = "__get_str";
  1063. goto check;
  1064. }
  1065. if (str_has_prefix(type, "__rel_loc ")) {
  1066. *str_func = "__get_rel_str";
  1067. goto check;
  1068. }
  1069. return false;
  1070. check:
  1071. return strstr(type, "char") != NULL;
  1072. }
  1073. #define LEN_OR_ZERO (len ? len - pos : 0)
  1074. static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
  1075. char *buf, int len, bool *colon)
  1076. {
  1077. int pos = 0, i = *iout;
  1078. *colon = false;
  1079. for (; i < argc; ++i) {
  1080. if (i != *iout)
  1081. pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
  1082. pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
  1083. if (strchr(argv[i], ';')) {
  1084. ++i;
  1085. *colon = true;
  1086. break;
  1087. }
  1088. }
  1089. /* Actual set, advance i */
  1090. if (len != 0)
  1091. *iout = i;
  1092. return pos + 1;
  1093. }
  1094. static int user_field_set_string(struct ftrace_event_field *field,
  1095. char *buf, int len, bool colon)
  1096. {
  1097. int pos = 0;
  1098. pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
  1099. pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
  1100. pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
  1101. if (str_has_prefix(field->type, "struct "))
  1102. pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size);
  1103. if (colon)
  1104. pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
  1105. return pos + 1;
  1106. }
  1107. static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
  1108. {
  1109. struct ftrace_event_field *field;
  1110. struct list_head *head = &user->fields;
  1111. int pos = 0, depth = 0;
  1112. const char *str_func;
  1113. pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
  1114. list_for_each_entry_reverse(field, head, link) {
  1115. if (depth != 0)
  1116. pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
  1117. pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
  1118. field->name, user_field_format(field->type));
  1119. depth++;
  1120. }
  1121. pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
  1122. list_for_each_entry_reverse(field, head, link) {
  1123. if (user_field_is_dyn_string(field->type, &str_func))
  1124. pos += snprintf(buf + pos, LEN_OR_ZERO,
  1125. ", %s(%s)", str_func, field->name);
  1126. else
  1127. pos += snprintf(buf + pos, LEN_OR_ZERO,
  1128. ", REC->%s", field->name);
  1129. }
  1130. return pos + 1;
  1131. }
  1132. #undef LEN_OR_ZERO
  1133. static int user_event_create_print_fmt(struct user_event *user)
  1134. {
  1135. char *print_fmt;
  1136. int len;
  1137. len = user_event_set_print_fmt(user, NULL, 0);
  1138. print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
  1139. if (!print_fmt)
  1140. return -ENOMEM;
  1141. user_event_set_print_fmt(user, print_fmt, len);
  1142. user->call.print_fmt = print_fmt;
  1143. return 0;
  1144. }
  1145. static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
  1146. int flags,
  1147. struct trace_event *event)
  1148. {
  1149. return print_event_fields(iter, event);
  1150. }
  1151. static struct trace_event_functions user_event_funcs = {
  1152. .trace = user_event_print_trace,
  1153. };
  1154. static int user_event_set_call_visible(struct user_event *user, bool visible)
  1155. {
  1156. int ret;
  1157. const struct cred *old_cred;
  1158. struct cred *cred;
  1159. cred = prepare_creds();
  1160. if (!cred)
  1161. return -ENOMEM;
  1162. /*
  1163. * While by default tracefs is locked down, systems can be configured
  1164. * to allow user_event files to be less locked down. The extreme case
  1165. * being "other" has read/write access to user_events_data/status.
  1166. *
  1167. * When not locked down, processes may not have permissions to
  1168. * add/remove calls themselves to tracefs. We need to temporarily
  1169. * switch to root file permission to allow for this scenario.
  1170. */
  1171. cred->fsuid = GLOBAL_ROOT_UID;
  1172. old_cred = override_creds(cred);
  1173. if (visible)
  1174. ret = trace_add_event_call(&user->call);
  1175. else
  1176. ret = trace_remove_event_call(&user->call);
  1177. revert_creds(old_cred);
  1178. put_cred(cred);
  1179. return ret;
  1180. }
  1181. static int destroy_user_event(struct user_event *user)
  1182. {
  1183. int ret = 0;
  1184. lockdep_assert_held(&event_mutex);
  1185. /* Must destroy fields before call removal */
  1186. user_event_destroy_fields(user);
  1187. ret = user_event_set_call_visible(user, false);
  1188. if (ret)
  1189. return ret;
  1190. dyn_event_remove(&user->devent);
  1191. hash_del(&user->node);
  1192. user_event_destroy_validators(user);
  1193. /* If we have different names, both must be freed */
  1194. if (EVENT_NAME(user) != EVENT_TP_NAME(user))
  1195. kfree(EVENT_TP_NAME(user));
  1196. kfree(user->call.print_fmt);
  1197. kfree(EVENT_NAME(user));
  1198. kfree(user);
  1199. if (current_user_events > 0)
  1200. current_user_events--;
  1201. else
  1202. pr_alert("BUG: Bad current_user_events\n");
  1203. return ret;
  1204. }
  1205. static struct user_event *find_user_event(struct user_event_group *group,
  1206. char *name, int argc, const char **argv,
  1207. u32 flags, u32 *outkey)
  1208. {
  1209. struct user_event *user;
  1210. u32 key = user_event_key(name);
  1211. *outkey = key;
  1212. hash_for_each_possible(group->register_table, user, node, key) {
  1213. /*
  1214. * Single-format events shouldn't return multi-format
  1215. * events. Callers expect the underlying tracepoint to match
  1216. * the name exactly in these cases. Only check like-formats.
  1217. */
  1218. if (EVENT_MULTI_FORMAT(flags) != EVENT_MULTI_FORMAT(user->reg_flags))
  1219. continue;
  1220. if (strcmp(EVENT_NAME(user), name))
  1221. continue;
  1222. if (user_fields_match(user, argc, argv))
  1223. return user_event_get(user);
  1224. /* Scan others if this is a multi-format event */
  1225. if (EVENT_MULTI_FORMAT(flags))
  1226. continue;
  1227. return ERR_PTR(-EADDRINUSE);
  1228. }
  1229. return NULL;
  1230. }
  1231. static int user_event_validate(struct user_event *user, void *data, int len)
  1232. {
  1233. struct list_head *head = &user->validators;
  1234. struct user_event_validator *validator;
  1235. void *pos, *end = data + len;
  1236. u32 loc, offset, size;
  1237. list_for_each_entry(validator, head, user_event_link) {
  1238. pos = data + validator->offset;
  1239. /* Already done min_size check, no bounds check here */
  1240. loc = *(u32 *)pos;
  1241. offset = loc & 0xffff;
  1242. size = loc >> 16;
  1243. if (likely(validator->flags & VALIDATOR_REL))
  1244. pos += offset + sizeof(loc);
  1245. else
  1246. pos = data + offset;
  1247. pos += size;
  1248. if (unlikely(pos > end))
  1249. return -EFAULT;
  1250. if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
  1251. if (unlikely(*(char *)(pos - 1) != '\0'))
  1252. return -EFAULT;
  1253. }
  1254. return 0;
  1255. }
  1256. /*
  1257. * Writes the user supplied payload out to a trace file.
  1258. */
  1259. static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
  1260. void *tpdata, bool *faulted)
  1261. {
  1262. struct trace_event_file *file;
  1263. struct trace_entry *entry;
  1264. struct trace_event_buffer event_buffer;
  1265. size_t size = sizeof(*entry) + i->count;
  1266. file = (struct trace_event_file *)tpdata;
  1267. if (!file ||
  1268. !(file->flags & EVENT_FILE_FL_ENABLED) ||
  1269. trace_trigger_soft_disabled(file))
  1270. return;
  1271. /* Allocates and fills trace_entry, + 1 of this is data payload */
  1272. entry = trace_event_buffer_reserve(&event_buffer, file, size);
  1273. if (unlikely(!entry))
  1274. return;
  1275. if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
  1276. goto discard;
  1277. if (!list_empty(&user->validators) &&
  1278. unlikely(user_event_validate(user, entry, size)))
  1279. goto discard;
  1280. trace_event_buffer_commit(&event_buffer);
  1281. return;
  1282. discard:
  1283. *faulted = true;
  1284. __trace_event_discard_commit(event_buffer.buffer,
  1285. event_buffer.event);
  1286. }
  1287. #ifdef CONFIG_PERF_EVENTS
  1288. /*
  1289. * Writes the user supplied payload out to perf ring buffer.
  1290. */
  1291. static void user_event_perf(struct user_event *user, struct iov_iter *i,
  1292. void *tpdata, bool *faulted)
  1293. {
  1294. struct hlist_head *perf_head;
  1295. perf_head = this_cpu_ptr(user->call.perf_events);
  1296. if (perf_head && !hlist_empty(perf_head)) {
  1297. struct trace_entry *perf_entry;
  1298. struct pt_regs *regs;
  1299. size_t size = sizeof(*perf_entry) + i->count;
  1300. int context;
  1301. perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
  1302. &regs, &context);
  1303. if (unlikely(!perf_entry))
  1304. return;
  1305. perf_fetch_caller_regs(regs);
  1306. if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
  1307. goto discard;
  1308. if (!list_empty(&user->validators) &&
  1309. unlikely(user_event_validate(user, perf_entry, size)))
  1310. goto discard;
  1311. perf_trace_buf_submit(perf_entry, size, context,
  1312. user->call.event.type, 1, regs,
  1313. perf_head, NULL);
  1314. return;
  1315. discard:
  1316. *faulted = true;
  1317. perf_swevent_put_recursion_context(context);
  1318. }
  1319. }
  1320. #endif
  1321. /*
  1322. * Update the enabled bit among all user processes.
  1323. */
  1324. static void update_enable_bit_for(struct user_event *user)
  1325. {
  1326. struct tracepoint *tp = &user->tracepoint;
  1327. char status = 0;
  1328. if (atomic_read(&tp->key.enabled) > 0) {
  1329. struct tracepoint_func *probe_func_ptr;
  1330. user_event_func_t probe_func;
  1331. rcu_read_lock_sched();
  1332. probe_func_ptr = rcu_dereference_sched(tp->funcs);
  1333. if (probe_func_ptr) {
  1334. do {
  1335. probe_func = probe_func_ptr->func;
  1336. if (probe_func == user_event_ftrace)
  1337. status |= EVENT_STATUS_FTRACE;
  1338. #ifdef CONFIG_PERF_EVENTS
  1339. else if (probe_func == user_event_perf)
  1340. status |= EVENT_STATUS_PERF;
  1341. #endif
  1342. else
  1343. status |= EVENT_STATUS_OTHER;
  1344. } while ((++probe_func_ptr)->func);
  1345. }
  1346. rcu_read_unlock_sched();
  1347. }
  1348. user->status = status;
  1349. user_event_enabler_update(user);
  1350. }
  1351. /*
  1352. * Register callback for our events from tracing sub-systems.
  1353. */
  1354. static int user_event_reg(struct trace_event_call *call,
  1355. enum trace_reg type,
  1356. void *data)
  1357. {
  1358. struct user_event *user = (struct user_event *)call->data;
  1359. int ret = 0;
  1360. if (!user)
  1361. return -ENOENT;
  1362. switch (type) {
  1363. case TRACE_REG_REGISTER:
  1364. ret = tracepoint_probe_register(call->tp,
  1365. call->class->probe,
  1366. data);
  1367. if (!ret)
  1368. goto inc;
  1369. break;
  1370. case TRACE_REG_UNREGISTER:
  1371. tracepoint_probe_unregister(call->tp,
  1372. call->class->probe,
  1373. data);
  1374. goto dec;
  1375. #ifdef CONFIG_PERF_EVENTS
  1376. case TRACE_REG_PERF_REGISTER:
  1377. ret = tracepoint_probe_register(call->tp,
  1378. call->class->perf_probe,
  1379. data);
  1380. if (!ret)
  1381. goto inc;
  1382. break;
  1383. case TRACE_REG_PERF_UNREGISTER:
  1384. tracepoint_probe_unregister(call->tp,
  1385. call->class->perf_probe,
  1386. data);
  1387. goto dec;
  1388. case TRACE_REG_PERF_OPEN:
  1389. case TRACE_REG_PERF_CLOSE:
  1390. case TRACE_REG_PERF_ADD:
  1391. case TRACE_REG_PERF_DEL:
  1392. break;
  1393. #endif
  1394. }
  1395. return ret;
  1396. inc:
  1397. user_event_get(user);
  1398. update_enable_bit_for(user);
  1399. return 0;
  1400. dec:
  1401. update_enable_bit_for(user);
  1402. user_event_put(user, true);
  1403. return 0;
  1404. }
  1405. static int user_event_create(const char *raw_command)
  1406. {
  1407. struct user_event_group *group;
  1408. struct user_event *user;
  1409. char *name;
  1410. int ret;
  1411. if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
  1412. return -ECANCELED;
  1413. raw_command += USER_EVENTS_PREFIX_LEN;
  1414. raw_command = skip_spaces(raw_command);
  1415. name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
  1416. if (!name)
  1417. return -ENOMEM;
  1418. group = current_user_event_group();
  1419. if (!group) {
  1420. kfree(name);
  1421. return -ENOENT;
  1422. }
  1423. mutex_lock(&group->reg_mutex);
  1424. /* Dyn events persist, otherwise they would cleanup immediately */
  1425. ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
  1426. if (!ret)
  1427. user_event_put(user, false);
  1428. mutex_unlock(&group->reg_mutex);
  1429. if (ret)
  1430. kfree(name);
  1431. return ret;
  1432. }
  1433. static int user_event_show(struct seq_file *m, struct dyn_event *ev)
  1434. {
  1435. struct user_event *user = container_of(ev, struct user_event, devent);
  1436. struct ftrace_event_field *field;
  1437. struct list_head *head;
  1438. int depth = 0;
  1439. seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
  1440. head = trace_get_fields(&user->call);
  1441. list_for_each_entry_reverse(field, head, link) {
  1442. if (depth == 0)
  1443. seq_puts(m, " ");
  1444. else
  1445. seq_puts(m, "; ");
  1446. seq_printf(m, "%s %s", field->type, field->name);
  1447. if (str_has_prefix(field->type, "struct "))
  1448. seq_printf(m, " %d", field->size);
  1449. depth++;
  1450. }
  1451. seq_puts(m, "\n");
  1452. return 0;
  1453. }
  1454. static bool user_event_is_busy(struct dyn_event *ev)
  1455. {
  1456. struct user_event *user = container_of(ev, struct user_event, devent);
  1457. return !user_event_last_ref(user);
  1458. }
  1459. static int user_event_free(struct dyn_event *ev)
  1460. {
  1461. struct user_event *user = container_of(ev, struct user_event, devent);
  1462. if (!user_event_last_ref(user))
  1463. return -EBUSY;
  1464. if (!user_event_capable(user->reg_flags))
  1465. return -EPERM;
  1466. return destroy_user_event(user);
  1467. }
  1468. static bool user_field_match(struct ftrace_event_field *field, int argc,
  1469. const char **argv, int *iout)
  1470. {
  1471. char *field_name = NULL, *dyn_field_name = NULL;
  1472. bool colon = false, match = false;
  1473. int dyn_len, len;
  1474. if (*iout >= argc)
  1475. return false;
  1476. dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
  1477. 0, &colon);
  1478. len = user_field_set_string(field, field_name, 0, colon);
  1479. if (dyn_len != len)
  1480. return false;
  1481. dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
  1482. field_name = kmalloc(len, GFP_KERNEL);
  1483. if (!dyn_field_name || !field_name)
  1484. goto out;
  1485. user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
  1486. dyn_len, &colon);
  1487. user_field_set_string(field, field_name, len, colon);
  1488. match = strcmp(dyn_field_name, field_name) == 0;
  1489. out:
  1490. kfree(dyn_field_name);
  1491. kfree(field_name);
  1492. return match;
  1493. }
  1494. static bool user_fields_match(struct user_event *user, int argc,
  1495. const char **argv)
  1496. {
  1497. struct ftrace_event_field *field;
  1498. struct list_head *head = &user->fields;
  1499. int i = 0;
  1500. if (argc == 0)
  1501. return list_empty(head);
  1502. list_for_each_entry_reverse(field, head, link) {
  1503. if (!user_field_match(field, argc, argv, &i))
  1504. return false;
  1505. }
  1506. if (i != argc)
  1507. return false;
  1508. return true;
  1509. }
  1510. static bool user_event_match(const char *system, const char *event,
  1511. int argc, const char **argv, struct dyn_event *ev)
  1512. {
  1513. struct user_event *user = container_of(ev, struct user_event, devent);
  1514. bool match;
  1515. match = strcmp(EVENT_NAME(user), event) == 0;
  1516. if (match && system) {
  1517. match = strcmp(system, user->group->system_name) == 0 ||
  1518. strcmp(system, user->group->system_multi_name) == 0;
  1519. }
  1520. if (match)
  1521. match = user_fields_match(user, argc, argv);
  1522. return match;
  1523. }
  1524. static struct dyn_event_operations user_event_dops = {
  1525. .create = user_event_create,
  1526. .show = user_event_show,
  1527. .is_busy = user_event_is_busy,
  1528. .free = user_event_free,
  1529. .match = user_event_match,
  1530. };
  1531. static int user_event_trace_register(struct user_event *user)
  1532. {
  1533. int ret;
  1534. ret = register_trace_event(&user->call.event);
  1535. if (!ret)
  1536. return -ENODEV;
  1537. ret = user_event_set_call_visible(user, true);
  1538. if (ret)
  1539. unregister_trace_event(&user->call.event);
  1540. return ret;
  1541. }
  1542. static int user_event_set_tp_name(struct user_event *user)
  1543. {
  1544. lockdep_assert_held(&user->group->reg_mutex);
  1545. if (EVENT_MULTI_FORMAT(user->reg_flags)) {
  1546. char *multi_name;
  1547. multi_name = kasprintf(GFP_KERNEL_ACCOUNT, "%s.%llx",
  1548. user->reg_name, user->group->multi_id);
  1549. if (!multi_name)
  1550. return -ENOMEM;
  1551. user->call.name = multi_name;
  1552. user->tracepoint.name = multi_name;
  1553. /* Inc to ensure unique multi-event name next time */
  1554. user->group->multi_id++;
  1555. } else {
  1556. /* Non Multi-format uses register name */
  1557. user->call.name = user->reg_name;
  1558. user->tracepoint.name = user->reg_name;
  1559. }
  1560. return 0;
  1561. }
  1562. /*
  1563. * Counts how many ';' without a trailing space are in the args.
  1564. */
  1565. static int count_semis_no_space(char *args)
  1566. {
  1567. int count = 0;
  1568. while ((args = strchr(args, ';'))) {
  1569. args++;
  1570. if (!isspace(*args))
  1571. count++;
  1572. }
  1573. return count;
  1574. }
  1575. /*
  1576. * Copies the arguments while ensuring all ';' have a trailing space.
  1577. */
  1578. static char *insert_space_after_semis(char *args, int count)
  1579. {
  1580. char *fixed, *pos;
  1581. int len;
  1582. len = strlen(args) + count;
  1583. fixed = kmalloc(len + 1, GFP_KERNEL);
  1584. if (!fixed)
  1585. return NULL;
  1586. pos = fixed;
  1587. /* Insert a space after ';' if there is no trailing space. */
  1588. while (*args) {
  1589. *pos = *args++;
  1590. if (*pos++ == ';' && !isspace(*args))
  1591. *pos++ = ' ';
  1592. }
  1593. *pos = '\0';
  1594. return fixed;
  1595. }
  1596. static char **user_event_argv_split(char *args, int *argc)
  1597. {
  1598. char **split;
  1599. char *fixed;
  1600. int count;
  1601. /* Count how many ';' without a trailing space */
  1602. count = count_semis_no_space(args);
  1603. /* No fixup is required */
  1604. if (!count)
  1605. return argv_split(GFP_KERNEL, args, argc);
  1606. /* We must fixup 'field;field' to 'field; field' */
  1607. fixed = insert_space_after_semis(args, count);
  1608. if (!fixed)
  1609. return NULL;
  1610. /* We do a normal split afterwards */
  1611. split = argv_split(GFP_KERNEL, fixed, argc);
  1612. /* We can free since argv_split makes a copy */
  1613. kfree(fixed);
  1614. return split;
  1615. }
  1616. /*
  1617. * Parses the event name, arguments and flags then registers if successful.
  1618. * The name buffer lifetime is owned by this method for success cases only.
  1619. * Upon success the returned user_event has its ref count increased by 1.
  1620. */
  1621. static int user_event_parse(struct user_event_group *group, char *name,
  1622. char *args, char *flags,
  1623. struct user_event **newuser, int reg_flags)
  1624. {
  1625. struct user_event *user;
  1626. char **argv = NULL;
  1627. int argc = 0;
  1628. int ret;
  1629. u32 key;
  1630. /* Currently don't support any text based flags */
  1631. if (flags != NULL)
  1632. return -EINVAL;
  1633. if (!user_event_capable(reg_flags))
  1634. return -EPERM;
  1635. if (args) {
  1636. argv = user_event_argv_split(args, &argc);
  1637. if (!argv)
  1638. return -ENOMEM;
  1639. }
  1640. /* Prevent dyn_event from racing */
  1641. mutex_lock(&event_mutex);
  1642. user = find_user_event(group, name, argc, (const char **)argv,
  1643. reg_flags, &key);
  1644. mutex_unlock(&event_mutex);
  1645. if (argv)
  1646. argv_free(argv);
  1647. if (IS_ERR(user))
  1648. return PTR_ERR(user);
  1649. if (user) {
  1650. *newuser = user;
  1651. /*
  1652. * Name is allocated by caller, free it since it already exists.
  1653. * Caller only worries about failure cases for freeing.
  1654. */
  1655. kfree(name);
  1656. return 0;
  1657. }
  1658. user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
  1659. if (!user)
  1660. return -ENOMEM;
  1661. INIT_LIST_HEAD(&user->class.fields);
  1662. INIT_LIST_HEAD(&user->fields);
  1663. INIT_LIST_HEAD(&user->validators);
  1664. user->group = group;
  1665. user->reg_name = name;
  1666. user->reg_flags = reg_flags;
  1667. ret = user_event_set_tp_name(user);
  1668. if (ret)
  1669. goto put_user;
  1670. ret = user_event_parse_fields(user, args);
  1671. if (ret)
  1672. goto put_user;
  1673. ret = user_event_create_print_fmt(user);
  1674. if (ret)
  1675. goto put_user;
  1676. user->call.data = user;
  1677. user->call.class = &user->class;
  1678. user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
  1679. user->call.tp = &user->tracepoint;
  1680. user->call.event.funcs = &user_event_funcs;
  1681. if (EVENT_MULTI_FORMAT(user->reg_flags))
  1682. user->class.system = group->system_multi_name;
  1683. else
  1684. user->class.system = group->system_name;
  1685. user->class.fields_array = user_event_fields_array;
  1686. user->class.get_fields = user_event_get_fields;
  1687. user->class.reg = user_event_reg;
  1688. user->class.probe = user_event_ftrace;
  1689. #ifdef CONFIG_PERF_EVENTS
  1690. user->class.perf_probe = user_event_perf;
  1691. #endif
  1692. mutex_lock(&event_mutex);
  1693. if (current_user_events >= max_user_events) {
  1694. ret = -EMFILE;
  1695. goto put_user_lock;
  1696. }
  1697. ret = user_event_trace_register(user);
  1698. if (ret)
  1699. goto put_user_lock;
  1700. if (user->reg_flags & USER_EVENT_REG_PERSIST) {
  1701. /* Ensure we track self ref and caller ref (2) */
  1702. refcount_set(&user->refcnt, 2);
  1703. } else {
  1704. /* Ensure we track only caller ref (1) */
  1705. refcount_set(&user->refcnt, 1);
  1706. }
  1707. dyn_event_init(&user->devent, &user_event_dops);
  1708. dyn_event_add(&user->devent, &user->call);
  1709. hash_add(group->register_table, &user->node, key);
  1710. current_user_events++;
  1711. mutex_unlock(&event_mutex);
  1712. *newuser = user;
  1713. return 0;
  1714. put_user_lock:
  1715. mutex_unlock(&event_mutex);
  1716. put_user:
  1717. user_event_destroy_fields(user);
  1718. user_event_destroy_validators(user);
  1719. kfree(user->call.print_fmt);
  1720. /* Caller frees reg_name on error, but not multi-name */
  1721. if (EVENT_NAME(user) != EVENT_TP_NAME(user))
  1722. kfree(EVENT_TP_NAME(user));
  1723. kfree(user);
  1724. return ret;
  1725. }
  1726. /*
  1727. * Deletes previously created events if they are no longer being used.
  1728. */
  1729. static int delete_user_event(struct user_event_group *group, char *name)
  1730. {
  1731. struct user_event *user;
  1732. struct hlist_node *tmp;
  1733. u32 key = user_event_key(name);
  1734. int ret = -ENOENT;
  1735. /* Attempt to delete all event(s) with the name passed in */
  1736. hash_for_each_possible_safe(group->register_table, user, tmp, node, key) {
  1737. if (strcmp(EVENT_NAME(user), name))
  1738. continue;
  1739. if (!user_event_last_ref(user))
  1740. return -EBUSY;
  1741. if (!user_event_capable(user->reg_flags))
  1742. return -EPERM;
  1743. ret = destroy_user_event(user);
  1744. if (ret)
  1745. goto out;
  1746. }
  1747. out:
  1748. return ret;
  1749. }
  1750. /*
  1751. * Validates the user payload and writes via iterator.
  1752. */
  1753. static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
  1754. {
  1755. struct user_event_file_info *info = file->private_data;
  1756. struct user_event_refs *refs;
  1757. struct user_event *user = NULL;
  1758. struct tracepoint *tp;
  1759. ssize_t ret = i->count;
  1760. int idx;
  1761. if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
  1762. return -EFAULT;
  1763. if (idx < 0)
  1764. return -EINVAL;
  1765. rcu_read_lock_sched();
  1766. refs = rcu_dereference_sched(info->refs);
  1767. /*
  1768. * The refs->events array is protected by RCU, and new items may be
  1769. * added. But the user retrieved from indexing into the events array
  1770. * shall be immutable while the file is opened.
  1771. */
  1772. if (likely(refs && idx < refs->count))
  1773. user = refs->events[idx];
  1774. rcu_read_unlock_sched();
  1775. if (unlikely(user == NULL))
  1776. return -ENOENT;
  1777. if (unlikely(i->count < user->min_size))
  1778. return -EINVAL;
  1779. tp = &user->tracepoint;
  1780. /*
  1781. * It's possible key.enabled disables after this check, however
  1782. * we don't mind if a few events are included in this condition.
  1783. */
  1784. if (likely(atomic_read(&tp->key.enabled) > 0)) {
  1785. struct tracepoint_func *probe_func_ptr;
  1786. user_event_func_t probe_func;
  1787. struct iov_iter copy;
  1788. void *tpdata;
  1789. bool faulted;
  1790. if (unlikely(fault_in_iov_iter_readable(i, i->count)))
  1791. return -EFAULT;
  1792. faulted = false;
  1793. rcu_read_lock_sched();
  1794. probe_func_ptr = rcu_dereference_sched(tp->funcs);
  1795. if (probe_func_ptr) {
  1796. do {
  1797. copy = *i;
  1798. probe_func = probe_func_ptr->func;
  1799. tpdata = probe_func_ptr->data;
  1800. probe_func(user, &copy, tpdata, &faulted);
  1801. } while ((++probe_func_ptr)->func);
  1802. }
  1803. rcu_read_unlock_sched();
  1804. if (unlikely(faulted))
  1805. return -EFAULT;
  1806. } else
  1807. return -EBADF;
  1808. return ret;
  1809. }
  1810. static int user_events_open(struct inode *node, struct file *file)
  1811. {
  1812. struct user_event_group *group;
  1813. struct user_event_file_info *info;
  1814. group = current_user_event_group();
  1815. if (!group)
  1816. return -ENOENT;
  1817. info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
  1818. if (!info)
  1819. return -ENOMEM;
  1820. info->group = group;
  1821. file->private_data = info;
  1822. return 0;
  1823. }
  1824. static ssize_t user_events_write(struct file *file, const char __user *ubuf,
  1825. size_t count, loff_t *ppos)
  1826. {
  1827. struct iov_iter i;
  1828. if (unlikely(*ppos != 0))
  1829. return -EFAULT;
  1830. if (unlikely(import_ubuf(ITER_SOURCE, (char __user *)ubuf, count, &i)))
  1831. return -EFAULT;
  1832. return user_events_write_core(file, &i);
  1833. }
  1834. static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
  1835. {
  1836. return user_events_write_core(kp->ki_filp, i);
  1837. }
  1838. static int user_events_ref_add(struct user_event_file_info *info,
  1839. struct user_event *user)
  1840. {
  1841. struct user_event_group *group = info->group;
  1842. struct user_event_refs *refs, *new_refs;
  1843. int i, size, count = 0;
  1844. refs = rcu_dereference_protected(info->refs,
  1845. lockdep_is_held(&group->reg_mutex));
  1846. if (refs) {
  1847. count = refs->count;
  1848. for (i = 0; i < count; ++i)
  1849. if (refs->events[i] == user)
  1850. return i;
  1851. }
  1852. size = struct_size(refs, events, count + 1);
  1853. new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
  1854. if (!new_refs)
  1855. return -ENOMEM;
  1856. new_refs->count = count + 1;
  1857. for (i = 0; i < count; ++i)
  1858. new_refs->events[i] = refs->events[i];
  1859. new_refs->events[i] = user_event_get(user);
  1860. rcu_assign_pointer(info->refs, new_refs);
  1861. if (refs)
  1862. kfree_rcu(refs, rcu);
  1863. return i;
  1864. }
  1865. static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
  1866. {
  1867. u32 size;
  1868. long ret;
  1869. ret = get_user(size, &ureg->size);
  1870. if (ret)
  1871. return ret;
  1872. if (size > PAGE_SIZE)
  1873. return -E2BIG;
  1874. if (size < offsetofend(struct user_reg, write_index))
  1875. return -EINVAL;
  1876. ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
  1877. if (ret)
  1878. return ret;
  1879. /* Ensure only valid flags */
  1880. if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
  1881. return -EINVAL;
  1882. /* Ensure supported size */
  1883. switch (kreg->enable_size) {
  1884. case 4:
  1885. /* 32-bit */
  1886. break;
  1887. #if BITS_PER_LONG >= 64
  1888. case 8:
  1889. /* 64-bit */
  1890. break;
  1891. #endif
  1892. default:
  1893. return -EINVAL;
  1894. }
  1895. /* Ensure natural alignment */
  1896. if (kreg->enable_addr % kreg->enable_size)
  1897. return -EINVAL;
  1898. /* Ensure bit range for size */
  1899. if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
  1900. return -EINVAL;
  1901. /* Ensure accessible */
  1902. if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
  1903. kreg->enable_size))
  1904. return -EFAULT;
  1905. kreg->size = size;
  1906. return 0;
  1907. }
  1908. /*
  1909. * Registers a user_event on behalf of a user process.
  1910. */
  1911. static long user_events_ioctl_reg(struct user_event_file_info *info,
  1912. unsigned long uarg)
  1913. {
  1914. struct user_reg __user *ureg = (struct user_reg __user *)uarg;
  1915. struct user_reg reg;
  1916. struct user_event *user;
  1917. struct user_event_enabler *enabler;
  1918. char *name;
  1919. long ret;
  1920. int write_result;
  1921. ret = user_reg_get(ureg, &reg);
  1922. if (ret)
  1923. return ret;
  1924. /*
  1925. * Prevent users from using the same address and bit multiple times
  1926. * within the same mm address space. This can cause unexpected behavior
  1927. * for user processes that is far easier to debug if this is explictly
  1928. * an error upon registering.
  1929. */
  1930. if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
  1931. reg.enable_bit))
  1932. return -EADDRINUSE;
  1933. name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
  1934. MAX_EVENT_DESC);
  1935. if (IS_ERR(name)) {
  1936. ret = PTR_ERR(name);
  1937. return ret;
  1938. }
  1939. ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
  1940. if (ret) {
  1941. kfree(name);
  1942. return ret;
  1943. }
  1944. ret = user_events_ref_add(info, user);
  1945. /* No longer need parse ref, ref_add either worked or not */
  1946. user_event_put(user, false);
  1947. /* Positive number is index and valid */
  1948. if (ret < 0)
  1949. return ret;
  1950. /*
  1951. * user_events_ref_add succeeded:
  1952. * At this point we have a user_event, it's lifetime is bound by the
  1953. * reference count, not this file. If anything fails, the user_event
  1954. * still has a reference until the file is released. During release
  1955. * any remaining references (from user_events_ref_add) are decremented.
  1956. *
  1957. * Attempt to create an enabler, which too has a lifetime tied in the
  1958. * same way for the event. Once the task that caused the enabler to be
  1959. * created exits or issues exec() then the enablers it has created
  1960. * will be destroyed and the ref to the event will be decremented.
  1961. */
  1962. enabler = user_event_enabler_create(&reg, user, &write_result);
  1963. if (!enabler)
  1964. return -ENOMEM;
  1965. /* Write failed/faulted, give error back to caller */
  1966. if (write_result)
  1967. return write_result;
  1968. put_user((u32)ret, &ureg->write_index);
  1969. return 0;
  1970. }
  1971. /*
  1972. * Deletes a user_event on behalf of a user process.
  1973. */
  1974. static long user_events_ioctl_del(struct user_event_file_info *info,
  1975. unsigned long uarg)
  1976. {
  1977. void __user *ubuf = (void __user *)uarg;
  1978. char *name;
  1979. long ret;
  1980. name = strndup_user(ubuf, MAX_EVENT_DESC);
  1981. if (IS_ERR(name))
  1982. return PTR_ERR(name);
  1983. /* event_mutex prevents dyn_event from racing */
  1984. mutex_lock(&event_mutex);
  1985. ret = delete_user_event(info->group, name);
  1986. mutex_unlock(&event_mutex);
  1987. kfree(name);
  1988. return ret;
  1989. }
  1990. static long user_unreg_get(struct user_unreg __user *ureg,
  1991. struct user_unreg *kreg)
  1992. {
  1993. u32 size;
  1994. long ret;
  1995. ret = get_user(size, &ureg->size);
  1996. if (ret)
  1997. return ret;
  1998. if (size > PAGE_SIZE)
  1999. return -E2BIG;
  2000. if (size < offsetofend(struct user_unreg, disable_addr))
  2001. return -EINVAL;
  2002. ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
  2003. /* Ensure no reserved values, since we don't support any yet */
  2004. if (kreg->__reserved || kreg->__reserved2)
  2005. return -EINVAL;
  2006. return ret;
  2007. }
  2008. static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
  2009. unsigned long uaddr, unsigned char bit,
  2010. unsigned long flags)
  2011. {
  2012. struct user_event_enabler enabler;
  2013. int result;
  2014. int attempt = 0;
  2015. memset(&enabler, 0, sizeof(enabler));
  2016. enabler.addr = uaddr;
  2017. enabler.values = bit | flags;
  2018. retry:
  2019. /* Prevents state changes from racing with new enablers */
  2020. mutex_lock(&event_mutex);
  2021. /* Force the bit to be cleared, since no event is attached */
  2022. mmap_read_lock(user_mm->mm);
  2023. result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
  2024. mmap_read_unlock(user_mm->mm);
  2025. mutex_unlock(&event_mutex);
  2026. if (result) {
  2027. /* Attempt to fault-in and retry if it worked */
  2028. if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
  2029. goto retry;
  2030. }
  2031. return result;
  2032. }
  2033. /*
  2034. * Unregisters an enablement address/bit within a task/user mm.
  2035. */
  2036. static long user_events_ioctl_unreg(unsigned long uarg)
  2037. {
  2038. struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
  2039. struct user_event_mm *mm = current->user_event_mm;
  2040. struct user_event_enabler *enabler, *next;
  2041. struct user_unreg reg;
  2042. unsigned long flags;
  2043. long ret;
  2044. ret = user_unreg_get(ureg, &reg);
  2045. if (ret)
  2046. return ret;
  2047. if (!mm)
  2048. return -ENOENT;
  2049. flags = 0;
  2050. ret = -ENOENT;
  2051. /*
  2052. * Flags freeing and faulting are used to indicate if the enabler is in
  2053. * use at all. When faulting is set a page-fault is occurring asyncly.
  2054. * During async fault if freeing is set, the enabler will be destroyed.
  2055. * If no async fault is happening, we can destroy it now since we hold
  2056. * the event_mutex during these checks.
  2057. */
  2058. mutex_lock(&event_mutex);
  2059. list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
  2060. if (enabler->addr == reg.disable_addr &&
  2061. ENABLE_BIT(enabler) == reg.disable_bit) {
  2062. set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
  2063. /* We must keep compat flags for the clear */
  2064. flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
  2065. if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
  2066. user_event_enabler_destroy(enabler, true);
  2067. /* Removed at least one */
  2068. ret = 0;
  2069. }
  2070. }
  2071. mutex_unlock(&event_mutex);
  2072. /* Ensure bit is now cleared for user, regardless of event status */
  2073. if (!ret)
  2074. ret = user_event_mm_clear_bit(mm, reg.disable_addr,
  2075. reg.disable_bit, flags);
  2076. return ret;
  2077. }
  2078. /*
  2079. * Handles the ioctl from user mode to register or alter operations.
  2080. */
  2081. static long user_events_ioctl(struct file *file, unsigned int cmd,
  2082. unsigned long uarg)
  2083. {
  2084. struct user_event_file_info *info = file->private_data;
  2085. struct user_event_group *group = info->group;
  2086. long ret = -ENOTTY;
  2087. switch (cmd) {
  2088. case DIAG_IOCSREG:
  2089. mutex_lock(&group->reg_mutex);
  2090. ret = user_events_ioctl_reg(info, uarg);
  2091. mutex_unlock(&group->reg_mutex);
  2092. break;
  2093. case DIAG_IOCSDEL:
  2094. mutex_lock(&group->reg_mutex);
  2095. ret = user_events_ioctl_del(info, uarg);
  2096. mutex_unlock(&group->reg_mutex);
  2097. break;
  2098. case DIAG_IOCSUNREG:
  2099. mutex_lock(&group->reg_mutex);
  2100. ret = user_events_ioctl_unreg(uarg);
  2101. mutex_unlock(&group->reg_mutex);
  2102. break;
  2103. }
  2104. return ret;
  2105. }
  2106. /*
  2107. * Handles the final close of the file from user mode.
  2108. */
  2109. static int user_events_release(struct inode *node, struct file *file)
  2110. {
  2111. struct user_event_file_info *info = file->private_data;
  2112. struct user_event_group *group;
  2113. struct user_event_refs *refs;
  2114. int i;
  2115. if (!info)
  2116. return -EINVAL;
  2117. group = info->group;
  2118. /*
  2119. * Ensure refs cannot change under any situation by taking the
  2120. * register mutex during the final freeing of the references.
  2121. */
  2122. mutex_lock(&group->reg_mutex);
  2123. refs = info->refs;
  2124. if (!refs)
  2125. goto out;
  2126. /*
  2127. * The lifetime of refs has reached an end, it's tied to this file.
  2128. * The underlying user_events are ref counted, and cannot be freed.
  2129. * After this decrement, the user_events may be freed elsewhere.
  2130. */
  2131. for (i = 0; i < refs->count; ++i)
  2132. user_event_put(refs->events[i], false);
  2133. out:
  2134. file->private_data = NULL;
  2135. mutex_unlock(&group->reg_mutex);
  2136. kfree(refs);
  2137. kfree(info);
  2138. return 0;
  2139. }
  2140. static const struct file_operations user_data_fops = {
  2141. .open = user_events_open,
  2142. .write = user_events_write,
  2143. .write_iter = user_events_write_iter,
  2144. .unlocked_ioctl = user_events_ioctl,
  2145. .release = user_events_release,
  2146. };
  2147. static void *user_seq_start(struct seq_file *m, loff_t *pos)
  2148. {
  2149. if (*pos)
  2150. return NULL;
  2151. return (void *)1;
  2152. }
  2153. static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
  2154. {
  2155. ++*pos;
  2156. return NULL;
  2157. }
  2158. static void user_seq_stop(struct seq_file *m, void *p)
  2159. {
  2160. }
  2161. static int user_seq_show(struct seq_file *m, void *p)
  2162. {
  2163. struct user_event_group *group = m->private;
  2164. struct user_event *user;
  2165. char status;
  2166. int i, active = 0, busy = 0;
  2167. if (!group)
  2168. return -EINVAL;
  2169. mutex_lock(&group->reg_mutex);
  2170. hash_for_each(group->register_table, i, user, node) {
  2171. status = user->status;
  2172. seq_printf(m, "%s", EVENT_TP_NAME(user));
  2173. if (status != 0)
  2174. seq_puts(m, " #");
  2175. if (status != 0) {
  2176. seq_puts(m, " Used by");
  2177. if (status & EVENT_STATUS_FTRACE)
  2178. seq_puts(m, " ftrace");
  2179. if (status & EVENT_STATUS_PERF)
  2180. seq_puts(m, " perf");
  2181. if (status & EVENT_STATUS_OTHER)
  2182. seq_puts(m, " other");
  2183. busy++;
  2184. }
  2185. seq_puts(m, "\n");
  2186. active++;
  2187. }
  2188. mutex_unlock(&group->reg_mutex);
  2189. seq_puts(m, "\n");
  2190. seq_printf(m, "Active: %d\n", active);
  2191. seq_printf(m, "Busy: %d\n", busy);
  2192. return 0;
  2193. }
  2194. static const struct seq_operations user_seq_ops = {
  2195. .start = user_seq_start,
  2196. .next = user_seq_next,
  2197. .stop = user_seq_stop,
  2198. .show = user_seq_show,
  2199. };
  2200. static int user_status_open(struct inode *node, struct file *file)
  2201. {
  2202. struct user_event_group *group;
  2203. int ret;
  2204. group = current_user_event_group();
  2205. if (!group)
  2206. return -ENOENT;
  2207. ret = seq_open(file, &user_seq_ops);
  2208. if (!ret) {
  2209. /* Chain group to seq_file */
  2210. struct seq_file *m = file->private_data;
  2211. m->private = group;
  2212. }
  2213. return ret;
  2214. }
  2215. static const struct file_operations user_status_fops = {
  2216. .open = user_status_open,
  2217. .read = seq_read,
  2218. .llseek = seq_lseek,
  2219. .release = seq_release,
  2220. };
  2221. /*
  2222. * Creates a set of tracefs files to allow user mode interactions.
  2223. */
  2224. static int create_user_tracefs(void)
  2225. {
  2226. struct dentry *edata, *emmap;
  2227. edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
  2228. NULL, NULL, &user_data_fops);
  2229. if (!edata) {
  2230. pr_warn("Could not create tracefs 'user_events_data' entry\n");
  2231. goto err;
  2232. }
  2233. emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
  2234. NULL, NULL, &user_status_fops);
  2235. if (!emmap) {
  2236. tracefs_remove(edata);
  2237. pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
  2238. goto err;
  2239. }
  2240. return 0;
  2241. err:
  2242. return -ENODEV;
  2243. }
  2244. static int set_max_user_events_sysctl(const struct ctl_table *table, int write,
  2245. void *buffer, size_t *lenp, loff_t *ppos)
  2246. {
  2247. int ret;
  2248. mutex_lock(&event_mutex);
  2249. ret = proc_douintvec(table, write, buffer, lenp, ppos);
  2250. mutex_unlock(&event_mutex);
  2251. return ret;
  2252. }
  2253. static struct ctl_table user_event_sysctls[] = {
  2254. {
  2255. .procname = "user_events_max",
  2256. .data = &max_user_events,
  2257. .maxlen = sizeof(unsigned int),
  2258. .mode = 0644,
  2259. .proc_handler = set_max_user_events_sysctl,
  2260. },
  2261. };
  2262. static int __init trace_events_user_init(void)
  2263. {
  2264. int ret;
  2265. fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
  2266. if (!fault_cache)
  2267. return -ENOMEM;
  2268. init_group = user_event_group_create();
  2269. if (!init_group) {
  2270. kmem_cache_destroy(fault_cache);
  2271. return -ENOMEM;
  2272. }
  2273. ret = create_user_tracefs();
  2274. if (ret) {
  2275. pr_warn("user_events could not register with tracefs\n");
  2276. user_event_group_destroy(init_group);
  2277. kmem_cache_destroy(fault_cache);
  2278. init_group = NULL;
  2279. return ret;
  2280. }
  2281. if (dyn_event_register(&user_event_dops))
  2282. pr_warn("user_events could not register with dyn_events\n");
  2283. register_sysctl_init("kernel", user_event_sysctls);
  2284. return 0;
  2285. }
  2286. fs_initcall(trace_events_user_init);