memory-tiers.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995
  1. // SPDX-License-Identifier: GPL-2.0
  2. #include <linux/slab.h>
  3. #include <linux/lockdep.h>
  4. #include <linux/sysfs.h>
  5. #include <linux/kobject.h>
  6. #include <linux/memory.h>
  7. #include <linux/memory-tiers.h>
  8. #include <linux/notifier.h>
  9. #include <linux/sched/sysctl.h>
  10. #include "internal.h"
  11. struct memory_tier {
  12. /* hierarchy of memory tiers */
  13. struct list_head list;
  14. /* list of all memory types part of this tier */
  15. struct list_head memory_types;
  16. /*
  17. * start value of abstract distance. memory tier maps
  18. * an abstract distance range,
  19. * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
  20. */
  21. int adistance_start;
  22. struct device dev;
  23. /* All the nodes that are part of all the lower memory tiers. */
  24. nodemask_t lower_tier_mask;
  25. };
  26. struct demotion_nodes {
  27. nodemask_t preferred;
  28. };
  29. struct node_memory_type_map {
  30. struct memory_dev_type *memtype;
  31. int map_count;
  32. };
  33. static DEFINE_MUTEX(memory_tier_lock);
  34. static LIST_HEAD(memory_tiers);
  35. /*
  36. * The list is used to store all memory types that are not created
  37. * by a device driver.
  38. */
  39. static LIST_HEAD(default_memory_types);
  40. static struct node_memory_type_map node_memory_types[MAX_NUMNODES];
  41. struct memory_dev_type *default_dram_type;
  42. nodemask_t default_dram_nodes __initdata = NODE_MASK_NONE;
  43. static const struct bus_type memory_tier_subsys = {
  44. .name = "memory_tiering",
  45. .dev_name = "memory_tier",
  46. };
  47. #ifdef CONFIG_NUMA_BALANCING
  48. /**
  49. * folio_use_access_time - check if a folio reuses cpupid for page access time
  50. * @folio: folio to check
  51. *
  52. * folio's _last_cpupid field is repurposed by memory tiering. In memory
  53. * tiering mode, cpupid of slow memory folio (not toptier memory) is used to
  54. * record page access time.
  55. *
  56. * Return: the folio _last_cpupid is used to record page access time
  57. */
  58. bool folio_use_access_time(struct folio *folio)
  59. {
  60. return (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
  61. !node_is_toptier(folio_nid(folio));
  62. }
  63. #endif
  64. #ifdef CONFIG_MIGRATION
  65. static int top_tier_adistance;
  66. /*
  67. * node_demotion[] examples:
  68. *
  69. * Example 1:
  70. *
  71. * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
  72. *
  73. * node distances:
  74. * node 0 1 2 3
  75. * 0 10 20 30 40
  76. * 1 20 10 40 30
  77. * 2 30 40 10 40
  78. * 3 40 30 40 10
  79. *
  80. * memory_tiers0 = 0-1
  81. * memory_tiers1 = 2-3
  82. *
  83. * node_demotion[0].preferred = 2
  84. * node_demotion[1].preferred = 3
  85. * node_demotion[2].preferred = <empty>
  86. * node_demotion[3].preferred = <empty>
  87. *
  88. * Example 2:
  89. *
  90. * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
  91. *
  92. * node distances:
  93. * node 0 1 2
  94. * 0 10 20 30
  95. * 1 20 10 30
  96. * 2 30 30 10
  97. *
  98. * memory_tiers0 = 0-2
  99. *
  100. * node_demotion[0].preferred = <empty>
  101. * node_demotion[1].preferred = <empty>
  102. * node_demotion[2].preferred = <empty>
  103. *
  104. * Example 3:
  105. *
  106. * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
  107. *
  108. * node distances:
  109. * node 0 1 2
  110. * 0 10 20 30
  111. * 1 20 10 40
  112. * 2 30 40 10
  113. *
  114. * memory_tiers0 = 1
  115. * memory_tiers1 = 0
  116. * memory_tiers2 = 2
  117. *
  118. * node_demotion[0].preferred = 2
  119. * node_demotion[1].preferred = 0
  120. * node_demotion[2].preferred = <empty>
  121. *
  122. */
  123. static struct demotion_nodes *node_demotion __read_mostly;
  124. #endif /* CONFIG_MIGRATION */
  125. static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms);
  126. /* The lock is used to protect `default_dram_perf*` info and nid. */
  127. static DEFINE_MUTEX(default_dram_perf_lock);
  128. static bool default_dram_perf_error;
  129. static struct access_coordinate default_dram_perf;
  130. static int default_dram_perf_ref_nid = NUMA_NO_NODE;
  131. static const char *default_dram_perf_ref_source;
  132. static inline struct memory_tier *to_memory_tier(struct device *device)
  133. {
  134. return container_of(device, struct memory_tier, dev);
  135. }
  136. static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier)
  137. {
  138. nodemask_t nodes = NODE_MASK_NONE;
  139. struct memory_dev_type *memtype;
  140. list_for_each_entry(memtype, &memtier->memory_types, tier_sibling)
  141. nodes_or(nodes, nodes, memtype->nodes);
  142. return nodes;
  143. }
  144. static void memory_tier_device_release(struct device *dev)
  145. {
  146. struct memory_tier *tier = to_memory_tier(dev);
  147. /*
  148. * synchronize_rcu in clear_node_memory_tier makes sure
  149. * we don't have rcu access to this memory tier.
  150. */
  151. kfree(tier);
  152. }
  153. static ssize_t nodelist_show(struct device *dev,
  154. struct device_attribute *attr, char *buf)
  155. {
  156. int ret;
  157. nodemask_t nmask;
  158. mutex_lock(&memory_tier_lock);
  159. nmask = get_memtier_nodemask(to_memory_tier(dev));
  160. ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask));
  161. mutex_unlock(&memory_tier_lock);
  162. return ret;
  163. }
  164. static DEVICE_ATTR_RO(nodelist);
  165. static struct attribute *memtier_dev_attrs[] = {
  166. &dev_attr_nodelist.attr,
  167. NULL
  168. };
  169. static const struct attribute_group memtier_dev_group = {
  170. .attrs = memtier_dev_attrs,
  171. };
  172. static const struct attribute_group *memtier_dev_groups[] = {
  173. &memtier_dev_group,
  174. NULL
  175. };
  176. static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype)
  177. {
  178. int ret;
  179. bool found_slot = false;
  180. struct memory_tier *memtier, *new_memtier;
  181. int adistance = memtype->adistance;
  182. unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE;
  183. lockdep_assert_held_once(&memory_tier_lock);
  184. adistance = round_down(adistance, memtier_adistance_chunk_size);
  185. /*
  186. * If the memtype is already part of a memory tier,
  187. * just return that.
  188. */
  189. if (!list_empty(&memtype->tier_sibling)) {
  190. list_for_each_entry(memtier, &memory_tiers, list) {
  191. if (adistance == memtier->adistance_start)
  192. return memtier;
  193. }
  194. WARN_ON(1);
  195. return ERR_PTR(-EINVAL);
  196. }
  197. list_for_each_entry(memtier, &memory_tiers, list) {
  198. if (adistance == memtier->adistance_start) {
  199. goto link_memtype;
  200. } else if (adistance < memtier->adistance_start) {
  201. found_slot = true;
  202. break;
  203. }
  204. }
  205. new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL);
  206. if (!new_memtier)
  207. return ERR_PTR(-ENOMEM);
  208. new_memtier->adistance_start = adistance;
  209. INIT_LIST_HEAD(&new_memtier->list);
  210. INIT_LIST_HEAD(&new_memtier->memory_types);
  211. if (found_slot)
  212. list_add_tail(&new_memtier->list, &memtier->list);
  213. else
  214. list_add_tail(&new_memtier->list, &memory_tiers);
  215. new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS;
  216. new_memtier->dev.bus = &memory_tier_subsys;
  217. new_memtier->dev.release = memory_tier_device_release;
  218. new_memtier->dev.groups = memtier_dev_groups;
  219. ret = device_register(&new_memtier->dev);
  220. if (ret) {
  221. list_del(&new_memtier->list);
  222. put_device(&new_memtier->dev);
  223. return ERR_PTR(ret);
  224. }
  225. memtier = new_memtier;
  226. link_memtype:
  227. list_add(&memtype->tier_sibling, &memtier->memory_types);
  228. return memtier;
  229. }
  230. static struct memory_tier *__node_get_memory_tier(int node)
  231. {
  232. pg_data_t *pgdat;
  233. pgdat = NODE_DATA(node);
  234. if (!pgdat)
  235. return NULL;
  236. /*
  237. * Since we hold memory_tier_lock, we can avoid
  238. * RCU read locks when accessing the details. No
  239. * parallel updates are possible here.
  240. */
  241. return rcu_dereference_check(pgdat->memtier,
  242. lockdep_is_held(&memory_tier_lock));
  243. }
  244. #ifdef CONFIG_MIGRATION
  245. bool node_is_toptier(int node)
  246. {
  247. bool toptier;
  248. pg_data_t *pgdat;
  249. struct memory_tier *memtier;
  250. pgdat = NODE_DATA(node);
  251. if (!pgdat)
  252. return false;
  253. rcu_read_lock();
  254. memtier = rcu_dereference(pgdat->memtier);
  255. if (!memtier) {
  256. toptier = true;
  257. goto out;
  258. }
  259. if (memtier->adistance_start <= top_tier_adistance)
  260. toptier = true;
  261. else
  262. toptier = false;
  263. out:
  264. rcu_read_unlock();
  265. return toptier;
  266. }
  267. void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets)
  268. {
  269. struct memory_tier *memtier;
  270. /*
  271. * pg_data_t.memtier updates includes a synchronize_rcu()
  272. * which ensures that we either find NULL or a valid memtier
  273. * in NODE_DATA. protect the access via rcu_read_lock();
  274. */
  275. rcu_read_lock();
  276. memtier = rcu_dereference(pgdat->memtier);
  277. if (memtier)
  278. *targets = memtier->lower_tier_mask;
  279. else
  280. *targets = NODE_MASK_NONE;
  281. rcu_read_unlock();
  282. }
  283. /**
  284. * next_demotion_node() - Get the next node in the demotion path
  285. * @node: The starting node to lookup the next node
  286. *
  287. * Return: node id for next memory node in the demotion path hierarchy
  288. * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
  289. * @node online or guarantee that it *continues* to be the next demotion
  290. * target.
  291. */
  292. int next_demotion_node(int node)
  293. {
  294. struct demotion_nodes *nd;
  295. int target;
  296. if (!node_demotion)
  297. return NUMA_NO_NODE;
  298. nd = &node_demotion[node];
  299. /*
  300. * node_demotion[] is updated without excluding this
  301. * function from running.
  302. *
  303. * Make sure to use RCU over entire code blocks if
  304. * node_demotion[] reads need to be consistent.
  305. */
  306. rcu_read_lock();
  307. /*
  308. * If there are multiple target nodes, just select one
  309. * target node randomly.
  310. *
  311. * In addition, we can also use round-robin to select
  312. * target node, but we should introduce another variable
  313. * for node_demotion[] to record last selected target node,
  314. * that may cause cache ping-pong due to the changing of
  315. * last target node. Or introducing per-cpu data to avoid
  316. * caching issue, which seems more complicated. So selecting
  317. * target node randomly seems better until now.
  318. */
  319. target = node_random(&nd->preferred);
  320. rcu_read_unlock();
  321. return target;
  322. }
  323. static void disable_all_demotion_targets(void)
  324. {
  325. struct memory_tier *memtier;
  326. int node;
  327. for_each_node_state(node, N_MEMORY) {
  328. node_demotion[node].preferred = NODE_MASK_NONE;
  329. /*
  330. * We are holding memory_tier_lock, it is safe
  331. * to access pgda->memtier.
  332. */
  333. memtier = __node_get_memory_tier(node);
  334. if (memtier)
  335. memtier->lower_tier_mask = NODE_MASK_NONE;
  336. }
  337. /*
  338. * Ensure that the "disable" is visible across the system.
  339. * Readers will see either a combination of before+disable
  340. * state or disable+after. They will never see before and
  341. * after state together.
  342. */
  343. synchronize_rcu();
  344. }
  345. static void dump_demotion_targets(void)
  346. {
  347. int node;
  348. for_each_node_state(node, N_MEMORY) {
  349. struct memory_tier *memtier = __node_get_memory_tier(node);
  350. nodemask_t preferred = node_demotion[node].preferred;
  351. if (!memtier)
  352. continue;
  353. if (nodes_empty(preferred))
  354. pr_info("Demotion targets for Node %d: null\n", node);
  355. else
  356. pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
  357. node, nodemask_pr_args(&preferred),
  358. nodemask_pr_args(&memtier->lower_tier_mask));
  359. }
  360. }
  361. /*
  362. * Find an automatic demotion target for all memory
  363. * nodes. Failing here is OK. It might just indicate
  364. * being at the end of a chain.
  365. */
  366. static void establish_demotion_targets(void)
  367. {
  368. struct memory_tier *memtier;
  369. struct demotion_nodes *nd;
  370. int target = NUMA_NO_NODE, node;
  371. int distance, best_distance;
  372. nodemask_t tier_nodes, lower_tier;
  373. lockdep_assert_held_once(&memory_tier_lock);
  374. if (!node_demotion)
  375. return;
  376. disable_all_demotion_targets();
  377. for_each_node_state(node, N_MEMORY) {
  378. best_distance = -1;
  379. nd = &node_demotion[node];
  380. memtier = __node_get_memory_tier(node);
  381. if (!memtier || list_is_last(&memtier->list, &memory_tiers))
  382. continue;
  383. /*
  384. * Get the lower memtier to find the demotion node list.
  385. */
  386. memtier = list_next_entry(memtier, list);
  387. tier_nodes = get_memtier_nodemask(memtier);
  388. /*
  389. * find_next_best_node, use 'used' nodemask as a skip list.
  390. * Add all memory nodes except the selected memory tier
  391. * nodelist to skip list so that we find the best node from the
  392. * memtier nodelist.
  393. */
  394. nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes);
  395. /*
  396. * Find all the nodes in the memory tier node list of same best distance.
  397. * add them to the preferred mask. We randomly select between nodes
  398. * in the preferred mask when allocating pages during demotion.
  399. */
  400. do {
  401. target = find_next_best_node(node, &tier_nodes);
  402. if (target == NUMA_NO_NODE)
  403. break;
  404. distance = node_distance(node, target);
  405. if (distance == best_distance || best_distance == -1) {
  406. best_distance = distance;
  407. node_set(target, nd->preferred);
  408. } else {
  409. break;
  410. }
  411. } while (1);
  412. }
  413. /*
  414. * Promotion is allowed from a memory tier to higher
  415. * memory tier only if the memory tier doesn't include
  416. * compute. We want to skip promotion from a memory tier,
  417. * if any node that is part of the memory tier have CPUs.
  418. * Once we detect such a memory tier, we consider that tier
  419. * as top tiper from which promotion is not allowed.
  420. */
  421. list_for_each_entry_reverse(memtier, &memory_tiers, list) {
  422. tier_nodes = get_memtier_nodemask(memtier);
  423. nodes_and(tier_nodes, node_states[N_CPU], tier_nodes);
  424. if (!nodes_empty(tier_nodes)) {
  425. /*
  426. * abstract distance below the max value of this memtier
  427. * is considered toptier.
  428. */
  429. top_tier_adistance = memtier->adistance_start +
  430. MEMTIER_CHUNK_SIZE - 1;
  431. break;
  432. }
  433. }
  434. /*
  435. * Now build the lower_tier mask for each node collecting node mask from
  436. * all memory tier below it. This allows us to fallback demotion page
  437. * allocation to a set of nodes that is closer the above selected
  438. * preferred node.
  439. */
  440. lower_tier = node_states[N_MEMORY];
  441. list_for_each_entry(memtier, &memory_tiers, list) {
  442. /*
  443. * Keep removing current tier from lower_tier nodes,
  444. * This will remove all nodes in current and above
  445. * memory tier from the lower_tier mask.
  446. */
  447. tier_nodes = get_memtier_nodemask(memtier);
  448. nodes_andnot(lower_tier, lower_tier, tier_nodes);
  449. memtier->lower_tier_mask = lower_tier;
  450. }
  451. dump_demotion_targets();
  452. }
  453. #else
  454. static inline void establish_demotion_targets(void) {}
  455. #endif /* CONFIG_MIGRATION */
  456. static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype)
  457. {
  458. if (!node_memory_types[node].memtype)
  459. node_memory_types[node].memtype = memtype;
  460. /*
  461. * for each device getting added in the same NUMA node
  462. * with this specific memtype, bump the map count. We
  463. * Only take memtype device reference once, so that
  464. * changing a node memtype can be done by droping the
  465. * only reference count taken here.
  466. */
  467. if (node_memory_types[node].memtype == memtype) {
  468. if (!node_memory_types[node].map_count++)
  469. kref_get(&memtype->kref);
  470. }
  471. }
  472. static struct memory_tier *set_node_memory_tier(int node)
  473. {
  474. struct memory_tier *memtier;
  475. struct memory_dev_type *memtype = default_dram_type;
  476. int adist = MEMTIER_ADISTANCE_DRAM;
  477. pg_data_t *pgdat = NODE_DATA(node);
  478. lockdep_assert_held_once(&memory_tier_lock);
  479. if (!node_state(node, N_MEMORY))
  480. return ERR_PTR(-EINVAL);
  481. mt_calc_adistance(node, &adist);
  482. if (!node_memory_types[node].memtype) {
  483. memtype = mt_find_alloc_memory_type(adist, &default_memory_types);
  484. if (IS_ERR(memtype)) {
  485. memtype = default_dram_type;
  486. pr_info("Failed to allocate a memory type. Fall back.\n");
  487. }
  488. }
  489. __init_node_memory_type(node, memtype);
  490. memtype = node_memory_types[node].memtype;
  491. node_set(node, memtype->nodes);
  492. memtier = find_create_memory_tier(memtype);
  493. if (!IS_ERR(memtier))
  494. rcu_assign_pointer(pgdat->memtier, memtier);
  495. return memtier;
  496. }
  497. static void destroy_memory_tier(struct memory_tier *memtier)
  498. {
  499. list_del(&memtier->list);
  500. device_unregister(&memtier->dev);
  501. }
  502. static bool clear_node_memory_tier(int node)
  503. {
  504. bool cleared = false;
  505. pg_data_t *pgdat;
  506. struct memory_tier *memtier;
  507. pgdat = NODE_DATA(node);
  508. if (!pgdat)
  509. return false;
  510. /*
  511. * Make sure that anybody looking at NODE_DATA who finds
  512. * a valid memtier finds memory_dev_types with nodes still
  513. * linked to the memtier. We achieve this by waiting for
  514. * rcu read section to finish using synchronize_rcu.
  515. * This also enables us to free the destroyed memory tier
  516. * with kfree instead of kfree_rcu
  517. */
  518. memtier = __node_get_memory_tier(node);
  519. if (memtier) {
  520. struct memory_dev_type *memtype;
  521. rcu_assign_pointer(pgdat->memtier, NULL);
  522. synchronize_rcu();
  523. memtype = node_memory_types[node].memtype;
  524. node_clear(node, memtype->nodes);
  525. if (nodes_empty(memtype->nodes)) {
  526. list_del_init(&memtype->tier_sibling);
  527. if (list_empty(&memtier->memory_types))
  528. destroy_memory_tier(memtier);
  529. }
  530. cleared = true;
  531. }
  532. return cleared;
  533. }
  534. static void release_memtype(struct kref *kref)
  535. {
  536. struct memory_dev_type *memtype;
  537. memtype = container_of(kref, struct memory_dev_type, kref);
  538. kfree(memtype);
  539. }
  540. struct memory_dev_type *alloc_memory_type(int adistance)
  541. {
  542. struct memory_dev_type *memtype;
  543. memtype = kmalloc(sizeof(*memtype), GFP_KERNEL);
  544. if (!memtype)
  545. return ERR_PTR(-ENOMEM);
  546. memtype->adistance = adistance;
  547. INIT_LIST_HEAD(&memtype->tier_sibling);
  548. memtype->nodes = NODE_MASK_NONE;
  549. kref_init(&memtype->kref);
  550. return memtype;
  551. }
  552. EXPORT_SYMBOL_GPL(alloc_memory_type);
  553. void put_memory_type(struct memory_dev_type *memtype)
  554. {
  555. kref_put(&memtype->kref, release_memtype);
  556. }
  557. EXPORT_SYMBOL_GPL(put_memory_type);
  558. void init_node_memory_type(int node, struct memory_dev_type *memtype)
  559. {
  560. mutex_lock(&memory_tier_lock);
  561. __init_node_memory_type(node, memtype);
  562. mutex_unlock(&memory_tier_lock);
  563. }
  564. EXPORT_SYMBOL_GPL(init_node_memory_type);
  565. void clear_node_memory_type(int node, struct memory_dev_type *memtype)
  566. {
  567. mutex_lock(&memory_tier_lock);
  568. if (node_memory_types[node].memtype == memtype || !memtype)
  569. node_memory_types[node].map_count--;
  570. /*
  571. * If we umapped all the attached devices to this node,
  572. * clear the node memory type.
  573. */
  574. if (!node_memory_types[node].map_count) {
  575. memtype = node_memory_types[node].memtype;
  576. node_memory_types[node].memtype = NULL;
  577. put_memory_type(memtype);
  578. }
  579. mutex_unlock(&memory_tier_lock);
  580. }
  581. EXPORT_SYMBOL_GPL(clear_node_memory_type);
  582. struct memory_dev_type *mt_find_alloc_memory_type(int adist, struct list_head *memory_types)
  583. {
  584. struct memory_dev_type *mtype;
  585. list_for_each_entry(mtype, memory_types, list)
  586. if (mtype->adistance == adist)
  587. return mtype;
  588. mtype = alloc_memory_type(adist);
  589. if (IS_ERR(mtype))
  590. return mtype;
  591. list_add(&mtype->list, memory_types);
  592. return mtype;
  593. }
  594. EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type);
  595. void mt_put_memory_types(struct list_head *memory_types)
  596. {
  597. struct memory_dev_type *mtype, *mtn;
  598. list_for_each_entry_safe(mtype, mtn, memory_types, list) {
  599. list_del(&mtype->list);
  600. put_memory_type(mtype);
  601. }
  602. }
  603. EXPORT_SYMBOL_GPL(mt_put_memory_types);
  604. /*
  605. * This is invoked via `late_initcall()` to initialize memory tiers for
  606. * memory nodes, both with and without CPUs. After the initialization of
  607. * firmware and devices, adistance algorithms are expected to be provided.
  608. */
  609. static int __init memory_tier_late_init(void)
  610. {
  611. int nid;
  612. struct memory_tier *memtier;
  613. get_online_mems();
  614. guard(mutex)(&memory_tier_lock);
  615. /* Assign each uninitialized N_MEMORY node to a memory tier. */
  616. for_each_node_state(nid, N_MEMORY) {
  617. /*
  618. * Some device drivers may have initialized
  619. * memory tiers, potentially bringing memory nodes
  620. * online and configuring memory tiers.
  621. * Exclude them here.
  622. */
  623. if (node_memory_types[nid].memtype)
  624. continue;
  625. memtier = set_node_memory_tier(nid);
  626. if (IS_ERR(memtier))
  627. continue;
  628. }
  629. establish_demotion_targets();
  630. put_online_mems();
  631. return 0;
  632. }
  633. late_initcall(memory_tier_late_init);
  634. static void dump_hmem_attrs(struct access_coordinate *coord, const char *prefix)
  635. {
  636. pr_info(
  637. "%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
  638. prefix, coord->read_latency, coord->write_latency,
  639. coord->read_bandwidth, coord->write_bandwidth);
  640. }
  641. int mt_set_default_dram_perf(int nid, struct access_coordinate *perf,
  642. const char *source)
  643. {
  644. guard(mutex)(&default_dram_perf_lock);
  645. if (default_dram_perf_error)
  646. return -EIO;
  647. if (perf->read_latency + perf->write_latency == 0 ||
  648. perf->read_bandwidth + perf->write_bandwidth == 0)
  649. return -EINVAL;
  650. if (default_dram_perf_ref_nid == NUMA_NO_NODE) {
  651. default_dram_perf = *perf;
  652. default_dram_perf_ref_nid = nid;
  653. default_dram_perf_ref_source = kstrdup(source, GFP_KERNEL);
  654. return 0;
  655. }
  656. /*
  657. * The performance of all default DRAM nodes is expected to be
  658. * same (that is, the variation is less than 10%). And it
  659. * will be used as base to calculate the abstract distance of
  660. * other memory nodes.
  661. */
  662. if (abs(perf->read_latency - default_dram_perf.read_latency) * 10 >
  663. default_dram_perf.read_latency ||
  664. abs(perf->write_latency - default_dram_perf.write_latency) * 10 >
  665. default_dram_perf.write_latency ||
  666. abs(perf->read_bandwidth - default_dram_perf.read_bandwidth) * 10 >
  667. default_dram_perf.read_bandwidth ||
  668. abs(perf->write_bandwidth - default_dram_perf.write_bandwidth) * 10 >
  669. default_dram_perf.write_bandwidth) {
  670. pr_info(
  671. "memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
  672. "DRAM node %d.\n", nid, default_dram_perf_ref_nid);
  673. pr_info(" performance of reference DRAM node %d from %s:\n",
  674. default_dram_perf_ref_nid, default_dram_perf_ref_source);
  675. dump_hmem_attrs(&default_dram_perf, " ");
  676. pr_info(" performance of DRAM node %d from %s:\n", nid, source);
  677. dump_hmem_attrs(perf, " ");
  678. pr_info(
  679. " disable default DRAM node performance based abstract distance algorithm.\n");
  680. default_dram_perf_error = true;
  681. return -EINVAL;
  682. }
  683. return 0;
  684. }
  685. int mt_perf_to_adistance(struct access_coordinate *perf, int *adist)
  686. {
  687. guard(mutex)(&default_dram_perf_lock);
  688. if (default_dram_perf_error)
  689. return -EIO;
  690. if (perf->read_latency + perf->write_latency == 0 ||
  691. perf->read_bandwidth + perf->write_bandwidth == 0)
  692. return -EINVAL;
  693. if (default_dram_perf_ref_nid == NUMA_NO_NODE)
  694. return -ENOENT;
  695. /*
  696. * The abstract distance of a memory node is in direct proportion to
  697. * its memory latency (read + write) and inversely proportional to its
  698. * memory bandwidth (read + write). The abstract distance, memory
  699. * latency, and memory bandwidth of the default DRAM nodes are used as
  700. * the base.
  701. */
  702. *adist = MEMTIER_ADISTANCE_DRAM *
  703. (perf->read_latency + perf->write_latency) /
  704. (default_dram_perf.read_latency + default_dram_perf.write_latency) *
  705. (default_dram_perf.read_bandwidth + default_dram_perf.write_bandwidth) /
  706. (perf->read_bandwidth + perf->write_bandwidth);
  707. return 0;
  708. }
  709. EXPORT_SYMBOL_GPL(mt_perf_to_adistance);
  710. /**
  711. * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
  712. * @nb: The notifier block which describe the algorithm
  713. *
  714. * Return: 0 on success, errno on error.
  715. *
  716. * Every memory tiering abstract distance algorithm provider needs to
  717. * register the algorithm with register_mt_adistance_algorithm(). To
  718. * calculate the abstract distance for a specified memory node, the
  719. * notifier function will be called unless some high priority
  720. * algorithm has provided result. The prototype of the notifier
  721. * function is as follows,
  722. *
  723. * int (*algorithm_notifier)(struct notifier_block *nb,
  724. * unsigned long nid, void *data);
  725. *
  726. * Where "nid" specifies the memory node, "data" is the pointer to the
  727. * returned abstract distance (that is, "int *adist"). If the
  728. * algorithm provides the result, NOTIFY_STOP should be returned.
  729. * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
  730. * algorithm in the chain to provide the result.
  731. */
  732. int register_mt_adistance_algorithm(struct notifier_block *nb)
  733. {
  734. return blocking_notifier_chain_register(&mt_adistance_algorithms, nb);
  735. }
  736. EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm);
  737. /**
  738. * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
  739. * @nb: the notifier block which describe the algorithm
  740. *
  741. * Return: 0 on success, errno on error.
  742. */
  743. int unregister_mt_adistance_algorithm(struct notifier_block *nb)
  744. {
  745. return blocking_notifier_chain_unregister(&mt_adistance_algorithms, nb);
  746. }
  747. EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm);
  748. /**
  749. * mt_calc_adistance() - Calculate abstract distance with registered algorithms
  750. * @node: the node to calculate abstract distance for
  751. * @adist: the returned abstract distance
  752. *
  753. * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
  754. * abstract distance algorithm provides the result, and return it via
  755. * @adist. Otherwise, no algorithm can provide the result and @adist
  756. * will be kept as it is.
  757. */
  758. int mt_calc_adistance(int node, int *adist)
  759. {
  760. return blocking_notifier_call_chain(&mt_adistance_algorithms, node, adist);
  761. }
  762. EXPORT_SYMBOL_GPL(mt_calc_adistance);
  763. static int __meminit memtier_hotplug_callback(struct notifier_block *self,
  764. unsigned long action, void *_arg)
  765. {
  766. struct memory_tier *memtier;
  767. struct memory_notify *arg = _arg;
  768. /*
  769. * Only update the node migration order when a node is
  770. * changing status, like online->offline.
  771. */
  772. if (arg->status_change_nid < 0)
  773. return notifier_from_errno(0);
  774. switch (action) {
  775. case MEM_OFFLINE:
  776. mutex_lock(&memory_tier_lock);
  777. if (clear_node_memory_tier(arg->status_change_nid))
  778. establish_demotion_targets();
  779. mutex_unlock(&memory_tier_lock);
  780. break;
  781. case MEM_ONLINE:
  782. mutex_lock(&memory_tier_lock);
  783. memtier = set_node_memory_tier(arg->status_change_nid);
  784. if (!IS_ERR(memtier))
  785. establish_demotion_targets();
  786. mutex_unlock(&memory_tier_lock);
  787. break;
  788. }
  789. return notifier_from_errno(0);
  790. }
  791. static int __init memory_tier_init(void)
  792. {
  793. int ret;
  794. ret = subsys_virtual_register(&memory_tier_subsys, NULL);
  795. if (ret)
  796. panic("%s() failed to register memory tier subsystem\n", __func__);
  797. #ifdef CONFIG_MIGRATION
  798. node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes),
  799. GFP_KERNEL);
  800. WARN_ON(!node_demotion);
  801. #endif
  802. mutex_lock(&memory_tier_lock);
  803. /*
  804. * For now we can have 4 faster memory tiers with smaller adistance
  805. * than default DRAM tier.
  806. */
  807. default_dram_type = mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM,
  808. &default_memory_types);
  809. mutex_unlock(&memory_tier_lock);
  810. if (IS_ERR(default_dram_type))
  811. panic("%s() failed to allocate default DRAM tier\n", __func__);
  812. /* Record nodes with memory and CPU to set default DRAM performance. */
  813. nodes_and(default_dram_nodes, node_states[N_MEMORY],
  814. node_states[N_CPU]);
  815. hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI);
  816. return 0;
  817. }
  818. subsys_initcall(memory_tier_init);
  819. bool numa_demotion_enabled = false;
  820. #ifdef CONFIG_MIGRATION
  821. #ifdef CONFIG_SYSFS
  822. static ssize_t demotion_enabled_show(struct kobject *kobj,
  823. struct kobj_attribute *attr, char *buf)
  824. {
  825. return sysfs_emit(buf, "%s\n", str_true_false(numa_demotion_enabled));
  826. }
  827. static ssize_t demotion_enabled_store(struct kobject *kobj,
  828. struct kobj_attribute *attr,
  829. const char *buf, size_t count)
  830. {
  831. ssize_t ret;
  832. ret = kstrtobool(buf, &numa_demotion_enabled);
  833. if (ret)
  834. return ret;
  835. return count;
  836. }
  837. static struct kobj_attribute numa_demotion_enabled_attr =
  838. __ATTR_RW(demotion_enabled);
  839. static struct attribute *numa_attrs[] = {
  840. &numa_demotion_enabled_attr.attr,
  841. NULL,
  842. };
  843. static const struct attribute_group numa_attr_group = {
  844. .attrs = numa_attrs,
  845. };
  846. static int __init numa_init_sysfs(void)
  847. {
  848. int err;
  849. struct kobject *numa_kobj;
  850. numa_kobj = kobject_create_and_add("numa", mm_kobj);
  851. if (!numa_kobj) {
  852. pr_err("failed to create numa kobject\n");
  853. return -ENOMEM;
  854. }
  855. err = sysfs_create_group(numa_kobj, &numa_attr_group);
  856. if (err) {
  857. pr_err("failed to register numa group\n");
  858. goto delete_obj;
  859. }
  860. return 0;
  861. delete_obj:
  862. kobject_put(numa_kobj);
  863. return err;
  864. }
  865. subsys_initcall(numa_init_sysfs);
  866. #endif /* CONFIG_SYSFS */
  867. #endif