trans_xen.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * linux/fs/9p/trans_xen
  4. *
  5. * Xen transport layer.
  6. *
  7. * Copyright (C) 2017 by Stefano Stabellini <stefano@aporeto.com>
  8. */
  9. #include <xen/events.h>
  10. #include <xen/grant_table.h>
  11. #include <xen/xen.h>
  12. #include <xen/xenbus.h>
  13. #include <xen/interface/io/9pfs.h>
  14. #include <linux/module.h>
  15. #include <linux/spinlock.h>
  16. #include <net/9p/9p.h>
  17. #include <net/9p/client.h>
  18. #include <net/9p/transport.h>
  19. #define XEN_9PFS_NUM_RINGS 2
  20. #define XEN_9PFS_RING_ORDER 9
  21. #define XEN_9PFS_RING_SIZE(ring) XEN_FLEX_RING_SIZE(ring->intf->ring_order)
  22. struct xen_9pfs_header {
  23. uint32_t size;
  24. uint8_t id;
  25. uint16_t tag;
  26. /* uint8_t sdata[]; */
  27. } __attribute__((packed));
  28. /* One per ring, more than one per 9pfs share */
  29. struct xen_9pfs_dataring {
  30. struct xen_9pfs_front_priv *priv;
  31. struct xen_9pfs_data_intf *intf;
  32. grant_ref_t ref;
  33. int evtchn;
  34. int irq;
  35. /* protect a ring from concurrent accesses */
  36. spinlock_t lock;
  37. struct xen_9pfs_data data;
  38. wait_queue_head_t wq;
  39. struct work_struct work;
  40. };
  41. /* One per 9pfs share */
  42. struct xen_9pfs_front_priv {
  43. struct list_head list;
  44. struct xenbus_device *dev;
  45. char *tag;
  46. struct p9_client *client;
  47. struct xen_9pfs_dataring *rings;
  48. };
  49. static LIST_HEAD(xen_9pfs_devs);
  50. static DEFINE_RWLOCK(xen_9pfs_lock);
  51. /* We don't currently allow canceling of requests */
  52. static int p9_xen_cancel(struct p9_client *client, struct p9_req_t *req)
  53. {
  54. return 1;
  55. }
  56. static int p9_xen_create(struct p9_client *client, const char *addr, char *args)
  57. {
  58. struct xen_9pfs_front_priv *priv;
  59. if (addr == NULL)
  60. return -EINVAL;
  61. read_lock(&xen_9pfs_lock);
  62. list_for_each_entry(priv, &xen_9pfs_devs, list) {
  63. if (!strcmp(priv->tag, addr)) {
  64. priv->client = client;
  65. read_unlock(&xen_9pfs_lock);
  66. return 0;
  67. }
  68. }
  69. read_unlock(&xen_9pfs_lock);
  70. return -EINVAL;
  71. }
  72. static void p9_xen_close(struct p9_client *client)
  73. {
  74. struct xen_9pfs_front_priv *priv;
  75. read_lock(&xen_9pfs_lock);
  76. list_for_each_entry(priv, &xen_9pfs_devs, list) {
  77. if (priv->client == client) {
  78. priv->client = NULL;
  79. read_unlock(&xen_9pfs_lock);
  80. return;
  81. }
  82. }
  83. read_unlock(&xen_9pfs_lock);
  84. }
  85. static bool p9_xen_write_todo(struct xen_9pfs_dataring *ring, RING_IDX size)
  86. {
  87. RING_IDX cons, prod;
  88. cons = ring->intf->out_cons;
  89. prod = ring->intf->out_prod;
  90. virt_mb();
  91. return XEN_9PFS_RING_SIZE(ring) -
  92. xen_9pfs_queued(prod, cons, XEN_9PFS_RING_SIZE(ring)) >= size;
  93. }
  94. static int p9_xen_request(struct p9_client *client, struct p9_req_t *p9_req)
  95. {
  96. struct xen_9pfs_front_priv *priv;
  97. RING_IDX cons, prod, masked_cons, masked_prod;
  98. unsigned long flags;
  99. u32 size = p9_req->tc.size;
  100. struct xen_9pfs_dataring *ring;
  101. int num;
  102. read_lock(&xen_9pfs_lock);
  103. list_for_each_entry(priv, &xen_9pfs_devs, list) {
  104. if (priv->client == client)
  105. break;
  106. }
  107. read_unlock(&xen_9pfs_lock);
  108. if (list_entry_is_head(priv, &xen_9pfs_devs, list))
  109. return -EINVAL;
  110. num = p9_req->tc.tag % XEN_9PFS_NUM_RINGS;
  111. ring = &priv->rings[num];
  112. again:
  113. while (wait_event_killable(ring->wq,
  114. p9_xen_write_todo(ring, size)) != 0)
  115. ;
  116. spin_lock_irqsave(&ring->lock, flags);
  117. cons = ring->intf->out_cons;
  118. prod = ring->intf->out_prod;
  119. virt_mb();
  120. if (XEN_9PFS_RING_SIZE(ring) -
  121. xen_9pfs_queued(prod, cons, XEN_9PFS_RING_SIZE(ring)) < size) {
  122. spin_unlock_irqrestore(&ring->lock, flags);
  123. goto again;
  124. }
  125. masked_prod = xen_9pfs_mask(prod, XEN_9PFS_RING_SIZE(ring));
  126. masked_cons = xen_9pfs_mask(cons, XEN_9PFS_RING_SIZE(ring));
  127. xen_9pfs_write_packet(ring->data.out, p9_req->tc.sdata, size,
  128. &masked_prod, masked_cons,
  129. XEN_9PFS_RING_SIZE(ring));
  130. WRITE_ONCE(p9_req->status, REQ_STATUS_SENT);
  131. virt_wmb(); /* write ring before updating pointer */
  132. prod += size;
  133. ring->intf->out_prod = prod;
  134. spin_unlock_irqrestore(&ring->lock, flags);
  135. notify_remote_via_irq(ring->irq);
  136. p9_req_put(client, p9_req);
  137. return 0;
  138. }
  139. static void p9_xen_response(struct work_struct *work)
  140. {
  141. struct xen_9pfs_front_priv *priv;
  142. struct xen_9pfs_dataring *ring;
  143. RING_IDX cons, prod, masked_cons, masked_prod;
  144. struct xen_9pfs_header h;
  145. struct p9_req_t *req;
  146. int status;
  147. ring = container_of(work, struct xen_9pfs_dataring, work);
  148. priv = ring->priv;
  149. while (1) {
  150. cons = ring->intf->in_cons;
  151. prod = ring->intf->in_prod;
  152. virt_rmb();
  153. if (xen_9pfs_queued(prod, cons, XEN_9PFS_RING_SIZE(ring)) <
  154. sizeof(h)) {
  155. notify_remote_via_irq(ring->irq);
  156. return;
  157. }
  158. masked_prod = xen_9pfs_mask(prod, XEN_9PFS_RING_SIZE(ring));
  159. masked_cons = xen_9pfs_mask(cons, XEN_9PFS_RING_SIZE(ring));
  160. /* First, read just the header */
  161. xen_9pfs_read_packet(&h, ring->data.in, sizeof(h),
  162. masked_prod, &masked_cons,
  163. XEN_9PFS_RING_SIZE(ring));
  164. req = p9_tag_lookup(priv->client, h.tag);
  165. if (!req || req->status != REQ_STATUS_SENT) {
  166. dev_warn(&priv->dev->dev, "Wrong req tag=%x\n", h.tag);
  167. cons += h.size;
  168. virt_mb();
  169. ring->intf->in_cons = cons;
  170. continue;
  171. }
  172. if (h.size > req->rc.capacity) {
  173. dev_warn(&priv->dev->dev,
  174. "requested packet size too big: %d for tag %d with capacity %zd\n",
  175. h.size, h.tag, req->rc.capacity);
  176. WRITE_ONCE(req->status, REQ_STATUS_ERROR);
  177. goto recv_error;
  178. }
  179. req->rc.size = h.size;
  180. req->rc.id = h.id;
  181. req->rc.tag = h.tag;
  182. req->rc.offset = 0;
  183. masked_cons = xen_9pfs_mask(cons, XEN_9PFS_RING_SIZE(ring));
  184. /* Then, read the whole packet (including the header) */
  185. xen_9pfs_read_packet(req->rc.sdata, ring->data.in, h.size,
  186. masked_prod, &masked_cons,
  187. XEN_9PFS_RING_SIZE(ring));
  188. recv_error:
  189. virt_mb();
  190. cons += h.size;
  191. ring->intf->in_cons = cons;
  192. status = (req->status != REQ_STATUS_ERROR) ?
  193. REQ_STATUS_RCVD : REQ_STATUS_ERROR;
  194. p9_client_cb(priv->client, req, status);
  195. }
  196. }
  197. static irqreturn_t xen_9pfs_front_event_handler(int irq, void *r)
  198. {
  199. struct xen_9pfs_dataring *ring = r;
  200. if (!ring || !ring->priv->client) {
  201. /* ignore spurious interrupt */
  202. return IRQ_HANDLED;
  203. }
  204. wake_up_interruptible(&ring->wq);
  205. schedule_work(&ring->work);
  206. return IRQ_HANDLED;
  207. }
  208. static struct p9_trans_module p9_xen_trans = {
  209. .name = "xen",
  210. .maxsize = 1 << (XEN_9PFS_RING_ORDER + XEN_PAGE_SHIFT - 2),
  211. .pooled_rbuffers = false,
  212. .def = 1,
  213. .create = p9_xen_create,
  214. .close = p9_xen_close,
  215. .request = p9_xen_request,
  216. .cancel = p9_xen_cancel,
  217. .owner = THIS_MODULE,
  218. };
  219. static const struct xenbus_device_id xen_9pfs_front_ids[] = {
  220. { "9pfs" },
  221. { "" }
  222. };
  223. static void xen_9pfs_front_free(struct xen_9pfs_front_priv *priv)
  224. {
  225. int i, j;
  226. write_lock(&xen_9pfs_lock);
  227. list_del(&priv->list);
  228. write_unlock(&xen_9pfs_lock);
  229. for (i = 0; i < XEN_9PFS_NUM_RINGS; i++) {
  230. struct xen_9pfs_dataring *ring = &priv->rings[i];
  231. cancel_work_sync(&ring->work);
  232. if (!priv->rings[i].intf)
  233. break;
  234. if (priv->rings[i].irq > 0)
  235. unbind_from_irqhandler(priv->rings[i].irq, ring);
  236. if (priv->rings[i].data.in) {
  237. for (j = 0;
  238. j < (1 << priv->rings[i].intf->ring_order);
  239. j++) {
  240. grant_ref_t ref;
  241. ref = priv->rings[i].intf->ref[j];
  242. gnttab_end_foreign_access(ref, NULL);
  243. }
  244. free_pages_exact(priv->rings[i].data.in,
  245. 1UL << (priv->rings[i].intf->ring_order +
  246. XEN_PAGE_SHIFT));
  247. }
  248. gnttab_end_foreign_access(priv->rings[i].ref, NULL);
  249. free_page((unsigned long)priv->rings[i].intf);
  250. }
  251. kfree(priv->rings);
  252. kfree(priv->tag);
  253. kfree(priv);
  254. }
  255. static void xen_9pfs_front_remove(struct xenbus_device *dev)
  256. {
  257. struct xen_9pfs_front_priv *priv = dev_get_drvdata(&dev->dev);
  258. dev_set_drvdata(&dev->dev, NULL);
  259. xen_9pfs_front_free(priv);
  260. }
  261. static int xen_9pfs_front_alloc_dataring(struct xenbus_device *dev,
  262. struct xen_9pfs_dataring *ring,
  263. unsigned int order)
  264. {
  265. int i = 0;
  266. int ret = -ENOMEM;
  267. void *bytes = NULL;
  268. init_waitqueue_head(&ring->wq);
  269. spin_lock_init(&ring->lock);
  270. INIT_WORK(&ring->work, p9_xen_response);
  271. ring->intf = (struct xen_9pfs_data_intf *)get_zeroed_page(GFP_KERNEL);
  272. if (!ring->intf)
  273. return ret;
  274. ret = gnttab_grant_foreign_access(dev->otherend_id,
  275. virt_to_gfn(ring->intf), 0);
  276. if (ret < 0)
  277. goto out;
  278. ring->ref = ret;
  279. bytes = alloc_pages_exact(1UL << (order + XEN_PAGE_SHIFT),
  280. GFP_KERNEL | __GFP_ZERO);
  281. if (!bytes) {
  282. ret = -ENOMEM;
  283. goto out;
  284. }
  285. for (; i < (1 << order); i++) {
  286. ret = gnttab_grant_foreign_access(
  287. dev->otherend_id, virt_to_gfn(bytes) + i, 0);
  288. if (ret < 0)
  289. goto out;
  290. ring->intf->ref[i] = ret;
  291. }
  292. ring->intf->ring_order = order;
  293. ring->data.in = bytes;
  294. ring->data.out = bytes + XEN_FLEX_RING_SIZE(order);
  295. ret = xenbus_alloc_evtchn(dev, &ring->evtchn);
  296. if (ret)
  297. goto out;
  298. ring->irq = bind_evtchn_to_irqhandler(ring->evtchn,
  299. xen_9pfs_front_event_handler,
  300. 0, "xen_9pfs-frontend", ring);
  301. if (ring->irq >= 0)
  302. return 0;
  303. xenbus_free_evtchn(dev, ring->evtchn);
  304. ret = ring->irq;
  305. out:
  306. if (bytes) {
  307. for (i--; i >= 0; i--)
  308. gnttab_end_foreign_access(ring->intf->ref[i], NULL);
  309. free_pages_exact(bytes, 1UL << (order + XEN_PAGE_SHIFT));
  310. }
  311. gnttab_end_foreign_access(ring->ref, NULL);
  312. free_page((unsigned long)ring->intf);
  313. return ret;
  314. }
  315. static int xen_9pfs_front_init(struct xenbus_device *dev)
  316. {
  317. int ret, i;
  318. struct xenbus_transaction xbt;
  319. struct xen_9pfs_front_priv *priv = dev_get_drvdata(&dev->dev);
  320. char *versions, *v;
  321. unsigned int max_rings, max_ring_order, len = 0;
  322. versions = xenbus_read(XBT_NIL, dev->otherend, "versions", &len);
  323. if (IS_ERR(versions))
  324. return PTR_ERR(versions);
  325. for (v = versions; *v; v++) {
  326. if (simple_strtoul(v, &v, 10) == 1) {
  327. v = NULL;
  328. break;
  329. }
  330. }
  331. if (v) {
  332. kfree(versions);
  333. return -EINVAL;
  334. }
  335. kfree(versions);
  336. max_rings = xenbus_read_unsigned(dev->otherend, "max-rings", 0);
  337. if (max_rings < XEN_9PFS_NUM_RINGS)
  338. return -EINVAL;
  339. max_ring_order = xenbus_read_unsigned(dev->otherend,
  340. "max-ring-page-order", 0);
  341. if (max_ring_order > XEN_9PFS_RING_ORDER)
  342. max_ring_order = XEN_9PFS_RING_ORDER;
  343. if (p9_xen_trans.maxsize > XEN_FLEX_RING_SIZE(max_ring_order))
  344. p9_xen_trans.maxsize = XEN_FLEX_RING_SIZE(max_ring_order) / 2;
  345. priv->rings = kcalloc(XEN_9PFS_NUM_RINGS, sizeof(*priv->rings),
  346. GFP_KERNEL);
  347. if (!priv->rings) {
  348. kfree(priv);
  349. return -ENOMEM;
  350. }
  351. for (i = 0; i < XEN_9PFS_NUM_RINGS; i++) {
  352. priv->rings[i].priv = priv;
  353. ret = xen_9pfs_front_alloc_dataring(dev, &priv->rings[i],
  354. max_ring_order);
  355. if (ret < 0)
  356. goto error;
  357. }
  358. again:
  359. ret = xenbus_transaction_start(&xbt);
  360. if (ret) {
  361. xenbus_dev_fatal(dev, ret, "starting transaction");
  362. goto error;
  363. }
  364. ret = xenbus_printf(xbt, dev->nodename, "version", "%u", 1);
  365. if (ret)
  366. goto error_xenbus;
  367. ret = xenbus_printf(xbt, dev->nodename, "num-rings", "%u",
  368. XEN_9PFS_NUM_RINGS);
  369. if (ret)
  370. goto error_xenbus;
  371. for (i = 0; i < XEN_9PFS_NUM_RINGS; i++) {
  372. char str[16];
  373. BUILD_BUG_ON(XEN_9PFS_NUM_RINGS > 9);
  374. sprintf(str, "ring-ref%d", i);
  375. ret = xenbus_printf(xbt, dev->nodename, str, "%d",
  376. priv->rings[i].ref);
  377. if (ret)
  378. goto error_xenbus;
  379. sprintf(str, "event-channel-%d", i);
  380. ret = xenbus_printf(xbt, dev->nodename, str, "%u",
  381. priv->rings[i].evtchn);
  382. if (ret)
  383. goto error_xenbus;
  384. }
  385. priv->tag = xenbus_read(xbt, dev->nodename, "tag", NULL);
  386. if (IS_ERR(priv->tag)) {
  387. ret = PTR_ERR(priv->tag);
  388. goto error_xenbus;
  389. }
  390. ret = xenbus_transaction_end(xbt, 0);
  391. if (ret) {
  392. if (ret == -EAGAIN)
  393. goto again;
  394. xenbus_dev_fatal(dev, ret, "completing transaction");
  395. goto error;
  396. }
  397. xenbus_switch_state(dev, XenbusStateInitialised);
  398. return 0;
  399. error_xenbus:
  400. xenbus_transaction_end(xbt, 1);
  401. xenbus_dev_fatal(dev, ret, "writing xenstore");
  402. error:
  403. xen_9pfs_front_free(priv);
  404. return ret;
  405. }
  406. static int xen_9pfs_front_probe(struct xenbus_device *dev,
  407. const struct xenbus_device_id *id)
  408. {
  409. struct xen_9pfs_front_priv *priv = NULL;
  410. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  411. if (!priv)
  412. return -ENOMEM;
  413. priv->dev = dev;
  414. dev_set_drvdata(&dev->dev, priv);
  415. write_lock(&xen_9pfs_lock);
  416. list_add_tail(&priv->list, &xen_9pfs_devs);
  417. write_unlock(&xen_9pfs_lock);
  418. return 0;
  419. }
  420. static int xen_9pfs_front_resume(struct xenbus_device *dev)
  421. {
  422. dev_warn(&dev->dev, "suspend/resume unsupported\n");
  423. return 0;
  424. }
  425. static void xen_9pfs_front_changed(struct xenbus_device *dev,
  426. enum xenbus_state backend_state)
  427. {
  428. switch (backend_state) {
  429. case XenbusStateReconfiguring:
  430. case XenbusStateReconfigured:
  431. case XenbusStateInitialising:
  432. case XenbusStateInitialised:
  433. case XenbusStateUnknown:
  434. break;
  435. case XenbusStateInitWait:
  436. if (dev->state != XenbusStateInitialising)
  437. break;
  438. xen_9pfs_front_init(dev);
  439. break;
  440. case XenbusStateConnected:
  441. xenbus_switch_state(dev, XenbusStateConnected);
  442. break;
  443. case XenbusStateClosed:
  444. if (dev->state == XenbusStateClosed)
  445. break;
  446. fallthrough; /* Missed the backend's CLOSING state */
  447. case XenbusStateClosing:
  448. xenbus_frontend_closed(dev);
  449. break;
  450. }
  451. }
  452. static struct xenbus_driver xen_9pfs_front_driver = {
  453. .ids = xen_9pfs_front_ids,
  454. .probe = xen_9pfs_front_probe,
  455. .remove = xen_9pfs_front_remove,
  456. .resume = xen_9pfs_front_resume,
  457. .otherend_changed = xen_9pfs_front_changed,
  458. };
  459. static int __init p9_trans_xen_init(void)
  460. {
  461. int rc;
  462. if (!xen_domain())
  463. return -ENODEV;
  464. pr_info("Initialising Xen transport for 9pfs\n");
  465. v9fs_register_trans(&p9_xen_trans);
  466. rc = xenbus_register_frontend(&xen_9pfs_front_driver);
  467. if (rc)
  468. v9fs_unregister_trans(&p9_xen_trans);
  469. return rc;
  470. }
  471. module_init(p9_trans_xen_init);
  472. MODULE_ALIAS_9P("xen");
  473. static void __exit p9_trans_xen_exit(void)
  474. {
  475. v9fs_unregister_trans(&p9_xen_trans);
  476. return xenbus_unregister_driver(&xen_9pfs_front_driver);
  477. }
  478. module_exit(p9_trans_xen_exit);
  479. MODULE_ALIAS("xen:9pfs");
  480. MODULE_AUTHOR("Stefano Stabellini <stefano@aporeto.com>");
  481. MODULE_DESCRIPTION("Xen Transport for 9P");
  482. MODULE_LICENSE("GPL");