devmem.c 9.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * Devmem TCP
  4. *
  5. * Authors: Mina Almasry <almasrymina@google.com>
  6. * Willem de Bruijn <willemdebruijn.kernel@gmail.com>
  7. * Kaiyuan Zhang <kaiyuanz@google.com
  8. */
  9. #include <linux/dma-buf.h>
  10. #include <linux/genalloc.h>
  11. #include <linux/mm.h>
  12. #include <linux/netdevice.h>
  13. #include <linux/types.h>
  14. #include <net/netdev_queues.h>
  15. #include <net/netdev_rx_queue.h>
  16. #include <net/page_pool/helpers.h>
  17. #include <trace/events/page_pool.h>
  18. #include "devmem.h"
  19. #include "mp_dmabuf_devmem.h"
  20. #include "page_pool_priv.h"
  21. /* Device memory support */
  22. /* Protected by rtnl_lock() */
  23. static DEFINE_XARRAY_FLAGS(net_devmem_dmabuf_bindings, XA_FLAGS_ALLOC1);
  24. static void net_devmem_dmabuf_free_chunk_owner(struct gen_pool *genpool,
  25. struct gen_pool_chunk *chunk,
  26. void *not_used)
  27. {
  28. struct dmabuf_genpool_chunk_owner *owner = chunk->owner;
  29. kvfree(owner->niovs);
  30. kfree(owner);
  31. }
  32. static dma_addr_t net_devmem_get_dma_addr(const struct net_iov *niov)
  33. {
  34. struct dmabuf_genpool_chunk_owner *owner = net_iov_owner(niov);
  35. return owner->base_dma_addr +
  36. ((dma_addr_t)net_iov_idx(niov) << PAGE_SHIFT);
  37. }
  38. void __net_devmem_dmabuf_binding_free(struct net_devmem_dmabuf_binding *binding)
  39. {
  40. size_t size, avail;
  41. gen_pool_for_each_chunk(binding->chunk_pool,
  42. net_devmem_dmabuf_free_chunk_owner, NULL);
  43. size = gen_pool_size(binding->chunk_pool);
  44. avail = gen_pool_avail(binding->chunk_pool);
  45. if (!WARN(size != avail, "can't destroy genpool. size=%zu, avail=%zu",
  46. size, avail))
  47. gen_pool_destroy(binding->chunk_pool);
  48. dma_buf_unmap_attachment_unlocked(binding->attachment, binding->sgt,
  49. DMA_FROM_DEVICE);
  50. dma_buf_detach(binding->dmabuf, binding->attachment);
  51. dma_buf_put(binding->dmabuf);
  52. xa_destroy(&binding->bound_rxqs);
  53. kfree(binding);
  54. }
  55. struct net_iov *
  56. net_devmem_alloc_dmabuf(struct net_devmem_dmabuf_binding *binding)
  57. {
  58. struct dmabuf_genpool_chunk_owner *owner;
  59. unsigned long dma_addr;
  60. struct net_iov *niov;
  61. ssize_t offset;
  62. ssize_t index;
  63. dma_addr = gen_pool_alloc_owner(binding->chunk_pool, PAGE_SIZE,
  64. (void **)&owner);
  65. if (!dma_addr)
  66. return NULL;
  67. offset = dma_addr - owner->base_dma_addr;
  68. index = offset / PAGE_SIZE;
  69. niov = &owner->niovs[index];
  70. niov->pp_magic = 0;
  71. niov->pp = NULL;
  72. atomic_long_set(&niov->pp_ref_count, 0);
  73. return niov;
  74. }
  75. void net_devmem_free_dmabuf(struct net_iov *niov)
  76. {
  77. struct net_devmem_dmabuf_binding *binding = net_iov_binding(niov);
  78. unsigned long dma_addr = net_devmem_get_dma_addr(niov);
  79. if (WARN_ON(!gen_pool_has_addr(binding->chunk_pool, dma_addr,
  80. PAGE_SIZE)))
  81. return;
  82. gen_pool_free(binding->chunk_pool, dma_addr, PAGE_SIZE);
  83. }
  84. void net_devmem_unbind_dmabuf(struct net_devmem_dmabuf_binding *binding)
  85. {
  86. struct netdev_rx_queue *rxq;
  87. unsigned long xa_idx;
  88. unsigned int rxq_idx;
  89. int err;
  90. if (binding->list.next)
  91. list_del(&binding->list);
  92. xa_for_each(&binding->bound_rxqs, xa_idx, rxq) {
  93. WARN_ON(rxq->mp_params.mp_priv != binding);
  94. rxq->mp_params.mp_priv = NULL;
  95. rxq_idx = get_netdev_rx_queue_index(rxq);
  96. err = netdev_rx_queue_restart(binding->dev, rxq_idx);
  97. WARN_ON(err && err != -ENETDOWN);
  98. }
  99. xa_erase(&net_devmem_dmabuf_bindings, binding->id);
  100. net_devmem_dmabuf_binding_put(binding);
  101. }
  102. int net_devmem_bind_dmabuf_to_queue(struct net_device *dev, u32 rxq_idx,
  103. struct net_devmem_dmabuf_binding *binding,
  104. struct netlink_ext_ack *extack)
  105. {
  106. struct netdev_rx_queue *rxq;
  107. u32 xa_idx;
  108. int err;
  109. if (rxq_idx >= dev->real_num_rx_queues) {
  110. NL_SET_ERR_MSG(extack, "rx queue index out of range");
  111. return -ERANGE;
  112. }
  113. rxq = __netif_get_rx_queue(dev, rxq_idx);
  114. if (rxq->mp_params.mp_priv) {
  115. NL_SET_ERR_MSG(extack, "designated queue already memory provider bound");
  116. return -EEXIST;
  117. }
  118. #ifdef CONFIG_XDP_SOCKETS
  119. if (rxq->pool) {
  120. NL_SET_ERR_MSG(extack, "designated queue already in use by AF_XDP");
  121. return -EBUSY;
  122. }
  123. #endif
  124. err = xa_alloc(&binding->bound_rxqs, &xa_idx, rxq, xa_limit_32b,
  125. GFP_KERNEL);
  126. if (err)
  127. return err;
  128. rxq->mp_params.mp_priv = binding;
  129. err = netdev_rx_queue_restart(dev, rxq_idx);
  130. if (err)
  131. goto err_xa_erase;
  132. return 0;
  133. err_xa_erase:
  134. rxq->mp_params.mp_priv = NULL;
  135. xa_erase(&binding->bound_rxqs, xa_idx);
  136. return err;
  137. }
  138. struct net_devmem_dmabuf_binding *
  139. net_devmem_bind_dmabuf(struct net_device *dev, unsigned int dmabuf_fd,
  140. struct netlink_ext_ack *extack)
  141. {
  142. struct net_devmem_dmabuf_binding *binding;
  143. static u32 id_alloc_next;
  144. struct scatterlist *sg;
  145. struct dma_buf *dmabuf;
  146. unsigned int sg_idx, i;
  147. unsigned long virtual;
  148. int err;
  149. dmabuf = dma_buf_get(dmabuf_fd);
  150. if (IS_ERR(dmabuf))
  151. return ERR_CAST(dmabuf);
  152. binding = kzalloc_node(sizeof(*binding), GFP_KERNEL,
  153. dev_to_node(&dev->dev));
  154. if (!binding) {
  155. err = -ENOMEM;
  156. goto err_put_dmabuf;
  157. }
  158. binding->dev = dev;
  159. err = xa_alloc_cyclic(&net_devmem_dmabuf_bindings, &binding->id,
  160. binding, xa_limit_32b, &id_alloc_next,
  161. GFP_KERNEL);
  162. if (err < 0)
  163. goto err_free_binding;
  164. xa_init_flags(&binding->bound_rxqs, XA_FLAGS_ALLOC);
  165. refcount_set(&binding->ref, 1);
  166. binding->dmabuf = dmabuf;
  167. binding->attachment = dma_buf_attach(binding->dmabuf, dev->dev.parent);
  168. if (IS_ERR(binding->attachment)) {
  169. err = PTR_ERR(binding->attachment);
  170. NL_SET_ERR_MSG(extack, "Failed to bind dmabuf to device");
  171. goto err_free_id;
  172. }
  173. binding->sgt = dma_buf_map_attachment_unlocked(binding->attachment,
  174. DMA_FROM_DEVICE);
  175. if (IS_ERR(binding->sgt)) {
  176. err = PTR_ERR(binding->sgt);
  177. NL_SET_ERR_MSG(extack, "Failed to map dmabuf attachment");
  178. goto err_detach;
  179. }
  180. /* For simplicity we expect to make PAGE_SIZE allocations, but the
  181. * binding can be much more flexible than that. We may be able to
  182. * allocate MTU sized chunks here. Leave that for future work...
  183. */
  184. binding->chunk_pool =
  185. gen_pool_create(PAGE_SHIFT, dev_to_node(&dev->dev));
  186. if (!binding->chunk_pool) {
  187. err = -ENOMEM;
  188. goto err_unmap;
  189. }
  190. virtual = 0;
  191. for_each_sgtable_dma_sg(binding->sgt, sg, sg_idx) {
  192. dma_addr_t dma_addr = sg_dma_address(sg);
  193. struct dmabuf_genpool_chunk_owner *owner;
  194. size_t len = sg_dma_len(sg);
  195. struct net_iov *niov;
  196. owner = kzalloc_node(sizeof(*owner), GFP_KERNEL,
  197. dev_to_node(&dev->dev));
  198. if (!owner) {
  199. err = -ENOMEM;
  200. goto err_free_chunks;
  201. }
  202. owner->base_virtual = virtual;
  203. owner->base_dma_addr = dma_addr;
  204. owner->num_niovs = len / PAGE_SIZE;
  205. owner->binding = binding;
  206. err = gen_pool_add_owner(binding->chunk_pool, dma_addr,
  207. dma_addr, len, dev_to_node(&dev->dev),
  208. owner);
  209. if (err) {
  210. kfree(owner);
  211. err = -EINVAL;
  212. goto err_free_chunks;
  213. }
  214. owner->niovs = kvmalloc_array(owner->num_niovs,
  215. sizeof(*owner->niovs),
  216. GFP_KERNEL);
  217. if (!owner->niovs) {
  218. err = -ENOMEM;
  219. goto err_free_chunks;
  220. }
  221. for (i = 0; i < owner->num_niovs; i++) {
  222. niov = &owner->niovs[i];
  223. niov->owner = owner;
  224. page_pool_set_dma_addr_netmem(net_iov_to_netmem(niov),
  225. net_devmem_get_dma_addr(niov));
  226. }
  227. virtual += len;
  228. }
  229. return binding;
  230. err_free_chunks:
  231. gen_pool_for_each_chunk(binding->chunk_pool,
  232. net_devmem_dmabuf_free_chunk_owner, NULL);
  233. gen_pool_destroy(binding->chunk_pool);
  234. err_unmap:
  235. dma_buf_unmap_attachment_unlocked(binding->attachment, binding->sgt,
  236. DMA_FROM_DEVICE);
  237. err_detach:
  238. dma_buf_detach(dmabuf, binding->attachment);
  239. err_free_id:
  240. xa_erase(&net_devmem_dmabuf_bindings, binding->id);
  241. err_free_binding:
  242. kfree(binding);
  243. err_put_dmabuf:
  244. dma_buf_put(dmabuf);
  245. return ERR_PTR(err);
  246. }
  247. void dev_dmabuf_uninstall(struct net_device *dev)
  248. {
  249. struct net_devmem_dmabuf_binding *binding;
  250. struct netdev_rx_queue *rxq;
  251. unsigned long xa_idx;
  252. unsigned int i;
  253. for (i = 0; i < dev->real_num_rx_queues; i++) {
  254. binding = dev->_rx[i].mp_params.mp_priv;
  255. if (!binding)
  256. continue;
  257. xa_for_each(&binding->bound_rxqs, xa_idx, rxq)
  258. if (rxq == &dev->_rx[i]) {
  259. xa_erase(&binding->bound_rxqs, xa_idx);
  260. break;
  261. }
  262. }
  263. }
  264. /*** "Dmabuf devmem memory provider" ***/
  265. int mp_dmabuf_devmem_init(struct page_pool *pool)
  266. {
  267. struct net_devmem_dmabuf_binding *binding = pool->mp_priv;
  268. if (!binding)
  269. return -EINVAL;
  270. if (!pool->dma_map)
  271. return -EOPNOTSUPP;
  272. if (pool->dma_sync)
  273. return -EOPNOTSUPP;
  274. if (pool->p.order != 0)
  275. return -E2BIG;
  276. net_devmem_dmabuf_binding_get(binding);
  277. return 0;
  278. }
  279. netmem_ref mp_dmabuf_devmem_alloc_netmems(struct page_pool *pool, gfp_t gfp)
  280. {
  281. struct net_devmem_dmabuf_binding *binding = pool->mp_priv;
  282. struct net_iov *niov;
  283. netmem_ref netmem;
  284. niov = net_devmem_alloc_dmabuf(binding);
  285. if (!niov)
  286. return 0;
  287. netmem = net_iov_to_netmem(niov);
  288. page_pool_set_pp_info(pool, netmem);
  289. pool->pages_state_hold_cnt++;
  290. trace_page_pool_state_hold(pool, netmem, pool->pages_state_hold_cnt);
  291. return netmem;
  292. }
  293. void mp_dmabuf_devmem_destroy(struct page_pool *pool)
  294. {
  295. struct net_devmem_dmabuf_binding *binding = pool->mp_priv;
  296. net_devmem_dmabuf_binding_put(binding);
  297. }
  298. bool mp_dmabuf_devmem_release_page(struct page_pool *pool, netmem_ref netmem)
  299. {
  300. long refcount = atomic_long_read(netmem_get_pp_ref_count_ref(netmem));
  301. if (WARN_ON_ONCE(!netmem_is_net_iov(netmem)))
  302. return false;
  303. if (WARN_ON_ONCE(refcount != 1))
  304. return false;
  305. page_pool_clear_pp_info(netmem);
  306. net_devmem_free_dmabuf(netmem_to_net_iov(netmem));
  307. /* We don't want the page pool put_page()ing our net_iovs. */
  308. return false;
  309. }