skmsg.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Copyright (c) 2017 - 2018 Covalent IO, Inc. http://covalent.io */
  3. #include <linux/skmsg.h>
  4. #include <linux/skbuff.h>
  5. #include <linux/scatterlist.h>
  6. #include <net/sock.h>
  7. #include <net/tcp.h>
  8. #include <net/tls.h>
  9. #include <trace/events/sock.h>
  10. static bool sk_msg_try_coalesce_ok(struct sk_msg *msg, int elem_first_coalesce)
  11. {
  12. if (msg->sg.end > msg->sg.start &&
  13. elem_first_coalesce < msg->sg.end)
  14. return true;
  15. if (msg->sg.end < msg->sg.start &&
  16. (elem_first_coalesce > msg->sg.start ||
  17. elem_first_coalesce < msg->sg.end))
  18. return true;
  19. return false;
  20. }
  21. int sk_msg_alloc(struct sock *sk, struct sk_msg *msg, int len,
  22. int elem_first_coalesce)
  23. {
  24. struct page_frag *pfrag = sk_page_frag(sk);
  25. u32 osize = msg->sg.size;
  26. int ret = 0;
  27. len -= msg->sg.size;
  28. while (len > 0) {
  29. struct scatterlist *sge;
  30. u32 orig_offset;
  31. int use, i;
  32. if (!sk_page_frag_refill(sk, pfrag)) {
  33. ret = -ENOMEM;
  34. goto msg_trim;
  35. }
  36. orig_offset = pfrag->offset;
  37. use = min_t(int, len, pfrag->size - orig_offset);
  38. if (!sk_wmem_schedule(sk, use)) {
  39. ret = -ENOMEM;
  40. goto msg_trim;
  41. }
  42. i = msg->sg.end;
  43. sk_msg_iter_var_prev(i);
  44. sge = &msg->sg.data[i];
  45. if (sk_msg_try_coalesce_ok(msg, elem_first_coalesce) &&
  46. sg_page(sge) == pfrag->page &&
  47. sge->offset + sge->length == orig_offset) {
  48. sge->length += use;
  49. } else {
  50. if (sk_msg_full(msg)) {
  51. ret = -ENOSPC;
  52. break;
  53. }
  54. sge = &msg->sg.data[msg->sg.end];
  55. sg_unmark_end(sge);
  56. sg_set_page(sge, pfrag->page, use, orig_offset);
  57. get_page(pfrag->page);
  58. sk_msg_iter_next(msg, end);
  59. }
  60. sk_mem_charge(sk, use);
  61. msg->sg.size += use;
  62. pfrag->offset += use;
  63. len -= use;
  64. }
  65. return ret;
  66. msg_trim:
  67. sk_msg_trim(sk, msg, osize);
  68. return ret;
  69. }
  70. EXPORT_SYMBOL_GPL(sk_msg_alloc);
  71. int sk_msg_clone(struct sock *sk, struct sk_msg *dst, struct sk_msg *src,
  72. u32 off, u32 len)
  73. {
  74. int i = src->sg.start;
  75. struct scatterlist *sge = sk_msg_elem(src, i);
  76. struct scatterlist *sgd = NULL;
  77. u32 sge_len, sge_off;
  78. while (off) {
  79. if (sge->length > off)
  80. break;
  81. off -= sge->length;
  82. sk_msg_iter_var_next(i);
  83. if (i == src->sg.end && off)
  84. return -ENOSPC;
  85. sge = sk_msg_elem(src, i);
  86. }
  87. while (len) {
  88. sge_len = sge->length - off;
  89. if (sge_len > len)
  90. sge_len = len;
  91. if (dst->sg.end)
  92. sgd = sk_msg_elem(dst, dst->sg.end - 1);
  93. if (sgd &&
  94. (sg_page(sge) == sg_page(sgd)) &&
  95. (sg_virt(sge) + off == sg_virt(sgd) + sgd->length)) {
  96. sgd->length += sge_len;
  97. dst->sg.size += sge_len;
  98. } else if (!sk_msg_full(dst)) {
  99. sge_off = sge->offset + off;
  100. sk_msg_page_add(dst, sg_page(sge), sge_len, sge_off);
  101. } else {
  102. return -ENOSPC;
  103. }
  104. off = 0;
  105. len -= sge_len;
  106. sk_mem_charge(sk, sge_len);
  107. sk_msg_iter_var_next(i);
  108. if (i == src->sg.end && len)
  109. return -ENOSPC;
  110. sge = sk_msg_elem(src, i);
  111. }
  112. return 0;
  113. }
  114. EXPORT_SYMBOL_GPL(sk_msg_clone);
  115. void sk_msg_return_zero(struct sock *sk, struct sk_msg *msg, int bytes)
  116. {
  117. int i = msg->sg.start;
  118. do {
  119. struct scatterlist *sge = sk_msg_elem(msg, i);
  120. if (bytes < sge->length) {
  121. sge->length -= bytes;
  122. sge->offset += bytes;
  123. sk_mem_uncharge(sk, bytes);
  124. break;
  125. }
  126. sk_mem_uncharge(sk, sge->length);
  127. bytes -= sge->length;
  128. sge->length = 0;
  129. sge->offset = 0;
  130. sk_msg_iter_var_next(i);
  131. } while (bytes && i != msg->sg.end);
  132. msg->sg.start = i;
  133. }
  134. EXPORT_SYMBOL_GPL(sk_msg_return_zero);
  135. void sk_msg_return(struct sock *sk, struct sk_msg *msg, int bytes)
  136. {
  137. int i = msg->sg.start;
  138. do {
  139. struct scatterlist *sge = &msg->sg.data[i];
  140. int uncharge = (bytes < sge->length) ? bytes : sge->length;
  141. sk_mem_uncharge(sk, uncharge);
  142. bytes -= uncharge;
  143. sk_msg_iter_var_next(i);
  144. } while (i != msg->sg.end);
  145. }
  146. EXPORT_SYMBOL_GPL(sk_msg_return);
  147. static int sk_msg_free_elem(struct sock *sk, struct sk_msg *msg, u32 i,
  148. bool charge)
  149. {
  150. struct scatterlist *sge = sk_msg_elem(msg, i);
  151. u32 len = sge->length;
  152. /* When the skb owns the memory we free it from consume_skb path. */
  153. if (!msg->skb) {
  154. if (charge)
  155. sk_mem_uncharge(sk, len);
  156. put_page(sg_page(sge));
  157. }
  158. memset(sge, 0, sizeof(*sge));
  159. return len;
  160. }
  161. static int __sk_msg_free(struct sock *sk, struct sk_msg *msg, u32 i,
  162. bool charge)
  163. {
  164. struct scatterlist *sge = sk_msg_elem(msg, i);
  165. int freed = 0;
  166. while (msg->sg.size) {
  167. msg->sg.size -= sge->length;
  168. freed += sk_msg_free_elem(sk, msg, i, charge);
  169. sk_msg_iter_var_next(i);
  170. sk_msg_check_to_free(msg, i, msg->sg.size);
  171. sge = sk_msg_elem(msg, i);
  172. }
  173. consume_skb(msg->skb);
  174. sk_msg_init(msg);
  175. return freed;
  176. }
  177. int sk_msg_free_nocharge(struct sock *sk, struct sk_msg *msg)
  178. {
  179. return __sk_msg_free(sk, msg, msg->sg.start, false);
  180. }
  181. EXPORT_SYMBOL_GPL(sk_msg_free_nocharge);
  182. int sk_msg_free(struct sock *sk, struct sk_msg *msg)
  183. {
  184. return __sk_msg_free(sk, msg, msg->sg.start, true);
  185. }
  186. EXPORT_SYMBOL_GPL(sk_msg_free);
  187. static void __sk_msg_free_partial(struct sock *sk, struct sk_msg *msg,
  188. u32 bytes, bool charge)
  189. {
  190. struct scatterlist *sge;
  191. u32 i = msg->sg.start;
  192. while (bytes) {
  193. sge = sk_msg_elem(msg, i);
  194. if (!sge->length)
  195. break;
  196. if (bytes < sge->length) {
  197. if (charge)
  198. sk_mem_uncharge(sk, bytes);
  199. sge->length -= bytes;
  200. sge->offset += bytes;
  201. msg->sg.size -= bytes;
  202. break;
  203. }
  204. msg->sg.size -= sge->length;
  205. bytes -= sge->length;
  206. sk_msg_free_elem(sk, msg, i, charge);
  207. sk_msg_iter_var_next(i);
  208. sk_msg_check_to_free(msg, i, bytes);
  209. }
  210. msg->sg.start = i;
  211. }
  212. void sk_msg_free_partial(struct sock *sk, struct sk_msg *msg, u32 bytes)
  213. {
  214. __sk_msg_free_partial(sk, msg, bytes, true);
  215. }
  216. EXPORT_SYMBOL_GPL(sk_msg_free_partial);
  217. void sk_msg_free_partial_nocharge(struct sock *sk, struct sk_msg *msg,
  218. u32 bytes)
  219. {
  220. __sk_msg_free_partial(sk, msg, bytes, false);
  221. }
  222. void sk_msg_trim(struct sock *sk, struct sk_msg *msg, int len)
  223. {
  224. int trim = msg->sg.size - len;
  225. u32 i = msg->sg.end;
  226. if (trim <= 0) {
  227. WARN_ON(trim < 0);
  228. return;
  229. }
  230. sk_msg_iter_var_prev(i);
  231. msg->sg.size = len;
  232. while (msg->sg.data[i].length &&
  233. trim >= msg->sg.data[i].length) {
  234. trim -= msg->sg.data[i].length;
  235. sk_msg_free_elem(sk, msg, i, true);
  236. sk_msg_iter_var_prev(i);
  237. if (!trim)
  238. goto out;
  239. }
  240. msg->sg.data[i].length -= trim;
  241. sk_mem_uncharge(sk, trim);
  242. /* Adjust copybreak if it falls into the trimmed part of last buf */
  243. if (msg->sg.curr == i && msg->sg.copybreak > msg->sg.data[i].length)
  244. msg->sg.copybreak = msg->sg.data[i].length;
  245. out:
  246. sk_msg_iter_var_next(i);
  247. msg->sg.end = i;
  248. /* If we trim data a full sg elem before curr pointer update
  249. * copybreak and current so that any future copy operations
  250. * start at new copy location.
  251. * However trimmed data that has not yet been used in a copy op
  252. * does not require an update.
  253. */
  254. if (!msg->sg.size) {
  255. msg->sg.curr = msg->sg.start;
  256. msg->sg.copybreak = 0;
  257. } else if (sk_msg_iter_dist(msg->sg.start, msg->sg.curr) >=
  258. sk_msg_iter_dist(msg->sg.start, msg->sg.end)) {
  259. sk_msg_iter_var_prev(i);
  260. msg->sg.curr = i;
  261. msg->sg.copybreak = msg->sg.data[i].length;
  262. }
  263. }
  264. EXPORT_SYMBOL_GPL(sk_msg_trim);
  265. int sk_msg_zerocopy_from_iter(struct sock *sk, struct iov_iter *from,
  266. struct sk_msg *msg, u32 bytes)
  267. {
  268. int i, maxpages, ret = 0, num_elems = sk_msg_elem_used(msg);
  269. const int to_max_pages = MAX_MSG_FRAGS;
  270. struct page *pages[MAX_MSG_FRAGS];
  271. ssize_t orig, copied, use, offset;
  272. orig = msg->sg.size;
  273. while (bytes > 0) {
  274. i = 0;
  275. maxpages = to_max_pages - num_elems;
  276. if (maxpages == 0) {
  277. ret = -EFAULT;
  278. goto out;
  279. }
  280. copied = iov_iter_get_pages2(from, pages, bytes, maxpages,
  281. &offset);
  282. if (copied <= 0) {
  283. ret = -EFAULT;
  284. goto out;
  285. }
  286. bytes -= copied;
  287. msg->sg.size += copied;
  288. while (copied) {
  289. use = min_t(int, copied, PAGE_SIZE - offset);
  290. sg_set_page(&msg->sg.data[msg->sg.end],
  291. pages[i], use, offset);
  292. sg_unmark_end(&msg->sg.data[msg->sg.end]);
  293. sk_mem_charge(sk, use);
  294. offset = 0;
  295. copied -= use;
  296. sk_msg_iter_next(msg, end);
  297. num_elems++;
  298. i++;
  299. }
  300. /* When zerocopy is mixed with sk_msg_*copy* operations we
  301. * may have a copybreak set in this case clear and prefer
  302. * zerocopy remainder when possible.
  303. */
  304. msg->sg.copybreak = 0;
  305. msg->sg.curr = msg->sg.end;
  306. }
  307. out:
  308. /* Revert iov_iter updates, msg will need to use 'trim' later if it
  309. * also needs to be cleared.
  310. */
  311. if (ret)
  312. iov_iter_revert(from, msg->sg.size - orig);
  313. return ret;
  314. }
  315. EXPORT_SYMBOL_GPL(sk_msg_zerocopy_from_iter);
  316. int sk_msg_memcopy_from_iter(struct sock *sk, struct iov_iter *from,
  317. struct sk_msg *msg, u32 bytes)
  318. {
  319. int ret = -ENOSPC, i = msg->sg.curr;
  320. struct scatterlist *sge;
  321. u32 copy, buf_size;
  322. void *to;
  323. do {
  324. sge = sk_msg_elem(msg, i);
  325. /* This is possible if a trim operation shrunk the buffer */
  326. if (msg->sg.copybreak >= sge->length) {
  327. msg->sg.copybreak = 0;
  328. sk_msg_iter_var_next(i);
  329. if (i == msg->sg.end)
  330. break;
  331. sge = sk_msg_elem(msg, i);
  332. }
  333. buf_size = sge->length - msg->sg.copybreak;
  334. copy = (buf_size > bytes) ? bytes : buf_size;
  335. to = sg_virt(sge) + msg->sg.copybreak;
  336. msg->sg.copybreak += copy;
  337. if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY)
  338. ret = copy_from_iter_nocache(to, copy, from);
  339. else
  340. ret = copy_from_iter(to, copy, from);
  341. if (ret != copy) {
  342. ret = -EFAULT;
  343. goto out;
  344. }
  345. bytes -= copy;
  346. if (!bytes)
  347. break;
  348. msg->sg.copybreak = 0;
  349. sk_msg_iter_var_next(i);
  350. } while (i != msg->sg.end);
  351. out:
  352. msg->sg.curr = i;
  353. return ret;
  354. }
  355. EXPORT_SYMBOL_GPL(sk_msg_memcopy_from_iter);
  356. /* Receive sk_msg from psock->ingress_msg to @msg. */
  357. int sk_msg_recvmsg(struct sock *sk, struct sk_psock *psock, struct msghdr *msg,
  358. int len, int flags)
  359. {
  360. struct iov_iter *iter = &msg->msg_iter;
  361. int peek = flags & MSG_PEEK;
  362. struct sk_msg *msg_rx;
  363. int i, copied = 0;
  364. msg_rx = sk_psock_peek_msg(psock);
  365. while (copied != len) {
  366. struct scatterlist *sge;
  367. if (unlikely(!msg_rx))
  368. break;
  369. i = msg_rx->sg.start;
  370. do {
  371. struct page *page;
  372. int copy;
  373. sge = sk_msg_elem(msg_rx, i);
  374. copy = sge->length;
  375. page = sg_page(sge);
  376. if (copied + copy > len)
  377. copy = len - copied;
  378. if (copy)
  379. copy = copy_page_to_iter(page, sge->offset, copy, iter);
  380. if (!copy) {
  381. copied = copied ? copied : -EFAULT;
  382. goto out;
  383. }
  384. copied += copy;
  385. if (likely(!peek)) {
  386. sge->offset += copy;
  387. sge->length -= copy;
  388. if (!msg_rx->skb) {
  389. sk_mem_uncharge(sk, copy);
  390. atomic_sub(copy, &sk->sk_rmem_alloc);
  391. }
  392. msg_rx->sg.size -= copy;
  393. if (!sge->length) {
  394. sk_msg_iter_var_next(i);
  395. if (!msg_rx->skb)
  396. put_page(page);
  397. }
  398. } else {
  399. /* Lets not optimize peek case if copy_page_to_iter
  400. * didn't copy the entire length lets just break.
  401. */
  402. if (copy != sge->length)
  403. goto out;
  404. sk_msg_iter_var_next(i);
  405. }
  406. if (copied == len)
  407. break;
  408. } while ((i != msg_rx->sg.end) && !sg_is_last(sge));
  409. if (unlikely(peek)) {
  410. msg_rx = sk_psock_next_msg(psock, msg_rx);
  411. if (!msg_rx)
  412. break;
  413. continue;
  414. }
  415. msg_rx->sg.start = i;
  416. if (!sge->length && (i == msg_rx->sg.end || sg_is_last(sge))) {
  417. msg_rx = sk_psock_dequeue_msg(psock);
  418. kfree_sk_msg(msg_rx);
  419. }
  420. msg_rx = sk_psock_peek_msg(psock);
  421. }
  422. out:
  423. return copied;
  424. }
  425. EXPORT_SYMBOL_GPL(sk_msg_recvmsg);
  426. bool sk_msg_is_readable(struct sock *sk)
  427. {
  428. struct sk_psock *psock;
  429. bool empty = true;
  430. rcu_read_lock();
  431. psock = sk_psock(sk);
  432. if (likely(psock))
  433. empty = list_empty(&psock->ingress_msg);
  434. rcu_read_unlock();
  435. return !empty;
  436. }
  437. EXPORT_SYMBOL_GPL(sk_msg_is_readable);
  438. static struct sk_msg *alloc_sk_msg(gfp_t gfp)
  439. {
  440. struct sk_msg *msg;
  441. msg = kzalloc(sizeof(*msg), gfp | __GFP_NOWARN);
  442. if (unlikely(!msg))
  443. return NULL;
  444. sg_init_marker(msg->sg.data, NR_MSG_FRAG_IDS);
  445. return msg;
  446. }
  447. static struct sk_msg *sk_psock_create_ingress_msg(struct sock *sk,
  448. struct sk_buff *skb)
  449. {
  450. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  451. return NULL;
  452. if (!sk_rmem_schedule(sk, skb, skb->truesize))
  453. return NULL;
  454. return alloc_sk_msg(GFP_KERNEL);
  455. }
  456. static int sk_psock_skb_ingress_enqueue(struct sk_buff *skb,
  457. u32 off, u32 len,
  458. struct sk_psock *psock,
  459. struct sock *sk,
  460. struct sk_msg *msg,
  461. bool take_ref)
  462. {
  463. int num_sge, copied;
  464. /* skb_to_sgvec will fail when the total number of fragments in
  465. * frag_list and frags exceeds MAX_MSG_FRAGS. For example, the
  466. * caller may aggregate multiple skbs.
  467. */
  468. num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
  469. if (num_sge < 0) {
  470. /* skb linearize may fail with ENOMEM, but lets simply try again
  471. * later if this happens. Under memory pressure we don't want to
  472. * drop the skb. We need to linearize the skb so that the mapping
  473. * in skb_to_sgvec can not error.
  474. * Note that skb_linearize requires the skb not to be shared.
  475. */
  476. if (skb_linearize(skb))
  477. return -EAGAIN;
  478. num_sge = skb_to_sgvec(skb, msg->sg.data, off, len);
  479. if (unlikely(num_sge < 0))
  480. return num_sge;
  481. }
  482. #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
  483. psock->ingress_bytes += len;
  484. #endif
  485. copied = len;
  486. msg->sg.start = 0;
  487. msg->sg.size = copied;
  488. msg->sg.end = num_sge;
  489. msg->skb = take_ref ? skb_get(skb) : skb;
  490. sk_psock_queue_msg(psock, msg);
  491. sk_psock_data_ready(sk, psock);
  492. return copied;
  493. }
  494. static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
  495. u32 off, u32 len, bool take_ref);
  496. static int sk_psock_skb_ingress(struct sk_psock *psock, struct sk_buff *skb,
  497. u32 off, u32 len)
  498. {
  499. struct sock *sk = psock->sk;
  500. struct sk_msg *msg;
  501. int err;
  502. /* If we are receiving on the same sock skb->sk is already assigned,
  503. * skip memory accounting and owner transition seeing it already set
  504. * correctly.
  505. */
  506. if (unlikely(skb->sk == sk))
  507. return sk_psock_skb_ingress_self(psock, skb, off, len, true);
  508. msg = sk_psock_create_ingress_msg(sk, skb);
  509. if (!msg)
  510. return -EAGAIN;
  511. /* This will transition ownership of the data from the socket where
  512. * the BPF program was run initiating the redirect to the socket
  513. * we will eventually receive this data on. The data will be released
  514. * from skb_consume found in __tcp_bpf_recvmsg() after its been copied
  515. * into user buffers.
  516. */
  517. skb_set_owner_r(skb, sk);
  518. err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg, true);
  519. if (err < 0)
  520. kfree(msg);
  521. return err;
  522. }
  523. /* Puts an skb on the ingress queue of the socket already assigned to the
  524. * skb. In this case we do not need to check memory limits or skb_set_owner_r
  525. * because the skb is already accounted for here.
  526. */
  527. static int sk_psock_skb_ingress_self(struct sk_psock *psock, struct sk_buff *skb,
  528. u32 off, u32 len, bool take_ref)
  529. {
  530. struct sk_msg *msg = alloc_sk_msg(GFP_ATOMIC);
  531. struct sock *sk = psock->sk;
  532. int err;
  533. if (unlikely(!msg))
  534. return -EAGAIN;
  535. skb_set_owner_r(skb, sk);
  536. err = sk_psock_skb_ingress_enqueue(skb, off, len, psock, sk, msg, take_ref);
  537. if (err < 0)
  538. kfree(msg);
  539. return err;
  540. }
  541. static int sk_psock_handle_skb(struct sk_psock *psock, struct sk_buff *skb,
  542. u32 off, u32 len, bool ingress)
  543. {
  544. if (!ingress) {
  545. if (!sock_writeable(psock->sk))
  546. return -EAGAIN;
  547. return skb_send_sock(psock->sk, skb, off, len);
  548. }
  549. return sk_psock_skb_ingress(psock, skb, off, len);
  550. }
  551. static void sk_psock_skb_state(struct sk_psock *psock,
  552. struct sk_psock_work_state *state,
  553. int len, int off)
  554. {
  555. spin_lock_bh(&psock->ingress_lock);
  556. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
  557. state->len = len;
  558. state->off = off;
  559. }
  560. spin_unlock_bh(&psock->ingress_lock);
  561. }
  562. static void sk_psock_backlog(struct work_struct *work)
  563. {
  564. struct delayed_work *dwork = to_delayed_work(work);
  565. struct sk_psock *psock = container_of(dwork, struct sk_psock, work);
  566. struct sk_psock_work_state *state = &psock->work_state;
  567. struct sk_buff *skb = NULL;
  568. u32 len = 0, off = 0;
  569. bool ingress;
  570. int ret;
  571. /* If sk is quickly removed from the map and then added back, the old
  572. * psock should not be scheduled, because there are now two psocks
  573. * pointing to the same sk.
  574. */
  575. if (!sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
  576. return;
  577. /* Increment the psock refcnt to synchronize with close(fd) path in
  578. * sock_map_close(), ensuring we wait for backlog thread completion
  579. * before sk_socket freed. If refcnt increment fails, it indicates
  580. * sock_map_close() completed with sk_socket potentially already freed.
  581. */
  582. if (!sk_psock_get(psock->sk))
  583. return;
  584. mutex_lock(&psock->work_mutex);
  585. while ((skb = skb_peek(&psock->ingress_skb))) {
  586. len = skb->len;
  587. off = 0;
  588. if (skb_bpf_strparser(skb)) {
  589. struct strp_msg *stm = strp_msg(skb);
  590. off = stm->offset;
  591. len = stm->full_len;
  592. }
  593. /* Resume processing from previous partial state */
  594. if (unlikely(state->len)) {
  595. len = state->len;
  596. off = state->off;
  597. }
  598. ingress = skb_bpf_ingress(skb);
  599. skb_bpf_redirect_clear(skb);
  600. do {
  601. ret = -EIO;
  602. if (!sock_flag(psock->sk, SOCK_DEAD))
  603. ret = sk_psock_handle_skb(psock, skb, off,
  604. len, ingress);
  605. if (ret <= 0) {
  606. if (ret == -EAGAIN) {
  607. sk_psock_skb_state(psock, state, len, off);
  608. /* Restore redir info we cleared before */
  609. skb_bpf_set_redir(skb, psock->sk, ingress);
  610. /* Delay slightly to prioritize any
  611. * other work that might be here.
  612. */
  613. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
  614. schedule_delayed_work(&psock->work, 1);
  615. goto end;
  616. }
  617. /* Hard errors break pipe and stop xmit. */
  618. sk_psock_report_error(psock, ret ? -ret : EPIPE);
  619. sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
  620. goto end;
  621. }
  622. off += ret;
  623. len -= ret;
  624. } while (len);
  625. /* The entire skb sent, clear state */
  626. sk_psock_skb_state(psock, state, 0, 0);
  627. skb = skb_dequeue(&psock->ingress_skb);
  628. kfree_skb(skb);
  629. }
  630. end:
  631. mutex_unlock(&psock->work_mutex);
  632. sk_psock_put(psock->sk, psock);
  633. }
  634. struct sk_psock *sk_psock_init(struct sock *sk, int node)
  635. {
  636. struct sk_psock *psock;
  637. struct proto *prot;
  638. write_lock_bh(&sk->sk_callback_lock);
  639. if (sk_is_inet(sk) && inet_csk_has_ulp(sk)) {
  640. psock = ERR_PTR(-EINVAL);
  641. goto out;
  642. }
  643. if (sk->sk_user_data) {
  644. psock = ERR_PTR(-EBUSY);
  645. goto out;
  646. }
  647. psock = kzalloc_node(sizeof(*psock), GFP_ATOMIC | __GFP_NOWARN, node);
  648. if (!psock) {
  649. psock = ERR_PTR(-ENOMEM);
  650. goto out;
  651. }
  652. prot = READ_ONCE(sk->sk_prot);
  653. psock->sk = sk;
  654. psock->eval = __SK_NONE;
  655. psock->sk_proto = prot;
  656. psock->saved_unhash = prot->unhash;
  657. psock->saved_destroy = prot->destroy;
  658. psock->saved_close = prot->close;
  659. psock->saved_write_space = sk->sk_write_space;
  660. INIT_LIST_HEAD(&psock->link);
  661. spin_lock_init(&psock->link_lock);
  662. INIT_DELAYED_WORK(&psock->work, sk_psock_backlog);
  663. mutex_init(&psock->work_mutex);
  664. INIT_LIST_HEAD(&psock->ingress_msg);
  665. spin_lock_init(&psock->ingress_lock);
  666. skb_queue_head_init(&psock->ingress_skb);
  667. sk_psock_set_state(psock, SK_PSOCK_TX_ENABLED);
  668. refcount_set(&psock->refcnt, 1);
  669. __rcu_assign_sk_user_data_with_flags(sk, psock,
  670. SK_USER_DATA_NOCOPY |
  671. SK_USER_DATA_PSOCK);
  672. sock_hold(sk);
  673. out:
  674. write_unlock_bh(&sk->sk_callback_lock);
  675. return psock;
  676. }
  677. EXPORT_SYMBOL_GPL(sk_psock_init);
  678. struct sk_psock_link *sk_psock_link_pop(struct sk_psock *psock)
  679. {
  680. struct sk_psock_link *link;
  681. spin_lock_bh(&psock->link_lock);
  682. link = list_first_entry_or_null(&psock->link, struct sk_psock_link,
  683. list);
  684. if (link)
  685. list_del(&link->list);
  686. spin_unlock_bh(&psock->link_lock);
  687. return link;
  688. }
  689. static void __sk_psock_purge_ingress_msg(struct sk_psock *psock)
  690. {
  691. struct sk_msg *msg, *tmp;
  692. list_for_each_entry_safe(msg, tmp, &psock->ingress_msg, list) {
  693. list_del(&msg->list);
  694. if (!msg->skb)
  695. atomic_sub(msg->sg.size, &psock->sk->sk_rmem_alloc);
  696. sk_msg_free(psock->sk, msg);
  697. kfree(msg);
  698. }
  699. }
  700. static void __sk_psock_zap_ingress(struct sk_psock *psock)
  701. {
  702. struct sk_buff *skb;
  703. while ((skb = skb_dequeue(&psock->ingress_skb)) != NULL) {
  704. skb_bpf_redirect_clear(skb);
  705. sock_drop(psock->sk, skb);
  706. }
  707. __sk_psock_purge_ingress_msg(psock);
  708. }
  709. static void sk_psock_link_destroy(struct sk_psock *psock)
  710. {
  711. struct sk_psock_link *link, *tmp;
  712. list_for_each_entry_safe(link, tmp, &psock->link, list) {
  713. list_del(&link->list);
  714. sk_psock_free_link(link);
  715. }
  716. }
  717. void sk_psock_stop(struct sk_psock *psock)
  718. {
  719. spin_lock_bh(&psock->ingress_lock);
  720. sk_psock_clear_state(psock, SK_PSOCK_TX_ENABLED);
  721. sk_psock_cork_free(psock);
  722. spin_unlock_bh(&psock->ingress_lock);
  723. }
  724. static void sk_psock_done_strp(struct sk_psock *psock);
  725. static void sk_psock_destroy(struct work_struct *work)
  726. {
  727. struct sk_psock *psock = container_of(to_rcu_work(work),
  728. struct sk_psock, rwork);
  729. /* No sk_callback_lock since already detached. */
  730. sk_psock_done_strp(psock);
  731. cancel_delayed_work_sync(&psock->work);
  732. __sk_psock_zap_ingress(psock);
  733. mutex_destroy(&psock->work_mutex);
  734. psock_progs_drop(&psock->progs);
  735. sk_psock_link_destroy(psock);
  736. sk_psock_cork_free(psock);
  737. if (psock->sk_redir)
  738. sock_put(psock->sk_redir);
  739. if (psock->sk_pair)
  740. sock_put(psock->sk_pair);
  741. sock_put(psock->sk);
  742. kfree(psock);
  743. }
  744. void sk_psock_drop(struct sock *sk, struct sk_psock *psock)
  745. {
  746. write_lock_bh(&sk->sk_callback_lock);
  747. sk_psock_restore_proto(sk, psock);
  748. rcu_assign_sk_user_data(sk, NULL);
  749. if (psock->progs.stream_parser)
  750. sk_psock_stop_strp(sk, psock);
  751. else if (psock->progs.stream_verdict || psock->progs.skb_verdict)
  752. sk_psock_stop_verdict(sk, psock);
  753. write_unlock_bh(&sk->sk_callback_lock);
  754. sk_psock_stop(psock);
  755. INIT_RCU_WORK(&psock->rwork, sk_psock_destroy);
  756. queue_rcu_work(system_wq, &psock->rwork);
  757. }
  758. EXPORT_SYMBOL_GPL(sk_psock_drop);
  759. static int sk_psock_map_verd(int verdict, bool redir)
  760. {
  761. switch (verdict) {
  762. case SK_PASS:
  763. return redir ? __SK_REDIRECT : __SK_PASS;
  764. case SK_DROP:
  765. default:
  766. break;
  767. }
  768. return __SK_DROP;
  769. }
  770. int sk_psock_msg_verdict(struct sock *sk, struct sk_psock *psock,
  771. struct sk_msg *msg)
  772. {
  773. struct bpf_prog *prog;
  774. int ret;
  775. rcu_read_lock();
  776. prog = READ_ONCE(psock->progs.msg_parser);
  777. if (unlikely(!prog)) {
  778. ret = __SK_PASS;
  779. goto out;
  780. }
  781. sk_msg_compute_data_pointers(msg);
  782. msg->sk = sk;
  783. ret = bpf_prog_run_pin_on_cpu(prog, msg);
  784. ret = sk_psock_map_verd(ret, msg->sk_redir);
  785. psock->apply_bytes = msg->apply_bytes;
  786. if (ret == __SK_REDIRECT) {
  787. if (psock->sk_redir) {
  788. sock_put(psock->sk_redir);
  789. psock->sk_redir = NULL;
  790. }
  791. if (!msg->sk_redir) {
  792. ret = __SK_DROP;
  793. goto out;
  794. }
  795. psock->redir_ingress = sk_msg_to_ingress(msg);
  796. psock->sk_redir = msg->sk_redir;
  797. sock_hold(psock->sk_redir);
  798. }
  799. out:
  800. rcu_read_unlock();
  801. return ret;
  802. }
  803. EXPORT_SYMBOL_GPL(sk_psock_msg_verdict);
  804. static int sk_psock_skb_redirect(struct sk_psock *from, struct sk_buff *skb)
  805. {
  806. struct sk_psock *psock_other;
  807. struct sock *sk_other;
  808. sk_other = skb_bpf_redirect_fetch(skb);
  809. /* This error is a buggy BPF program, it returned a redirect
  810. * return code, but then didn't set a redirect interface.
  811. */
  812. if (unlikely(!sk_other)) {
  813. skb_bpf_redirect_clear(skb);
  814. sock_drop(from->sk, skb);
  815. return -EIO;
  816. }
  817. psock_other = sk_psock(sk_other);
  818. /* This error indicates the socket is being torn down or had another
  819. * error that caused the pipe to break. We can't send a packet on
  820. * a socket that is in this state so we drop the skb.
  821. */
  822. if (!psock_other || sock_flag(sk_other, SOCK_DEAD)) {
  823. skb_bpf_redirect_clear(skb);
  824. sock_drop(from->sk, skb);
  825. return -EIO;
  826. }
  827. spin_lock_bh(&psock_other->ingress_lock);
  828. if (!sk_psock_test_state(psock_other, SK_PSOCK_TX_ENABLED)) {
  829. spin_unlock_bh(&psock_other->ingress_lock);
  830. skb_bpf_redirect_clear(skb);
  831. sock_drop(from->sk, skb);
  832. return -EIO;
  833. }
  834. skb_queue_tail(&psock_other->ingress_skb, skb);
  835. schedule_delayed_work(&psock_other->work, 0);
  836. spin_unlock_bh(&psock_other->ingress_lock);
  837. return 0;
  838. }
  839. static void sk_psock_tls_verdict_apply(struct sk_buff *skb,
  840. struct sk_psock *from, int verdict)
  841. {
  842. switch (verdict) {
  843. case __SK_REDIRECT:
  844. sk_psock_skb_redirect(from, skb);
  845. break;
  846. case __SK_PASS:
  847. case __SK_DROP:
  848. default:
  849. break;
  850. }
  851. }
  852. int sk_psock_tls_strp_read(struct sk_psock *psock, struct sk_buff *skb)
  853. {
  854. struct bpf_prog *prog;
  855. int ret = __SK_PASS;
  856. rcu_read_lock();
  857. prog = READ_ONCE(psock->progs.stream_verdict);
  858. if (likely(prog)) {
  859. skb->sk = psock->sk;
  860. skb_dst_drop(skb);
  861. skb_bpf_redirect_clear(skb);
  862. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  863. ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
  864. skb->sk = NULL;
  865. }
  866. sk_psock_tls_verdict_apply(skb, psock, ret);
  867. rcu_read_unlock();
  868. return ret;
  869. }
  870. EXPORT_SYMBOL_GPL(sk_psock_tls_strp_read);
  871. static int sk_psock_verdict_apply(struct sk_psock *psock, struct sk_buff *skb,
  872. int verdict)
  873. {
  874. struct sock *sk_other;
  875. int err = 0;
  876. u32 len, off;
  877. switch (verdict) {
  878. case __SK_PASS:
  879. err = -EIO;
  880. sk_other = psock->sk;
  881. if (sock_flag(sk_other, SOCK_DEAD) ||
  882. !sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
  883. goto out_free;
  884. skb_bpf_set_ingress(skb);
  885. /* If the queue is empty then we can submit directly
  886. * into the msg queue. If its not empty we have to
  887. * queue work otherwise we may get OOO data. Otherwise,
  888. * if sk_psock_skb_ingress errors will be handled by
  889. * retrying later from workqueue.
  890. */
  891. if (skb_queue_empty(&psock->ingress_skb)) {
  892. len = skb->len;
  893. off = 0;
  894. if (skb_bpf_strparser(skb)) {
  895. struct strp_msg *stm = strp_msg(skb);
  896. off = stm->offset;
  897. len = stm->full_len;
  898. }
  899. err = sk_psock_skb_ingress_self(psock, skb, off, len, false);
  900. }
  901. if (err < 0) {
  902. spin_lock_bh(&psock->ingress_lock);
  903. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED)) {
  904. skb_queue_tail(&psock->ingress_skb, skb);
  905. schedule_delayed_work(&psock->work, 0);
  906. err = 0;
  907. }
  908. spin_unlock_bh(&psock->ingress_lock);
  909. if (err < 0)
  910. goto out_free;
  911. }
  912. break;
  913. case __SK_REDIRECT:
  914. tcp_eat_skb(psock->sk, skb);
  915. err = sk_psock_skb_redirect(psock, skb);
  916. break;
  917. case __SK_DROP:
  918. default:
  919. out_free:
  920. skb_bpf_redirect_clear(skb);
  921. tcp_eat_skb(psock->sk, skb);
  922. sock_drop(psock->sk, skb);
  923. }
  924. return err;
  925. }
  926. static void sk_psock_write_space(struct sock *sk)
  927. {
  928. struct sk_psock *psock;
  929. void (*write_space)(struct sock *sk) = NULL;
  930. rcu_read_lock();
  931. psock = sk_psock(sk);
  932. if (likely(psock)) {
  933. if (sk_psock_test_state(psock, SK_PSOCK_TX_ENABLED))
  934. schedule_delayed_work(&psock->work, 0);
  935. write_space = psock->saved_write_space;
  936. }
  937. rcu_read_unlock();
  938. if (write_space)
  939. write_space(sk);
  940. }
  941. #if IS_ENABLED(CONFIG_BPF_STREAM_PARSER)
  942. static void sk_psock_strp_read(struct strparser *strp, struct sk_buff *skb)
  943. {
  944. struct sk_psock *psock;
  945. struct bpf_prog *prog;
  946. int ret = __SK_DROP;
  947. struct sock *sk;
  948. rcu_read_lock();
  949. sk = strp->sk;
  950. psock = sk_psock(sk);
  951. if (unlikely(!psock)) {
  952. sock_drop(sk, skb);
  953. goto out;
  954. }
  955. prog = READ_ONCE(psock->progs.stream_verdict);
  956. if (likely(prog)) {
  957. skb->sk = sk;
  958. skb_dst_drop(skb);
  959. skb_bpf_redirect_clear(skb);
  960. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  961. skb_bpf_set_strparser(skb);
  962. ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
  963. skb->sk = NULL;
  964. }
  965. sk_psock_verdict_apply(psock, skb, ret);
  966. out:
  967. rcu_read_unlock();
  968. }
  969. static int sk_psock_strp_read_done(struct strparser *strp, int err)
  970. {
  971. return err;
  972. }
  973. static int sk_psock_strp_parse(struct strparser *strp, struct sk_buff *skb)
  974. {
  975. struct sk_psock *psock = container_of(strp, struct sk_psock, strp);
  976. struct bpf_prog *prog;
  977. int ret = skb->len;
  978. rcu_read_lock();
  979. prog = READ_ONCE(psock->progs.stream_parser);
  980. if (likely(prog)) {
  981. skb->sk = psock->sk;
  982. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  983. skb->sk = NULL;
  984. }
  985. rcu_read_unlock();
  986. return ret;
  987. }
  988. /* Called with socket lock held. */
  989. static void sk_psock_strp_data_ready(struct sock *sk)
  990. {
  991. struct sk_psock *psock;
  992. trace_sk_data_ready(sk);
  993. rcu_read_lock();
  994. psock = sk_psock(sk);
  995. if (likely(psock)) {
  996. if (tls_sw_has_ctx_rx(sk)) {
  997. psock->saved_data_ready(sk);
  998. } else {
  999. read_lock_bh(&sk->sk_callback_lock);
  1000. strp_data_ready(&psock->strp);
  1001. read_unlock_bh(&sk->sk_callback_lock);
  1002. }
  1003. }
  1004. rcu_read_unlock();
  1005. }
  1006. int sk_psock_init_strp(struct sock *sk, struct sk_psock *psock)
  1007. {
  1008. int ret;
  1009. static const struct strp_callbacks cb = {
  1010. .rcv_msg = sk_psock_strp_read,
  1011. .read_sock_done = sk_psock_strp_read_done,
  1012. .parse_msg = sk_psock_strp_parse,
  1013. };
  1014. ret = strp_init(&psock->strp, sk, &cb);
  1015. if (!ret)
  1016. sk_psock_set_state(psock, SK_PSOCK_RX_STRP_ENABLED);
  1017. if (sk_is_tcp(sk)) {
  1018. psock->strp.cb.read_sock = tcp_bpf_strp_read_sock;
  1019. psock->copied_seq = tcp_sk(sk)->copied_seq;
  1020. }
  1021. return ret;
  1022. }
  1023. void sk_psock_start_strp(struct sock *sk, struct sk_psock *psock)
  1024. {
  1025. if (psock->saved_data_ready)
  1026. return;
  1027. psock->saved_data_ready = sk->sk_data_ready;
  1028. sk->sk_data_ready = sk_psock_strp_data_ready;
  1029. sk->sk_write_space = sk_psock_write_space;
  1030. }
  1031. void sk_psock_stop_strp(struct sock *sk, struct sk_psock *psock)
  1032. {
  1033. psock_set_prog(&psock->progs.stream_parser, NULL);
  1034. if (!psock->saved_data_ready)
  1035. return;
  1036. sk->sk_data_ready = psock->saved_data_ready;
  1037. psock->saved_data_ready = NULL;
  1038. strp_stop(&psock->strp);
  1039. }
  1040. static void sk_psock_done_strp(struct sk_psock *psock)
  1041. {
  1042. /* Parser has been stopped */
  1043. if (sk_psock_test_state(psock, SK_PSOCK_RX_STRP_ENABLED))
  1044. strp_done(&psock->strp);
  1045. }
  1046. #else
  1047. static void sk_psock_done_strp(struct sk_psock *psock)
  1048. {
  1049. }
  1050. #endif /* CONFIG_BPF_STREAM_PARSER */
  1051. static int sk_psock_verdict_recv(struct sock *sk, struct sk_buff *skb)
  1052. {
  1053. struct sk_psock *psock;
  1054. struct bpf_prog *prog;
  1055. int ret = __SK_DROP;
  1056. int len = skb->len;
  1057. rcu_read_lock();
  1058. psock = sk_psock(sk);
  1059. if (unlikely(!psock)) {
  1060. len = 0;
  1061. tcp_eat_skb(sk, skb);
  1062. sock_drop(sk, skb);
  1063. goto out;
  1064. }
  1065. prog = READ_ONCE(psock->progs.stream_verdict);
  1066. if (!prog)
  1067. prog = READ_ONCE(psock->progs.skb_verdict);
  1068. if (likely(prog)) {
  1069. skb_dst_drop(skb);
  1070. skb_bpf_redirect_clear(skb);
  1071. ret = bpf_prog_run_pin_on_cpu(prog, skb);
  1072. ret = sk_psock_map_verd(ret, skb_bpf_redirect_fetch(skb));
  1073. }
  1074. ret = sk_psock_verdict_apply(psock, skb, ret);
  1075. if (ret < 0)
  1076. len = ret;
  1077. out:
  1078. rcu_read_unlock();
  1079. return len;
  1080. }
  1081. static void sk_psock_verdict_data_ready(struct sock *sk)
  1082. {
  1083. struct socket *sock = sk->sk_socket;
  1084. const struct proto_ops *ops;
  1085. int copied;
  1086. trace_sk_data_ready(sk);
  1087. if (unlikely(!sock))
  1088. return;
  1089. ops = READ_ONCE(sock->ops);
  1090. if (!ops || !ops->read_skb)
  1091. return;
  1092. copied = ops->read_skb(sk, sk_psock_verdict_recv);
  1093. if (copied >= 0) {
  1094. struct sk_psock *psock;
  1095. rcu_read_lock();
  1096. psock = sk_psock(sk);
  1097. if (psock)
  1098. sk_psock_data_ready(sk, psock);
  1099. rcu_read_unlock();
  1100. }
  1101. }
  1102. void sk_psock_start_verdict(struct sock *sk, struct sk_psock *psock)
  1103. {
  1104. if (psock->saved_data_ready)
  1105. return;
  1106. psock->saved_data_ready = sk->sk_data_ready;
  1107. sk->sk_data_ready = sk_psock_verdict_data_ready;
  1108. sk->sk_write_space = sk_psock_write_space;
  1109. }
  1110. void sk_psock_stop_verdict(struct sock *sk, struct sk_psock *psock)
  1111. {
  1112. psock_set_prog(&psock->progs.stream_verdict, NULL);
  1113. psock_set_prog(&psock->progs.skb_verdict, NULL);
  1114. if (!psock->saved_data_ready)
  1115. return;
  1116. sk->sk_data_ready = psock->saved_data_ready;
  1117. psock->saved_data_ready = NULL;
  1118. }