protocol.c 109 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287
  1. // SPDX-License-Identifier: GPL-2.0
  2. /* Multipath TCP
  3. *
  4. * Copyright (c) 2017 - 2019, Intel Corporation.
  5. */
  6. #define pr_fmt(fmt) "MPTCP: " fmt
  7. #include <linux/kernel.h>
  8. #include <linux/module.h>
  9. #include <linux/netdevice.h>
  10. #include <linux/sched/signal.h>
  11. #include <linux/atomic.h>
  12. #include <net/sock.h>
  13. #include <net/inet_common.h>
  14. #include <net/inet_hashtables.h>
  15. #include <net/protocol.h>
  16. #include <net/tcp_states.h>
  17. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  18. #include <net/transp_v6.h>
  19. #endif
  20. #include <net/mptcp.h>
  21. #include <net/hotdata.h>
  22. #include <net/xfrm.h>
  23. #include <asm/ioctls.h>
  24. #include "protocol.h"
  25. #include "mib.h"
  26. #define CREATE_TRACE_POINTS
  27. #include <trace/events/mptcp.h>
  28. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  29. struct mptcp6_sock {
  30. struct mptcp_sock msk;
  31. struct ipv6_pinfo np;
  32. };
  33. #endif
  34. enum {
  35. MPTCP_CMSG_TS = BIT(0),
  36. MPTCP_CMSG_INQ = BIT(1),
  37. };
  38. static struct percpu_counter mptcp_sockets_allocated ____cacheline_aligned_in_smp;
  39. static void __mptcp_destroy_sock(struct sock *sk);
  40. static void mptcp_check_send_data_fin(struct sock *sk);
  41. DEFINE_PER_CPU(struct mptcp_delegated_action, mptcp_delegated_actions);
  42. static struct net_device mptcp_napi_dev;
  43. /* Returns end sequence number of the receiver's advertised window */
  44. static u64 mptcp_wnd_end(const struct mptcp_sock *msk)
  45. {
  46. return READ_ONCE(msk->wnd_end);
  47. }
  48. static const struct proto_ops *mptcp_fallback_tcp_ops(const struct sock *sk)
  49. {
  50. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  51. if (sk->sk_prot == &tcpv6_prot)
  52. return &inet6_stream_ops;
  53. #endif
  54. WARN_ON_ONCE(sk->sk_prot != &tcp_prot);
  55. return &inet_stream_ops;
  56. }
  57. static int __mptcp_socket_create(struct mptcp_sock *msk)
  58. {
  59. struct mptcp_subflow_context *subflow;
  60. struct sock *sk = (struct sock *)msk;
  61. struct socket *ssock;
  62. int err;
  63. err = mptcp_subflow_create_socket(sk, sk->sk_family, &ssock);
  64. if (err)
  65. return err;
  66. msk->scaling_ratio = tcp_sk(ssock->sk)->scaling_ratio;
  67. WRITE_ONCE(msk->first, ssock->sk);
  68. subflow = mptcp_subflow_ctx(ssock->sk);
  69. list_add(&subflow->node, &msk->conn_list);
  70. sock_hold(ssock->sk);
  71. subflow->request_mptcp = 1;
  72. subflow->subflow_id = msk->subflow_id++;
  73. /* This is the first subflow, always with id 0 */
  74. WRITE_ONCE(subflow->local_id, 0);
  75. mptcp_sock_graft(msk->first, sk->sk_socket);
  76. iput(SOCK_INODE(ssock));
  77. return 0;
  78. }
  79. /* If the MPC handshake is not started, returns the first subflow,
  80. * eventually allocating it.
  81. */
  82. struct sock *__mptcp_nmpc_sk(struct mptcp_sock *msk)
  83. {
  84. struct sock *sk = (struct sock *)msk;
  85. int ret;
  86. if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
  87. return ERR_PTR(-EINVAL);
  88. if (!msk->first) {
  89. ret = __mptcp_socket_create(msk);
  90. if (ret)
  91. return ERR_PTR(ret);
  92. }
  93. return msk->first;
  94. }
  95. static void mptcp_drop(struct sock *sk, struct sk_buff *skb)
  96. {
  97. sk_drops_add(sk, skb);
  98. __kfree_skb(skb);
  99. }
  100. static void mptcp_rmem_fwd_alloc_add(struct sock *sk, int size)
  101. {
  102. WRITE_ONCE(mptcp_sk(sk)->rmem_fwd_alloc,
  103. mptcp_sk(sk)->rmem_fwd_alloc + size);
  104. }
  105. static void mptcp_rmem_charge(struct sock *sk, int size)
  106. {
  107. mptcp_rmem_fwd_alloc_add(sk, -size);
  108. }
  109. static bool mptcp_try_coalesce(struct sock *sk, struct sk_buff *to,
  110. struct sk_buff *from)
  111. {
  112. bool fragstolen;
  113. int delta;
  114. if (MPTCP_SKB_CB(from)->offset ||
  115. ((to->len + from->len) > (sk->sk_rcvbuf >> 3)) ||
  116. !skb_try_coalesce(to, from, &fragstolen, &delta))
  117. return false;
  118. pr_debug("colesced seq %llx into %llx new len %d new end seq %llx\n",
  119. MPTCP_SKB_CB(from)->map_seq, MPTCP_SKB_CB(to)->map_seq,
  120. to->len, MPTCP_SKB_CB(from)->end_seq);
  121. MPTCP_SKB_CB(to)->end_seq = MPTCP_SKB_CB(from)->end_seq;
  122. /* note the fwd memory can reach a negative value after accounting
  123. * for the delta, but the later skb free will restore a non
  124. * negative one
  125. */
  126. atomic_add(delta, &sk->sk_rmem_alloc);
  127. mptcp_rmem_charge(sk, delta);
  128. kfree_skb_partial(from, fragstolen);
  129. return true;
  130. }
  131. static bool mptcp_ooo_try_coalesce(struct mptcp_sock *msk, struct sk_buff *to,
  132. struct sk_buff *from)
  133. {
  134. if (MPTCP_SKB_CB(from)->map_seq != MPTCP_SKB_CB(to)->end_seq)
  135. return false;
  136. return mptcp_try_coalesce((struct sock *)msk, to, from);
  137. }
  138. static void __mptcp_rmem_reclaim(struct sock *sk, int amount)
  139. {
  140. amount >>= PAGE_SHIFT;
  141. mptcp_rmem_charge(sk, amount << PAGE_SHIFT);
  142. __sk_mem_reduce_allocated(sk, amount);
  143. }
  144. static void mptcp_rmem_uncharge(struct sock *sk, int size)
  145. {
  146. struct mptcp_sock *msk = mptcp_sk(sk);
  147. int reclaimable;
  148. mptcp_rmem_fwd_alloc_add(sk, size);
  149. reclaimable = msk->rmem_fwd_alloc - sk_unused_reserved_mem(sk);
  150. /* see sk_mem_uncharge() for the rationale behind the following schema */
  151. if (unlikely(reclaimable >= PAGE_SIZE))
  152. __mptcp_rmem_reclaim(sk, reclaimable);
  153. }
  154. static void mptcp_rfree(struct sk_buff *skb)
  155. {
  156. unsigned int len = skb->truesize;
  157. struct sock *sk = skb->sk;
  158. atomic_sub(len, &sk->sk_rmem_alloc);
  159. mptcp_rmem_uncharge(sk, len);
  160. }
  161. void mptcp_set_owner_r(struct sk_buff *skb, struct sock *sk)
  162. {
  163. skb_orphan(skb);
  164. skb->sk = sk;
  165. skb->destructor = mptcp_rfree;
  166. atomic_add(skb->truesize, &sk->sk_rmem_alloc);
  167. mptcp_rmem_charge(sk, skb->truesize);
  168. }
  169. /* "inspired" by tcp_data_queue_ofo(), main differences:
  170. * - use mptcp seqs
  171. * - don't cope with sacks
  172. */
  173. static void mptcp_data_queue_ofo(struct mptcp_sock *msk, struct sk_buff *skb)
  174. {
  175. struct sock *sk = (struct sock *)msk;
  176. struct rb_node **p, *parent;
  177. u64 seq, end_seq, max_seq;
  178. struct sk_buff *skb1;
  179. seq = MPTCP_SKB_CB(skb)->map_seq;
  180. end_seq = MPTCP_SKB_CB(skb)->end_seq;
  181. max_seq = atomic64_read(&msk->rcv_wnd_sent);
  182. pr_debug("msk=%p seq=%llx limit=%llx empty=%d\n", msk, seq, max_seq,
  183. RB_EMPTY_ROOT(&msk->out_of_order_queue));
  184. if (after64(end_seq, max_seq)) {
  185. /* out of window */
  186. mptcp_drop(sk, skb);
  187. pr_debug("oow by %lld, rcv_wnd_sent %llu\n",
  188. (unsigned long long)end_seq - (unsigned long)max_seq,
  189. (unsigned long long)atomic64_read(&msk->rcv_wnd_sent));
  190. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_NODSSWINDOW);
  191. return;
  192. }
  193. p = &msk->out_of_order_queue.rb_node;
  194. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUE);
  195. if (RB_EMPTY_ROOT(&msk->out_of_order_queue)) {
  196. rb_link_node(&skb->rbnode, NULL, p);
  197. rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
  198. msk->ooo_last_skb = skb;
  199. goto end;
  200. }
  201. /* with 2 subflows, adding at end of ooo queue is quite likely
  202. * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
  203. */
  204. if (mptcp_ooo_try_coalesce(msk, msk->ooo_last_skb, skb)) {
  205. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
  206. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
  207. return;
  208. }
  209. /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
  210. if (!before64(seq, MPTCP_SKB_CB(msk->ooo_last_skb)->end_seq)) {
  211. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOQUEUETAIL);
  212. parent = &msk->ooo_last_skb->rbnode;
  213. p = &parent->rb_right;
  214. goto insert;
  215. }
  216. /* Find place to insert this segment. Handle overlaps on the way. */
  217. parent = NULL;
  218. while (*p) {
  219. parent = *p;
  220. skb1 = rb_to_skb(parent);
  221. if (before64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
  222. p = &parent->rb_left;
  223. continue;
  224. }
  225. if (before64(seq, MPTCP_SKB_CB(skb1)->end_seq)) {
  226. if (!after64(end_seq, MPTCP_SKB_CB(skb1)->end_seq)) {
  227. /* All the bits are present. Drop. */
  228. mptcp_drop(sk, skb);
  229. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  230. return;
  231. }
  232. if (after64(seq, MPTCP_SKB_CB(skb1)->map_seq)) {
  233. /* partial overlap:
  234. * | skb |
  235. * | skb1 |
  236. * continue traversing
  237. */
  238. } else {
  239. /* skb's seq == skb1's seq and skb covers skb1.
  240. * Replace skb1 with skb.
  241. */
  242. rb_replace_node(&skb1->rbnode, &skb->rbnode,
  243. &msk->out_of_order_queue);
  244. mptcp_drop(sk, skb1);
  245. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  246. goto merge_right;
  247. }
  248. } else if (mptcp_ooo_try_coalesce(msk, skb1, skb)) {
  249. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_OFOMERGE);
  250. return;
  251. }
  252. p = &parent->rb_right;
  253. }
  254. insert:
  255. /* Insert segment into RB tree. */
  256. rb_link_node(&skb->rbnode, parent, p);
  257. rb_insert_color(&skb->rbnode, &msk->out_of_order_queue);
  258. merge_right:
  259. /* Remove other segments covered by skb. */
  260. while ((skb1 = skb_rb_next(skb)) != NULL) {
  261. if (before64(end_seq, MPTCP_SKB_CB(skb1)->end_seq))
  262. break;
  263. rb_erase(&skb1->rbnode, &msk->out_of_order_queue);
  264. mptcp_drop(sk, skb1);
  265. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  266. }
  267. /* If there is no skb after us, we are the last_skb ! */
  268. if (!skb1)
  269. msk->ooo_last_skb = skb;
  270. end:
  271. skb_condense(skb);
  272. mptcp_set_owner_r(skb, sk);
  273. }
  274. static bool mptcp_rmem_schedule(struct sock *sk, struct sock *ssk, int size)
  275. {
  276. struct mptcp_sock *msk = mptcp_sk(sk);
  277. int amt, amount;
  278. if (size <= msk->rmem_fwd_alloc)
  279. return true;
  280. size -= msk->rmem_fwd_alloc;
  281. amt = sk_mem_pages(size);
  282. amount = amt << PAGE_SHIFT;
  283. if (!__sk_mem_raise_allocated(sk, size, amt, SK_MEM_RECV))
  284. return false;
  285. mptcp_rmem_fwd_alloc_add(sk, amount);
  286. return true;
  287. }
  288. static bool __mptcp_move_skb(struct mptcp_sock *msk, struct sock *ssk,
  289. struct sk_buff *skb, unsigned int offset,
  290. size_t copy_len)
  291. {
  292. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  293. struct sock *sk = (struct sock *)msk;
  294. struct sk_buff *tail;
  295. bool has_rxtstamp;
  296. __skb_unlink(skb, &ssk->sk_receive_queue);
  297. skb_ext_reset(skb);
  298. skb_orphan(skb);
  299. /* try to fetch required memory from subflow */
  300. if (!mptcp_rmem_schedule(sk, ssk, skb->truesize)) {
  301. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RCVPRUNED);
  302. goto drop;
  303. }
  304. has_rxtstamp = TCP_SKB_CB(skb)->has_rxtstamp;
  305. /* the skb map_seq accounts for the skb offset:
  306. * mptcp_subflow_get_mapped_dsn() is based on the current tp->copied_seq
  307. * value
  308. */
  309. MPTCP_SKB_CB(skb)->map_seq = mptcp_subflow_get_mapped_dsn(subflow);
  310. MPTCP_SKB_CB(skb)->end_seq = MPTCP_SKB_CB(skb)->map_seq + copy_len;
  311. MPTCP_SKB_CB(skb)->offset = offset;
  312. MPTCP_SKB_CB(skb)->has_rxtstamp = has_rxtstamp;
  313. if (MPTCP_SKB_CB(skb)->map_seq == msk->ack_seq) {
  314. /* in sequence */
  315. msk->bytes_received += copy_len;
  316. WRITE_ONCE(msk->ack_seq, msk->ack_seq + copy_len);
  317. tail = skb_peek_tail(&sk->sk_receive_queue);
  318. if (tail && mptcp_try_coalesce(sk, tail, skb))
  319. return true;
  320. mptcp_set_owner_r(skb, sk);
  321. __skb_queue_tail(&sk->sk_receive_queue, skb);
  322. return true;
  323. } else if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq)) {
  324. mptcp_data_queue_ofo(msk, skb);
  325. return false;
  326. }
  327. /* old data, keep it simple and drop the whole pkt, sender
  328. * will retransmit as needed, if needed.
  329. */
  330. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  331. drop:
  332. mptcp_drop(sk, skb);
  333. return false;
  334. }
  335. static void mptcp_stop_rtx_timer(struct sock *sk)
  336. {
  337. struct inet_connection_sock *icsk = inet_csk(sk);
  338. sk_stop_timer(sk, &icsk->icsk_retransmit_timer);
  339. mptcp_sk(sk)->timer_ival = 0;
  340. }
  341. static void mptcp_close_wake_up(struct sock *sk)
  342. {
  343. if (sock_flag(sk, SOCK_DEAD))
  344. return;
  345. sk->sk_state_change(sk);
  346. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  347. sk->sk_state == TCP_CLOSE)
  348. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  349. else
  350. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  351. }
  352. static void mptcp_shutdown_subflows(struct mptcp_sock *msk)
  353. {
  354. struct mptcp_subflow_context *subflow;
  355. mptcp_for_each_subflow(msk, subflow) {
  356. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  357. bool slow;
  358. slow = lock_sock_fast(ssk);
  359. tcp_shutdown(ssk, SEND_SHUTDOWN);
  360. unlock_sock_fast(ssk, slow);
  361. }
  362. }
  363. /* called under the msk socket lock */
  364. static bool mptcp_pending_data_fin_ack(struct sock *sk)
  365. {
  366. struct mptcp_sock *msk = mptcp_sk(sk);
  367. return ((1 << sk->sk_state) &
  368. (TCPF_FIN_WAIT1 | TCPF_CLOSING | TCPF_LAST_ACK)) &&
  369. msk->write_seq == READ_ONCE(msk->snd_una);
  370. }
  371. static void mptcp_check_data_fin_ack(struct sock *sk)
  372. {
  373. struct mptcp_sock *msk = mptcp_sk(sk);
  374. /* Look for an acknowledged DATA_FIN */
  375. if (mptcp_pending_data_fin_ack(sk)) {
  376. WRITE_ONCE(msk->snd_data_fin_enable, 0);
  377. switch (sk->sk_state) {
  378. case TCP_FIN_WAIT1:
  379. mptcp_set_state(sk, TCP_FIN_WAIT2);
  380. break;
  381. case TCP_CLOSING:
  382. case TCP_LAST_ACK:
  383. mptcp_shutdown_subflows(msk);
  384. mptcp_set_state(sk, TCP_CLOSE);
  385. break;
  386. }
  387. mptcp_close_wake_up(sk);
  388. }
  389. }
  390. /* can be called with no lock acquired */
  391. static bool mptcp_pending_data_fin(struct sock *sk, u64 *seq)
  392. {
  393. struct mptcp_sock *msk = mptcp_sk(sk);
  394. if (READ_ONCE(msk->rcv_data_fin) &&
  395. ((1 << inet_sk_state_load(sk)) &
  396. (TCPF_ESTABLISHED | TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2))) {
  397. u64 rcv_data_fin_seq = READ_ONCE(msk->rcv_data_fin_seq);
  398. if (READ_ONCE(msk->ack_seq) == rcv_data_fin_seq) {
  399. if (seq)
  400. *seq = rcv_data_fin_seq;
  401. return true;
  402. }
  403. }
  404. return false;
  405. }
  406. static void mptcp_set_datafin_timeout(struct sock *sk)
  407. {
  408. struct inet_connection_sock *icsk = inet_csk(sk);
  409. u32 retransmits;
  410. retransmits = min_t(u32, icsk->icsk_retransmits,
  411. ilog2(TCP_RTO_MAX / TCP_RTO_MIN));
  412. mptcp_sk(sk)->timer_ival = TCP_RTO_MIN << retransmits;
  413. }
  414. static void __mptcp_set_timeout(struct sock *sk, long tout)
  415. {
  416. mptcp_sk(sk)->timer_ival = tout > 0 ? tout : TCP_RTO_MIN;
  417. }
  418. static long mptcp_timeout_from_subflow(const struct mptcp_subflow_context *subflow)
  419. {
  420. const struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  421. return inet_csk(ssk)->icsk_pending && !subflow->stale_count ?
  422. inet_csk(ssk)->icsk_timeout - jiffies : 0;
  423. }
  424. static void mptcp_set_timeout(struct sock *sk)
  425. {
  426. struct mptcp_subflow_context *subflow;
  427. long tout = 0;
  428. mptcp_for_each_subflow(mptcp_sk(sk), subflow)
  429. tout = max(tout, mptcp_timeout_from_subflow(subflow));
  430. __mptcp_set_timeout(sk, tout);
  431. }
  432. static inline bool tcp_can_send_ack(const struct sock *ssk)
  433. {
  434. return !((1 << inet_sk_state_load(ssk)) &
  435. (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_TIME_WAIT | TCPF_CLOSE | TCPF_LISTEN));
  436. }
  437. void __mptcp_subflow_send_ack(struct sock *ssk)
  438. {
  439. if (tcp_can_send_ack(ssk))
  440. tcp_send_ack(ssk);
  441. }
  442. static void mptcp_subflow_send_ack(struct sock *ssk)
  443. {
  444. bool slow;
  445. slow = lock_sock_fast(ssk);
  446. __mptcp_subflow_send_ack(ssk);
  447. unlock_sock_fast(ssk, slow);
  448. }
  449. static void mptcp_send_ack(struct mptcp_sock *msk)
  450. {
  451. struct mptcp_subflow_context *subflow;
  452. mptcp_for_each_subflow(msk, subflow)
  453. mptcp_subflow_send_ack(mptcp_subflow_tcp_sock(subflow));
  454. }
  455. static void mptcp_subflow_cleanup_rbuf(struct sock *ssk, int copied)
  456. {
  457. bool slow;
  458. slow = lock_sock_fast(ssk);
  459. if (tcp_can_send_ack(ssk))
  460. tcp_cleanup_rbuf(ssk, copied);
  461. unlock_sock_fast(ssk, slow);
  462. }
  463. static bool mptcp_subflow_could_cleanup(const struct sock *ssk, bool rx_empty)
  464. {
  465. const struct inet_connection_sock *icsk = inet_csk(ssk);
  466. u8 ack_pending = READ_ONCE(icsk->icsk_ack.pending);
  467. const struct tcp_sock *tp = tcp_sk(ssk);
  468. return (ack_pending & ICSK_ACK_SCHED) &&
  469. ((READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->rcv_wup) >
  470. READ_ONCE(icsk->icsk_ack.rcv_mss)) ||
  471. (rx_empty && ack_pending &
  472. (ICSK_ACK_PUSHED2 | ICSK_ACK_PUSHED)));
  473. }
  474. static void mptcp_cleanup_rbuf(struct mptcp_sock *msk, int copied)
  475. {
  476. int old_space = READ_ONCE(msk->old_wspace);
  477. struct mptcp_subflow_context *subflow;
  478. struct sock *sk = (struct sock *)msk;
  479. int space = __mptcp_space(sk);
  480. bool cleanup, rx_empty;
  481. cleanup = (space > 0) && (space >= (old_space << 1)) && copied;
  482. rx_empty = !__mptcp_rmem(sk) && copied;
  483. mptcp_for_each_subflow(msk, subflow) {
  484. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  485. if (cleanup || mptcp_subflow_could_cleanup(ssk, rx_empty))
  486. mptcp_subflow_cleanup_rbuf(ssk, copied);
  487. }
  488. }
  489. static bool mptcp_check_data_fin(struct sock *sk)
  490. {
  491. struct mptcp_sock *msk = mptcp_sk(sk);
  492. u64 rcv_data_fin_seq;
  493. bool ret = false;
  494. /* Need to ack a DATA_FIN received from a peer while this side
  495. * of the connection is in ESTABLISHED, FIN_WAIT1, or FIN_WAIT2.
  496. * msk->rcv_data_fin was set when parsing the incoming options
  497. * at the subflow level and the msk lock was not held, so this
  498. * is the first opportunity to act on the DATA_FIN and change
  499. * the msk state.
  500. *
  501. * If we are caught up to the sequence number of the incoming
  502. * DATA_FIN, send the DATA_ACK now and do state transition. If
  503. * not caught up, do nothing and let the recv code send DATA_ACK
  504. * when catching up.
  505. */
  506. if (mptcp_pending_data_fin(sk, &rcv_data_fin_seq)) {
  507. WRITE_ONCE(msk->ack_seq, msk->ack_seq + 1);
  508. WRITE_ONCE(msk->rcv_data_fin, 0);
  509. WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
  510. smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
  511. switch (sk->sk_state) {
  512. case TCP_ESTABLISHED:
  513. mptcp_set_state(sk, TCP_CLOSE_WAIT);
  514. break;
  515. case TCP_FIN_WAIT1:
  516. mptcp_set_state(sk, TCP_CLOSING);
  517. break;
  518. case TCP_FIN_WAIT2:
  519. mptcp_shutdown_subflows(msk);
  520. mptcp_set_state(sk, TCP_CLOSE);
  521. break;
  522. default:
  523. /* Other states not expected */
  524. WARN_ON_ONCE(1);
  525. break;
  526. }
  527. ret = true;
  528. if (!__mptcp_check_fallback(msk))
  529. mptcp_send_ack(msk);
  530. mptcp_close_wake_up(sk);
  531. }
  532. return ret;
  533. }
  534. static void mptcp_dss_corruption(struct mptcp_sock *msk, struct sock *ssk)
  535. {
  536. if (mptcp_try_fallback(ssk)) {
  537. MPTCP_INC_STATS(sock_net(ssk),
  538. MPTCP_MIB_DSSCORRUPTIONFALLBACK);
  539. } else {
  540. MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_DSSCORRUPTIONRESET);
  541. mptcp_subflow_reset(ssk);
  542. }
  543. }
  544. static bool __mptcp_move_skbs_from_subflow(struct mptcp_sock *msk,
  545. struct sock *ssk,
  546. unsigned int *bytes)
  547. {
  548. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  549. struct sock *sk = (struct sock *)msk;
  550. unsigned int moved = 0;
  551. bool more_data_avail;
  552. struct tcp_sock *tp;
  553. bool done = false;
  554. int sk_rbuf;
  555. sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
  556. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  557. int ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
  558. if (unlikely(ssk_rbuf > sk_rbuf)) {
  559. WRITE_ONCE(sk->sk_rcvbuf, ssk_rbuf);
  560. sk_rbuf = ssk_rbuf;
  561. }
  562. }
  563. pr_debug("msk=%p ssk=%p\n", msk, ssk);
  564. tp = tcp_sk(ssk);
  565. do {
  566. u32 map_remaining, offset;
  567. u32 seq = tp->copied_seq;
  568. struct sk_buff *skb;
  569. bool fin;
  570. /* try to move as much data as available */
  571. map_remaining = subflow->map_data_len -
  572. mptcp_subflow_get_map_offset(subflow);
  573. skb = skb_peek(&ssk->sk_receive_queue);
  574. if (!skb) {
  575. /* With racing move_skbs_to_msk() and __mptcp_move_skbs(),
  576. * a different CPU can have already processed the pending
  577. * data, stop here or we can enter an infinite loop
  578. */
  579. if (!moved)
  580. done = true;
  581. break;
  582. }
  583. if (__mptcp_check_fallback(msk)) {
  584. /* Under fallback skbs have no MPTCP extension and TCP could
  585. * collapse them between the dummy map creation and the
  586. * current dequeue. Be sure to adjust the map size.
  587. */
  588. map_remaining = skb->len;
  589. subflow->map_data_len = skb->len;
  590. }
  591. offset = seq - TCP_SKB_CB(skb)->seq;
  592. fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
  593. if (fin) {
  594. done = true;
  595. seq++;
  596. }
  597. if (offset < skb->len) {
  598. size_t len = skb->len - offset;
  599. if (tp->urg_data)
  600. done = true;
  601. if (__mptcp_move_skb(msk, ssk, skb, offset, len))
  602. moved += len;
  603. seq += len;
  604. if (unlikely(map_remaining < len)) {
  605. DEBUG_NET_WARN_ON_ONCE(1);
  606. mptcp_dss_corruption(msk, ssk);
  607. }
  608. } else {
  609. if (unlikely(!fin)) {
  610. DEBUG_NET_WARN_ON_ONCE(1);
  611. mptcp_dss_corruption(msk, ssk);
  612. }
  613. sk_eat_skb(ssk, skb);
  614. done = true;
  615. }
  616. WRITE_ONCE(tp->copied_seq, seq);
  617. more_data_avail = mptcp_subflow_data_available(ssk);
  618. if (atomic_read(&sk->sk_rmem_alloc) > sk_rbuf) {
  619. done = true;
  620. break;
  621. }
  622. } while (more_data_avail);
  623. if (moved > 0)
  624. msk->last_data_recv = tcp_jiffies32;
  625. *bytes += moved;
  626. return done;
  627. }
  628. static bool __mptcp_ofo_queue(struct mptcp_sock *msk)
  629. {
  630. struct sock *sk = (struct sock *)msk;
  631. struct sk_buff *skb, *tail;
  632. bool moved = false;
  633. struct rb_node *p;
  634. u64 end_seq;
  635. p = rb_first(&msk->out_of_order_queue);
  636. pr_debug("msk=%p empty=%d\n", msk, RB_EMPTY_ROOT(&msk->out_of_order_queue));
  637. while (p) {
  638. skb = rb_to_skb(p);
  639. if (after64(MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq))
  640. break;
  641. p = rb_next(p);
  642. rb_erase(&skb->rbnode, &msk->out_of_order_queue);
  643. if (unlikely(!after64(MPTCP_SKB_CB(skb)->end_seq,
  644. msk->ack_seq))) {
  645. mptcp_drop(sk, skb);
  646. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_DUPDATA);
  647. continue;
  648. }
  649. end_seq = MPTCP_SKB_CB(skb)->end_seq;
  650. tail = skb_peek_tail(&sk->sk_receive_queue);
  651. if (!tail || !mptcp_ooo_try_coalesce(msk, tail, skb)) {
  652. int delta = msk->ack_seq - MPTCP_SKB_CB(skb)->map_seq;
  653. /* skip overlapping data, if any */
  654. pr_debug("uncoalesced seq=%llx ack seq=%llx delta=%d\n",
  655. MPTCP_SKB_CB(skb)->map_seq, msk->ack_seq,
  656. delta);
  657. MPTCP_SKB_CB(skb)->offset += delta;
  658. MPTCP_SKB_CB(skb)->map_seq += delta;
  659. __skb_queue_tail(&sk->sk_receive_queue, skb);
  660. }
  661. msk->bytes_received += end_seq - msk->ack_seq;
  662. WRITE_ONCE(msk->ack_seq, end_seq);
  663. moved = true;
  664. }
  665. return moved;
  666. }
  667. static bool __mptcp_subflow_error_report(struct sock *sk, struct sock *ssk)
  668. {
  669. int err = sock_error(ssk);
  670. int ssk_state;
  671. if (!err)
  672. return false;
  673. /* only propagate errors on fallen-back sockets or
  674. * on MPC connect
  675. */
  676. if (sk->sk_state != TCP_SYN_SENT && !__mptcp_check_fallback(mptcp_sk(sk)))
  677. return false;
  678. /* We need to propagate only transition to CLOSE state.
  679. * Orphaned socket will see such state change via
  680. * subflow_sched_work_if_closed() and that path will properly
  681. * destroy the msk as needed.
  682. */
  683. ssk_state = inet_sk_state_load(ssk);
  684. if (ssk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DEAD))
  685. mptcp_set_state(sk, ssk_state);
  686. WRITE_ONCE(sk->sk_err, -err);
  687. /* This barrier is coupled with smp_rmb() in mptcp_poll() */
  688. smp_wmb();
  689. sk_error_report(sk);
  690. return true;
  691. }
  692. void __mptcp_error_report(struct sock *sk)
  693. {
  694. struct mptcp_subflow_context *subflow;
  695. struct mptcp_sock *msk = mptcp_sk(sk);
  696. mptcp_for_each_subflow(msk, subflow)
  697. if (__mptcp_subflow_error_report(sk, mptcp_subflow_tcp_sock(subflow)))
  698. break;
  699. }
  700. /* In most cases we will be able to lock the mptcp socket. If its already
  701. * owned, we need to defer to the work queue to avoid ABBA deadlock.
  702. */
  703. static bool move_skbs_to_msk(struct mptcp_sock *msk, struct sock *ssk)
  704. {
  705. struct sock *sk = (struct sock *)msk;
  706. unsigned int moved = 0;
  707. __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
  708. __mptcp_ofo_queue(msk);
  709. if (unlikely(ssk->sk_err)) {
  710. if (!sock_owned_by_user(sk))
  711. __mptcp_error_report(sk);
  712. else
  713. __set_bit(MPTCP_ERROR_REPORT, &msk->cb_flags);
  714. }
  715. /* If the moves have caught up with the DATA_FIN sequence number
  716. * it's time to ack the DATA_FIN and change socket state, but
  717. * this is not a good place to change state. Let the workqueue
  718. * do it.
  719. */
  720. if (mptcp_pending_data_fin(sk, NULL))
  721. mptcp_schedule_work(sk);
  722. return moved > 0;
  723. }
  724. void mptcp_data_ready(struct sock *sk, struct sock *ssk)
  725. {
  726. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  727. struct mptcp_sock *msk = mptcp_sk(sk);
  728. int sk_rbuf, ssk_rbuf;
  729. /* The peer can send data while we are shutting down this
  730. * subflow at msk destruction time, but we must avoid enqueuing
  731. * more data to the msk receive queue
  732. */
  733. if (unlikely(subflow->disposable))
  734. return;
  735. ssk_rbuf = READ_ONCE(ssk->sk_rcvbuf);
  736. sk_rbuf = READ_ONCE(sk->sk_rcvbuf);
  737. if (unlikely(ssk_rbuf > sk_rbuf))
  738. sk_rbuf = ssk_rbuf;
  739. /* over limit? can't append more skbs to msk, Also, no need to wake-up*/
  740. if (__mptcp_rmem(sk) > sk_rbuf)
  741. return;
  742. /* Wake-up the reader only for in-sequence data */
  743. mptcp_data_lock(sk);
  744. if (move_skbs_to_msk(msk, ssk) && mptcp_epollin_ready(sk))
  745. sk->sk_data_ready(sk);
  746. mptcp_data_unlock(sk);
  747. }
  748. static void mptcp_subflow_joined(struct mptcp_sock *msk, struct sock *ssk)
  749. {
  750. mptcp_subflow_ctx(ssk)->map_seq = READ_ONCE(msk->ack_seq);
  751. msk->allow_infinite_fallback = false;
  752. mptcp_event(MPTCP_EVENT_SUB_ESTABLISHED, msk, ssk, GFP_ATOMIC);
  753. }
  754. static bool __mptcp_finish_join(struct mptcp_sock *msk, struct sock *ssk)
  755. {
  756. struct sock *sk = (struct sock *)msk;
  757. if (sk->sk_state != TCP_ESTABLISHED)
  758. return false;
  759. spin_lock_bh(&msk->fallback_lock);
  760. if (!msk->allow_subflows) {
  761. spin_unlock_bh(&msk->fallback_lock);
  762. return false;
  763. }
  764. mptcp_subflow_joined(msk, ssk);
  765. spin_unlock_bh(&msk->fallback_lock);
  766. /* attach to msk socket only after we are sure we will deal with it
  767. * at close time
  768. */
  769. if (sk->sk_socket && !ssk->sk_socket)
  770. mptcp_sock_graft(ssk, sk->sk_socket);
  771. mptcp_subflow_ctx(ssk)->subflow_id = msk->subflow_id++;
  772. mptcp_sockopt_sync_locked(msk, ssk);
  773. mptcp_stop_tout_timer(sk);
  774. __mptcp_propagate_sndbuf(sk, ssk);
  775. return true;
  776. }
  777. static void __mptcp_flush_join_list(struct sock *sk, struct list_head *join_list)
  778. {
  779. struct mptcp_subflow_context *tmp, *subflow;
  780. struct mptcp_sock *msk = mptcp_sk(sk);
  781. list_for_each_entry_safe(subflow, tmp, join_list, node) {
  782. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  783. bool slow = lock_sock_fast(ssk);
  784. list_move_tail(&subflow->node, &msk->conn_list);
  785. if (!__mptcp_finish_join(msk, ssk))
  786. mptcp_subflow_reset(ssk);
  787. unlock_sock_fast(ssk, slow);
  788. }
  789. }
  790. static bool mptcp_rtx_timer_pending(struct sock *sk)
  791. {
  792. return timer_pending(&inet_csk(sk)->icsk_retransmit_timer);
  793. }
  794. static void mptcp_reset_rtx_timer(struct sock *sk)
  795. {
  796. struct inet_connection_sock *icsk = inet_csk(sk);
  797. unsigned long tout;
  798. /* prevent rescheduling on close */
  799. if (unlikely(inet_sk_state_load(sk) == TCP_CLOSE))
  800. return;
  801. tout = mptcp_sk(sk)->timer_ival;
  802. sk_reset_timer(sk, &icsk->icsk_retransmit_timer, jiffies + tout);
  803. }
  804. bool mptcp_schedule_work(struct sock *sk)
  805. {
  806. if (inet_sk_state_load(sk) != TCP_CLOSE &&
  807. schedule_work(&mptcp_sk(sk)->work)) {
  808. /* each subflow already holds a reference to the sk, and the
  809. * workqueue is invoked by a subflow, so sk can't go away here.
  810. */
  811. sock_hold(sk);
  812. return true;
  813. }
  814. return false;
  815. }
  816. static struct sock *mptcp_subflow_recv_lookup(const struct mptcp_sock *msk)
  817. {
  818. struct mptcp_subflow_context *subflow;
  819. msk_owned_by_me(msk);
  820. mptcp_for_each_subflow(msk, subflow) {
  821. if (READ_ONCE(subflow->data_avail))
  822. return mptcp_subflow_tcp_sock(subflow);
  823. }
  824. return NULL;
  825. }
  826. static bool mptcp_skb_can_collapse_to(u64 write_seq,
  827. const struct sk_buff *skb,
  828. const struct mptcp_ext *mpext)
  829. {
  830. if (!tcp_skb_can_collapse_to(skb))
  831. return false;
  832. /* can collapse only if MPTCP level sequence is in order and this
  833. * mapping has not been xmitted yet
  834. */
  835. return mpext && mpext->data_seq + mpext->data_len == write_seq &&
  836. !mpext->frozen;
  837. }
  838. /* we can append data to the given data frag if:
  839. * - there is space available in the backing page_frag
  840. * - the data frag tail matches the current page_frag free offset
  841. * - the data frag end sequence number matches the current write seq
  842. */
  843. static bool mptcp_frag_can_collapse_to(const struct mptcp_sock *msk,
  844. const struct page_frag *pfrag,
  845. const struct mptcp_data_frag *df)
  846. {
  847. return df && pfrag->page == df->page &&
  848. pfrag->size - pfrag->offset > 0 &&
  849. pfrag->offset == (df->offset + df->data_len) &&
  850. df->data_seq + df->data_len == msk->write_seq;
  851. }
  852. static void dfrag_uncharge(struct sock *sk, int len)
  853. {
  854. sk_mem_uncharge(sk, len);
  855. sk_wmem_queued_add(sk, -len);
  856. }
  857. static void dfrag_clear(struct sock *sk, struct mptcp_data_frag *dfrag)
  858. {
  859. int len = dfrag->data_len + dfrag->overhead;
  860. list_del(&dfrag->list);
  861. dfrag_uncharge(sk, len);
  862. put_page(dfrag->page);
  863. }
  864. /* called under both the msk socket lock and the data lock */
  865. static void __mptcp_clean_una(struct sock *sk)
  866. {
  867. struct mptcp_sock *msk = mptcp_sk(sk);
  868. struct mptcp_data_frag *dtmp, *dfrag;
  869. u64 snd_una;
  870. snd_una = msk->snd_una;
  871. list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list) {
  872. if (after64(dfrag->data_seq + dfrag->data_len, snd_una))
  873. break;
  874. if (unlikely(dfrag == msk->first_pending)) {
  875. /* in recovery mode can see ack after the current snd head */
  876. if (WARN_ON_ONCE(!msk->recovery))
  877. break;
  878. WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
  879. }
  880. dfrag_clear(sk, dfrag);
  881. }
  882. dfrag = mptcp_rtx_head(sk);
  883. if (dfrag && after64(snd_una, dfrag->data_seq)) {
  884. u64 delta = snd_una - dfrag->data_seq;
  885. /* prevent wrap around in recovery mode */
  886. if (unlikely(delta > dfrag->already_sent)) {
  887. if (WARN_ON_ONCE(!msk->recovery))
  888. goto out;
  889. if (WARN_ON_ONCE(delta > dfrag->data_len))
  890. goto out;
  891. dfrag->already_sent += delta - dfrag->already_sent;
  892. }
  893. dfrag->data_seq += delta;
  894. dfrag->offset += delta;
  895. dfrag->data_len -= delta;
  896. dfrag->already_sent -= delta;
  897. dfrag_uncharge(sk, delta);
  898. }
  899. /* all retransmitted data acked, recovery completed */
  900. if (unlikely(msk->recovery) && after64(msk->snd_una, msk->recovery_snd_nxt))
  901. msk->recovery = false;
  902. out:
  903. if (snd_una == msk->snd_nxt && snd_una == msk->write_seq) {
  904. if (mptcp_rtx_timer_pending(sk) && !mptcp_data_fin_enabled(msk))
  905. mptcp_stop_rtx_timer(sk);
  906. } else {
  907. mptcp_reset_rtx_timer(sk);
  908. }
  909. if (mptcp_pending_data_fin_ack(sk))
  910. mptcp_schedule_work(sk);
  911. }
  912. static void __mptcp_clean_una_wakeup(struct sock *sk)
  913. {
  914. lockdep_assert_held_once(&sk->sk_lock.slock);
  915. __mptcp_clean_una(sk);
  916. mptcp_write_space(sk);
  917. }
  918. static void mptcp_clean_una_wakeup(struct sock *sk)
  919. {
  920. mptcp_data_lock(sk);
  921. __mptcp_clean_una_wakeup(sk);
  922. mptcp_data_unlock(sk);
  923. }
  924. static void mptcp_enter_memory_pressure(struct sock *sk)
  925. {
  926. struct mptcp_subflow_context *subflow;
  927. struct mptcp_sock *msk = mptcp_sk(sk);
  928. bool first = true;
  929. mptcp_for_each_subflow(msk, subflow) {
  930. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  931. if (first)
  932. tcp_enter_memory_pressure(ssk);
  933. sk_stream_moderate_sndbuf(ssk);
  934. first = false;
  935. }
  936. __mptcp_sync_sndbuf(sk);
  937. }
  938. /* ensure we get enough memory for the frag hdr, beyond some minimal amount of
  939. * data
  940. */
  941. static bool mptcp_page_frag_refill(struct sock *sk, struct page_frag *pfrag)
  942. {
  943. if (likely(skb_page_frag_refill(32U + sizeof(struct mptcp_data_frag),
  944. pfrag, sk->sk_allocation)))
  945. return true;
  946. mptcp_enter_memory_pressure(sk);
  947. return false;
  948. }
  949. static struct mptcp_data_frag *
  950. mptcp_carve_data_frag(const struct mptcp_sock *msk, struct page_frag *pfrag,
  951. int orig_offset)
  952. {
  953. int offset = ALIGN(orig_offset, sizeof(long));
  954. struct mptcp_data_frag *dfrag;
  955. dfrag = (struct mptcp_data_frag *)(page_to_virt(pfrag->page) + offset);
  956. dfrag->data_len = 0;
  957. dfrag->data_seq = msk->write_seq;
  958. dfrag->overhead = offset - orig_offset + sizeof(struct mptcp_data_frag);
  959. dfrag->offset = offset + sizeof(struct mptcp_data_frag);
  960. dfrag->already_sent = 0;
  961. dfrag->page = pfrag->page;
  962. return dfrag;
  963. }
  964. struct mptcp_sendmsg_info {
  965. int mss_now;
  966. int size_goal;
  967. u16 limit;
  968. u16 sent;
  969. unsigned int flags;
  970. bool data_lock_held;
  971. };
  972. static int mptcp_check_allowed_size(const struct mptcp_sock *msk, struct sock *ssk,
  973. u64 data_seq, int avail_size)
  974. {
  975. u64 window_end = mptcp_wnd_end(msk);
  976. u64 mptcp_snd_wnd;
  977. if (__mptcp_check_fallback(msk))
  978. return avail_size;
  979. mptcp_snd_wnd = window_end - data_seq;
  980. avail_size = min_t(unsigned int, mptcp_snd_wnd, avail_size);
  981. if (unlikely(tcp_sk(ssk)->snd_wnd < mptcp_snd_wnd)) {
  982. tcp_sk(ssk)->snd_wnd = min_t(u64, U32_MAX, mptcp_snd_wnd);
  983. MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_SNDWNDSHARED);
  984. }
  985. return avail_size;
  986. }
  987. static bool __mptcp_add_ext(struct sk_buff *skb, gfp_t gfp)
  988. {
  989. struct skb_ext *mpext = __skb_ext_alloc(gfp);
  990. if (!mpext)
  991. return false;
  992. __skb_ext_set(skb, SKB_EXT_MPTCP, mpext);
  993. return true;
  994. }
  995. static struct sk_buff *__mptcp_do_alloc_tx_skb(struct sock *sk, gfp_t gfp)
  996. {
  997. struct sk_buff *skb;
  998. skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
  999. if (likely(skb)) {
  1000. if (likely(__mptcp_add_ext(skb, gfp))) {
  1001. skb_reserve(skb, MAX_TCP_HEADER);
  1002. skb->ip_summed = CHECKSUM_PARTIAL;
  1003. INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
  1004. return skb;
  1005. }
  1006. __kfree_skb(skb);
  1007. } else {
  1008. mptcp_enter_memory_pressure(sk);
  1009. }
  1010. return NULL;
  1011. }
  1012. static struct sk_buff *__mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, gfp_t gfp)
  1013. {
  1014. struct sk_buff *skb;
  1015. skb = __mptcp_do_alloc_tx_skb(sk, gfp);
  1016. if (!skb)
  1017. return NULL;
  1018. if (likely(sk_wmem_schedule(ssk, skb->truesize))) {
  1019. tcp_skb_entail(ssk, skb);
  1020. return skb;
  1021. }
  1022. tcp_skb_tsorted_anchor_cleanup(skb);
  1023. kfree_skb(skb);
  1024. return NULL;
  1025. }
  1026. static struct sk_buff *mptcp_alloc_tx_skb(struct sock *sk, struct sock *ssk, bool data_lock_held)
  1027. {
  1028. gfp_t gfp = data_lock_held ? GFP_ATOMIC : sk->sk_allocation;
  1029. return __mptcp_alloc_tx_skb(sk, ssk, gfp);
  1030. }
  1031. /* note: this always recompute the csum on the whole skb, even
  1032. * if we just appended a single frag. More status info needed
  1033. */
  1034. static void mptcp_update_data_checksum(struct sk_buff *skb, int added)
  1035. {
  1036. struct mptcp_ext *mpext = mptcp_get_ext(skb);
  1037. __wsum csum = ~csum_unfold(mpext->csum);
  1038. int offset = skb->len - added;
  1039. mpext->csum = csum_fold(csum_block_add(csum, skb_checksum(skb, offset, added, 0), offset));
  1040. }
  1041. static void mptcp_update_infinite_map(struct mptcp_sock *msk,
  1042. struct sock *ssk,
  1043. struct mptcp_ext *mpext)
  1044. {
  1045. if (!mpext)
  1046. return;
  1047. mpext->infinite_map = 1;
  1048. mpext->data_len = 0;
  1049. if (!mptcp_try_fallback(ssk)) {
  1050. mptcp_subflow_reset(ssk);
  1051. return;
  1052. }
  1053. MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_INFINITEMAPTX);
  1054. mptcp_subflow_ctx(ssk)->send_infinite_map = 0;
  1055. pr_fallback(msk);
  1056. }
  1057. #define MPTCP_MAX_GSO_SIZE (GSO_LEGACY_MAX_SIZE - (MAX_TCP_HEADER + 1))
  1058. static int mptcp_sendmsg_frag(struct sock *sk, struct sock *ssk,
  1059. struct mptcp_data_frag *dfrag,
  1060. struct mptcp_sendmsg_info *info)
  1061. {
  1062. u64 data_seq = dfrag->data_seq + info->sent;
  1063. int offset = dfrag->offset + info->sent;
  1064. struct mptcp_sock *msk = mptcp_sk(sk);
  1065. bool zero_window_probe = false;
  1066. struct mptcp_ext *mpext = NULL;
  1067. bool can_coalesce = false;
  1068. bool reuse_skb = true;
  1069. struct sk_buff *skb;
  1070. size_t copy;
  1071. int i;
  1072. pr_debug("msk=%p ssk=%p sending dfrag at seq=%llu len=%u already sent=%u\n",
  1073. msk, ssk, dfrag->data_seq, dfrag->data_len, info->sent);
  1074. if (WARN_ON_ONCE(info->sent > info->limit ||
  1075. info->limit > dfrag->data_len))
  1076. return 0;
  1077. if (unlikely(!__tcp_can_send(ssk)))
  1078. return -EAGAIN;
  1079. /* compute send limit */
  1080. if (unlikely(ssk->sk_gso_max_size > MPTCP_MAX_GSO_SIZE))
  1081. ssk->sk_gso_max_size = MPTCP_MAX_GSO_SIZE;
  1082. info->mss_now = tcp_send_mss(ssk, &info->size_goal, info->flags);
  1083. copy = info->size_goal;
  1084. skb = tcp_write_queue_tail(ssk);
  1085. if (skb && copy > skb->len) {
  1086. /* Limit the write to the size available in the
  1087. * current skb, if any, so that we create at most a new skb.
  1088. * Explicitly tells TCP internals to avoid collapsing on later
  1089. * queue management operation, to avoid breaking the ext <->
  1090. * SSN association set here
  1091. */
  1092. mpext = mptcp_get_ext(skb);
  1093. if (!mptcp_skb_can_collapse_to(data_seq, skb, mpext)) {
  1094. TCP_SKB_CB(skb)->eor = 1;
  1095. tcp_mark_push(tcp_sk(ssk), skb);
  1096. goto alloc_skb;
  1097. }
  1098. i = skb_shinfo(skb)->nr_frags;
  1099. can_coalesce = skb_can_coalesce(skb, i, dfrag->page, offset);
  1100. if (!can_coalesce && i >= READ_ONCE(net_hotdata.sysctl_max_skb_frags)) {
  1101. tcp_mark_push(tcp_sk(ssk), skb);
  1102. goto alloc_skb;
  1103. }
  1104. copy -= skb->len;
  1105. } else {
  1106. alloc_skb:
  1107. skb = mptcp_alloc_tx_skb(sk, ssk, info->data_lock_held);
  1108. if (!skb)
  1109. return -ENOMEM;
  1110. i = skb_shinfo(skb)->nr_frags;
  1111. reuse_skb = false;
  1112. mpext = mptcp_get_ext(skb);
  1113. }
  1114. /* Zero window and all data acked? Probe. */
  1115. copy = mptcp_check_allowed_size(msk, ssk, data_seq, copy);
  1116. if (copy == 0) {
  1117. u64 snd_una = READ_ONCE(msk->snd_una);
  1118. if (snd_una != msk->snd_nxt || tcp_write_queue_tail(ssk)) {
  1119. tcp_remove_empty_skb(ssk);
  1120. return 0;
  1121. }
  1122. zero_window_probe = true;
  1123. data_seq = snd_una - 1;
  1124. copy = 1;
  1125. }
  1126. copy = min_t(size_t, copy, info->limit - info->sent);
  1127. if (!sk_wmem_schedule(ssk, copy)) {
  1128. tcp_remove_empty_skb(ssk);
  1129. return -ENOMEM;
  1130. }
  1131. if (can_coalesce) {
  1132. skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
  1133. } else {
  1134. get_page(dfrag->page);
  1135. skb_fill_page_desc(skb, i, dfrag->page, offset, copy);
  1136. }
  1137. skb->len += copy;
  1138. skb->data_len += copy;
  1139. skb->truesize += copy;
  1140. sk_wmem_queued_add(ssk, copy);
  1141. sk_mem_charge(ssk, copy);
  1142. WRITE_ONCE(tcp_sk(ssk)->write_seq, tcp_sk(ssk)->write_seq + copy);
  1143. TCP_SKB_CB(skb)->end_seq += copy;
  1144. tcp_skb_pcount_set(skb, 0);
  1145. /* on skb reuse we just need to update the DSS len */
  1146. if (reuse_skb) {
  1147. TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
  1148. mpext->data_len += copy;
  1149. goto out;
  1150. }
  1151. memset(mpext, 0, sizeof(*mpext));
  1152. mpext->data_seq = data_seq;
  1153. mpext->subflow_seq = mptcp_subflow_ctx(ssk)->rel_write_seq;
  1154. mpext->data_len = copy;
  1155. mpext->use_map = 1;
  1156. mpext->dsn64 = 1;
  1157. pr_debug("data_seq=%llu subflow_seq=%u data_len=%u dsn64=%d\n",
  1158. mpext->data_seq, mpext->subflow_seq, mpext->data_len,
  1159. mpext->dsn64);
  1160. if (zero_window_probe) {
  1161. mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
  1162. mpext->frozen = 1;
  1163. if (READ_ONCE(msk->csum_enabled))
  1164. mptcp_update_data_checksum(skb, copy);
  1165. tcp_push_pending_frames(ssk);
  1166. return 0;
  1167. }
  1168. out:
  1169. if (READ_ONCE(msk->csum_enabled))
  1170. mptcp_update_data_checksum(skb, copy);
  1171. if (mptcp_subflow_ctx(ssk)->send_infinite_map)
  1172. mptcp_update_infinite_map(msk, ssk, mpext);
  1173. trace_mptcp_sendmsg_frag(mpext);
  1174. mptcp_subflow_ctx(ssk)->rel_write_seq += copy;
  1175. return copy;
  1176. }
  1177. #define MPTCP_SEND_BURST_SIZE ((1 << 16) - \
  1178. sizeof(struct tcphdr) - \
  1179. MAX_TCP_OPTION_SPACE - \
  1180. sizeof(struct ipv6hdr) - \
  1181. sizeof(struct frag_hdr))
  1182. struct subflow_send_info {
  1183. struct sock *ssk;
  1184. u64 linger_time;
  1185. };
  1186. void mptcp_subflow_set_active(struct mptcp_subflow_context *subflow)
  1187. {
  1188. if (!subflow->stale)
  1189. return;
  1190. subflow->stale = 0;
  1191. MPTCP_INC_STATS(sock_net(mptcp_subflow_tcp_sock(subflow)), MPTCP_MIB_SUBFLOWRECOVER);
  1192. }
  1193. bool mptcp_subflow_active(struct mptcp_subflow_context *subflow)
  1194. {
  1195. if (unlikely(subflow->stale)) {
  1196. u32 rcv_tstamp = READ_ONCE(tcp_sk(mptcp_subflow_tcp_sock(subflow))->rcv_tstamp);
  1197. if (subflow->stale_rcv_tstamp == rcv_tstamp)
  1198. return false;
  1199. mptcp_subflow_set_active(subflow);
  1200. }
  1201. return __mptcp_subflow_active(subflow);
  1202. }
  1203. #define SSK_MODE_ACTIVE 0
  1204. #define SSK_MODE_BACKUP 1
  1205. #define SSK_MODE_MAX 2
  1206. /* implement the mptcp packet scheduler;
  1207. * returns the subflow that will transmit the next DSS
  1208. * additionally updates the rtx timeout
  1209. */
  1210. struct sock *mptcp_subflow_get_send(struct mptcp_sock *msk)
  1211. {
  1212. struct subflow_send_info send_info[SSK_MODE_MAX];
  1213. struct mptcp_subflow_context *subflow;
  1214. struct sock *sk = (struct sock *)msk;
  1215. u32 pace, burst, wmem;
  1216. int i, nr_active = 0;
  1217. struct sock *ssk;
  1218. u64 linger_time;
  1219. long tout = 0;
  1220. /* pick the subflow with the lower wmem/wspace ratio */
  1221. for (i = 0; i < SSK_MODE_MAX; ++i) {
  1222. send_info[i].ssk = NULL;
  1223. send_info[i].linger_time = -1;
  1224. }
  1225. mptcp_for_each_subflow(msk, subflow) {
  1226. bool backup = subflow->backup || subflow->request_bkup;
  1227. trace_mptcp_subflow_get_send(subflow);
  1228. ssk = mptcp_subflow_tcp_sock(subflow);
  1229. if (!mptcp_subflow_active(subflow))
  1230. continue;
  1231. tout = max(tout, mptcp_timeout_from_subflow(subflow));
  1232. nr_active += !backup;
  1233. pace = subflow->avg_pacing_rate;
  1234. if (unlikely(!pace)) {
  1235. /* init pacing rate from socket */
  1236. subflow->avg_pacing_rate = READ_ONCE(ssk->sk_pacing_rate);
  1237. pace = subflow->avg_pacing_rate;
  1238. if (!pace)
  1239. continue;
  1240. }
  1241. linger_time = div_u64((u64)READ_ONCE(ssk->sk_wmem_queued) << 32, pace);
  1242. if (linger_time < send_info[backup].linger_time) {
  1243. send_info[backup].ssk = ssk;
  1244. send_info[backup].linger_time = linger_time;
  1245. }
  1246. }
  1247. __mptcp_set_timeout(sk, tout);
  1248. /* pick the best backup if no other subflow is active */
  1249. if (!nr_active)
  1250. send_info[SSK_MODE_ACTIVE].ssk = send_info[SSK_MODE_BACKUP].ssk;
  1251. /* According to the blest algorithm, to avoid HoL blocking for the
  1252. * faster flow, we need to:
  1253. * - estimate the faster flow linger time
  1254. * - use the above to estimate the amount of byte transferred
  1255. * by the faster flow
  1256. * - check that the amount of queued data is greter than the above,
  1257. * otherwise do not use the picked, slower, subflow
  1258. * We select the subflow with the shorter estimated time to flush
  1259. * the queued mem, which basically ensure the above. We just need
  1260. * to check that subflow has a non empty cwin.
  1261. */
  1262. ssk = send_info[SSK_MODE_ACTIVE].ssk;
  1263. if (!ssk || !sk_stream_memory_free(ssk))
  1264. return NULL;
  1265. burst = min_t(int, MPTCP_SEND_BURST_SIZE, mptcp_wnd_end(msk) - msk->snd_nxt);
  1266. wmem = READ_ONCE(ssk->sk_wmem_queued);
  1267. if (!burst)
  1268. return ssk;
  1269. subflow = mptcp_subflow_ctx(ssk);
  1270. subflow->avg_pacing_rate = div_u64((u64)subflow->avg_pacing_rate * wmem +
  1271. READ_ONCE(ssk->sk_pacing_rate) * burst,
  1272. burst + wmem);
  1273. msk->snd_burst = burst;
  1274. return ssk;
  1275. }
  1276. static void mptcp_push_release(struct sock *ssk, struct mptcp_sendmsg_info *info)
  1277. {
  1278. tcp_push(ssk, 0, info->mss_now, tcp_sk(ssk)->nonagle, info->size_goal);
  1279. release_sock(ssk);
  1280. }
  1281. static void mptcp_update_post_push(struct mptcp_sock *msk,
  1282. struct mptcp_data_frag *dfrag,
  1283. u32 sent)
  1284. {
  1285. u64 snd_nxt_new = dfrag->data_seq;
  1286. dfrag->already_sent += sent;
  1287. msk->snd_burst -= sent;
  1288. snd_nxt_new += dfrag->already_sent;
  1289. /* snd_nxt_new can be smaller than snd_nxt in case mptcp
  1290. * is recovering after a failover. In that event, this re-sends
  1291. * old segments.
  1292. *
  1293. * Thus compute snd_nxt_new candidate based on
  1294. * the dfrag->data_seq that was sent and the data
  1295. * that has been handed to the subflow for transmission
  1296. * and skip update in case it was old dfrag.
  1297. */
  1298. if (likely(after64(snd_nxt_new, msk->snd_nxt))) {
  1299. msk->bytes_sent += snd_nxt_new - msk->snd_nxt;
  1300. WRITE_ONCE(msk->snd_nxt, snd_nxt_new);
  1301. }
  1302. }
  1303. void mptcp_check_and_set_pending(struct sock *sk)
  1304. {
  1305. if (mptcp_send_head(sk)) {
  1306. mptcp_data_lock(sk);
  1307. mptcp_sk(sk)->cb_flags |= BIT(MPTCP_PUSH_PENDING);
  1308. mptcp_data_unlock(sk);
  1309. }
  1310. }
  1311. static int __subflow_push_pending(struct sock *sk, struct sock *ssk,
  1312. struct mptcp_sendmsg_info *info)
  1313. {
  1314. struct mptcp_sock *msk = mptcp_sk(sk);
  1315. struct mptcp_data_frag *dfrag;
  1316. int len, copied = 0, err = 0;
  1317. while ((dfrag = mptcp_send_head(sk))) {
  1318. info->sent = dfrag->already_sent;
  1319. info->limit = dfrag->data_len;
  1320. len = dfrag->data_len - dfrag->already_sent;
  1321. while (len > 0) {
  1322. int ret = 0;
  1323. ret = mptcp_sendmsg_frag(sk, ssk, dfrag, info);
  1324. if (ret <= 0) {
  1325. err = copied ? : ret;
  1326. goto out;
  1327. }
  1328. info->sent += ret;
  1329. copied += ret;
  1330. len -= ret;
  1331. mptcp_update_post_push(msk, dfrag, ret);
  1332. }
  1333. WRITE_ONCE(msk->first_pending, mptcp_send_next(sk));
  1334. if (msk->snd_burst <= 0 ||
  1335. !sk_stream_memory_free(ssk) ||
  1336. !mptcp_subflow_active(mptcp_subflow_ctx(ssk))) {
  1337. err = copied;
  1338. goto out;
  1339. }
  1340. mptcp_set_timeout(sk);
  1341. }
  1342. err = copied;
  1343. out:
  1344. if (err > 0)
  1345. msk->last_data_sent = tcp_jiffies32;
  1346. return err;
  1347. }
  1348. void __mptcp_push_pending(struct sock *sk, unsigned int flags)
  1349. {
  1350. struct sock *prev_ssk = NULL, *ssk = NULL;
  1351. struct mptcp_sock *msk = mptcp_sk(sk);
  1352. struct mptcp_sendmsg_info info = {
  1353. .flags = flags,
  1354. };
  1355. bool do_check_data_fin = false;
  1356. int push_count = 1;
  1357. while (mptcp_send_head(sk) && (push_count > 0)) {
  1358. struct mptcp_subflow_context *subflow;
  1359. int ret = 0;
  1360. if (mptcp_sched_get_send(msk))
  1361. break;
  1362. push_count = 0;
  1363. mptcp_for_each_subflow(msk, subflow) {
  1364. if (READ_ONCE(subflow->scheduled)) {
  1365. mptcp_subflow_set_scheduled(subflow, false);
  1366. prev_ssk = ssk;
  1367. ssk = mptcp_subflow_tcp_sock(subflow);
  1368. if (ssk != prev_ssk) {
  1369. /* First check. If the ssk has changed since
  1370. * the last round, release prev_ssk
  1371. */
  1372. if (prev_ssk)
  1373. mptcp_push_release(prev_ssk, &info);
  1374. /* Need to lock the new subflow only if different
  1375. * from the previous one, otherwise we are still
  1376. * helding the relevant lock
  1377. */
  1378. lock_sock(ssk);
  1379. }
  1380. push_count++;
  1381. ret = __subflow_push_pending(sk, ssk, &info);
  1382. if (ret <= 0) {
  1383. if (ret != -EAGAIN ||
  1384. (1 << ssk->sk_state) &
  1385. (TCPF_FIN_WAIT1 | TCPF_FIN_WAIT2 | TCPF_CLOSE))
  1386. push_count--;
  1387. continue;
  1388. }
  1389. do_check_data_fin = true;
  1390. }
  1391. }
  1392. }
  1393. /* at this point we held the socket lock for the last subflow we used */
  1394. if (ssk)
  1395. mptcp_push_release(ssk, &info);
  1396. /* ensure the rtx timer is running */
  1397. if (!mptcp_rtx_timer_pending(sk))
  1398. mptcp_reset_rtx_timer(sk);
  1399. if (do_check_data_fin)
  1400. mptcp_check_send_data_fin(sk);
  1401. }
  1402. static void __mptcp_subflow_push_pending(struct sock *sk, struct sock *ssk, bool first)
  1403. {
  1404. struct mptcp_sock *msk = mptcp_sk(sk);
  1405. struct mptcp_sendmsg_info info = {
  1406. .data_lock_held = true,
  1407. };
  1408. bool keep_pushing = true;
  1409. struct sock *xmit_ssk;
  1410. int copied = 0;
  1411. info.flags = 0;
  1412. while (mptcp_send_head(sk) && keep_pushing) {
  1413. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  1414. int ret = 0;
  1415. /* check for a different subflow usage only after
  1416. * spooling the first chunk of data
  1417. */
  1418. if (first) {
  1419. mptcp_subflow_set_scheduled(subflow, false);
  1420. ret = __subflow_push_pending(sk, ssk, &info);
  1421. first = false;
  1422. if (ret <= 0)
  1423. break;
  1424. copied += ret;
  1425. continue;
  1426. }
  1427. if (mptcp_sched_get_send(msk))
  1428. goto out;
  1429. if (READ_ONCE(subflow->scheduled)) {
  1430. mptcp_subflow_set_scheduled(subflow, false);
  1431. ret = __subflow_push_pending(sk, ssk, &info);
  1432. if (ret <= 0)
  1433. keep_pushing = false;
  1434. copied += ret;
  1435. }
  1436. mptcp_for_each_subflow(msk, subflow) {
  1437. if (READ_ONCE(subflow->scheduled)) {
  1438. xmit_ssk = mptcp_subflow_tcp_sock(subflow);
  1439. if (xmit_ssk != ssk) {
  1440. mptcp_subflow_delegate(subflow,
  1441. MPTCP_DELEGATE_SEND);
  1442. keep_pushing = false;
  1443. }
  1444. }
  1445. }
  1446. }
  1447. out:
  1448. /* __mptcp_alloc_tx_skb could have released some wmem and we are
  1449. * not going to flush it via release_sock()
  1450. */
  1451. if (copied) {
  1452. tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
  1453. info.size_goal);
  1454. if (!mptcp_rtx_timer_pending(sk))
  1455. mptcp_reset_rtx_timer(sk);
  1456. if (msk->snd_data_fin_enable &&
  1457. msk->snd_nxt + 1 == msk->write_seq)
  1458. mptcp_schedule_work(sk);
  1459. }
  1460. }
  1461. static int mptcp_disconnect(struct sock *sk, int flags);
  1462. static int mptcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
  1463. size_t len, int *copied_syn)
  1464. {
  1465. unsigned int saved_flags = msg->msg_flags;
  1466. struct mptcp_sock *msk = mptcp_sk(sk);
  1467. struct sock *ssk;
  1468. int ret;
  1469. /* on flags based fastopen the mptcp is supposed to create the
  1470. * first subflow right now. Otherwise we are in the defer_connect
  1471. * path, and the first subflow must be already present.
  1472. * Since the defer_connect flag is cleared after the first succsful
  1473. * fastopen attempt, no need to check for additional subflow status.
  1474. */
  1475. if (msg->msg_flags & MSG_FASTOPEN) {
  1476. ssk = __mptcp_nmpc_sk(msk);
  1477. if (IS_ERR(ssk))
  1478. return PTR_ERR(ssk);
  1479. }
  1480. if (!msk->first)
  1481. return -EINVAL;
  1482. ssk = msk->first;
  1483. lock_sock(ssk);
  1484. msg->msg_flags |= MSG_DONTWAIT;
  1485. msk->fastopening = 1;
  1486. ret = tcp_sendmsg_fastopen(ssk, msg, copied_syn, len, NULL);
  1487. msk->fastopening = 0;
  1488. msg->msg_flags = saved_flags;
  1489. release_sock(ssk);
  1490. /* do the blocking bits of inet_stream_connect outside the ssk socket lock */
  1491. if (ret == -EINPROGRESS && !(msg->msg_flags & MSG_DONTWAIT)) {
  1492. ret = __inet_stream_connect(sk->sk_socket, msg->msg_name,
  1493. msg->msg_namelen, msg->msg_flags, 1);
  1494. /* Keep the same behaviour of plain TCP: zero the copied bytes in
  1495. * case of any error, except timeout or signal
  1496. */
  1497. if (ret && ret != -EINPROGRESS && ret != -ERESTARTSYS && ret != -EINTR)
  1498. *copied_syn = 0;
  1499. } else if (ret && ret != -EINPROGRESS) {
  1500. /* The disconnect() op called by tcp_sendmsg_fastopen()/
  1501. * __inet_stream_connect() can fail, due to looking check,
  1502. * see mptcp_disconnect().
  1503. * Attempt it again outside the problematic scope.
  1504. */
  1505. if (!mptcp_disconnect(sk, 0)) {
  1506. sk->sk_disconnects++;
  1507. sk->sk_socket->state = SS_UNCONNECTED;
  1508. }
  1509. }
  1510. inet_clear_bit(DEFER_CONNECT, sk);
  1511. return ret;
  1512. }
  1513. static int do_copy_data_nocache(struct sock *sk, int copy,
  1514. struct iov_iter *from, char *to)
  1515. {
  1516. if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
  1517. if (!copy_from_iter_full_nocache(to, copy, from))
  1518. return -EFAULT;
  1519. } else if (!copy_from_iter_full(to, copy, from)) {
  1520. return -EFAULT;
  1521. }
  1522. return 0;
  1523. }
  1524. /* open-code sk_stream_memory_free() plus sent limit computation to
  1525. * avoid indirect calls in fast-path.
  1526. * Called under the msk socket lock, so we can avoid a bunch of ONCE
  1527. * annotations.
  1528. */
  1529. static u32 mptcp_send_limit(const struct sock *sk)
  1530. {
  1531. const struct mptcp_sock *msk = mptcp_sk(sk);
  1532. u32 limit, not_sent;
  1533. if (sk->sk_wmem_queued >= READ_ONCE(sk->sk_sndbuf))
  1534. return 0;
  1535. limit = mptcp_notsent_lowat(sk);
  1536. if (limit == UINT_MAX)
  1537. return UINT_MAX;
  1538. not_sent = msk->write_seq - msk->snd_nxt;
  1539. if (not_sent >= limit)
  1540. return 0;
  1541. return limit - not_sent;
  1542. }
  1543. static int mptcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
  1544. {
  1545. struct mptcp_sock *msk = mptcp_sk(sk);
  1546. struct page_frag *pfrag;
  1547. size_t copied = 0;
  1548. int ret = 0;
  1549. long timeo;
  1550. /* silently ignore everything else */
  1551. msg->msg_flags &= MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_FASTOPEN;
  1552. lock_sock(sk);
  1553. if (unlikely(inet_test_bit(DEFER_CONNECT, sk) ||
  1554. msg->msg_flags & MSG_FASTOPEN)) {
  1555. int copied_syn = 0;
  1556. ret = mptcp_sendmsg_fastopen(sk, msg, len, &copied_syn);
  1557. copied += copied_syn;
  1558. if (ret == -EINPROGRESS && copied_syn > 0)
  1559. goto out;
  1560. else if (ret)
  1561. goto do_error;
  1562. }
  1563. timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
  1564. if ((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) {
  1565. ret = sk_stream_wait_connect(sk, &timeo);
  1566. if (ret)
  1567. goto do_error;
  1568. }
  1569. ret = -EPIPE;
  1570. if (unlikely(sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN)))
  1571. goto do_error;
  1572. pfrag = sk_page_frag(sk);
  1573. while (msg_data_left(msg)) {
  1574. int total_ts, frag_truesize = 0;
  1575. struct mptcp_data_frag *dfrag;
  1576. bool dfrag_collapsed;
  1577. size_t psize, offset;
  1578. u32 copy_limit;
  1579. /* ensure fitting the notsent_lowat() constraint */
  1580. copy_limit = mptcp_send_limit(sk);
  1581. if (!copy_limit)
  1582. goto wait_for_memory;
  1583. /* reuse tail pfrag, if possible, or carve a new one from the
  1584. * page allocator
  1585. */
  1586. dfrag = mptcp_pending_tail(sk);
  1587. dfrag_collapsed = mptcp_frag_can_collapse_to(msk, pfrag, dfrag);
  1588. if (!dfrag_collapsed) {
  1589. if (!mptcp_page_frag_refill(sk, pfrag))
  1590. goto wait_for_memory;
  1591. dfrag = mptcp_carve_data_frag(msk, pfrag, pfrag->offset);
  1592. frag_truesize = dfrag->overhead;
  1593. }
  1594. /* we do not bound vs wspace, to allow a single packet.
  1595. * memory accounting will prevent execessive memory usage
  1596. * anyway
  1597. */
  1598. offset = dfrag->offset + dfrag->data_len;
  1599. psize = pfrag->size - offset;
  1600. psize = min_t(size_t, psize, msg_data_left(msg));
  1601. psize = min_t(size_t, psize, copy_limit);
  1602. total_ts = psize + frag_truesize;
  1603. if (!sk_wmem_schedule(sk, total_ts))
  1604. goto wait_for_memory;
  1605. ret = do_copy_data_nocache(sk, psize, &msg->msg_iter,
  1606. page_address(dfrag->page) + offset);
  1607. if (ret)
  1608. goto do_error;
  1609. /* data successfully copied into the write queue */
  1610. sk_forward_alloc_add(sk, -total_ts);
  1611. copied += psize;
  1612. dfrag->data_len += psize;
  1613. frag_truesize += psize;
  1614. pfrag->offset += frag_truesize;
  1615. WRITE_ONCE(msk->write_seq, msk->write_seq + psize);
  1616. /* charge data on mptcp pending queue to the msk socket
  1617. * Note: we charge such data both to sk and ssk
  1618. */
  1619. sk_wmem_queued_add(sk, frag_truesize);
  1620. if (!dfrag_collapsed) {
  1621. get_page(dfrag->page);
  1622. list_add_tail(&dfrag->list, &msk->rtx_queue);
  1623. if (!msk->first_pending)
  1624. WRITE_ONCE(msk->first_pending, dfrag);
  1625. }
  1626. pr_debug("msk=%p dfrag at seq=%llu len=%u sent=%u new=%d\n", msk,
  1627. dfrag->data_seq, dfrag->data_len, dfrag->already_sent,
  1628. !dfrag_collapsed);
  1629. continue;
  1630. wait_for_memory:
  1631. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  1632. __mptcp_push_pending(sk, msg->msg_flags);
  1633. ret = sk_stream_wait_memory(sk, &timeo);
  1634. if (ret)
  1635. goto do_error;
  1636. }
  1637. if (copied)
  1638. __mptcp_push_pending(sk, msg->msg_flags);
  1639. out:
  1640. release_sock(sk);
  1641. return copied;
  1642. do_error:
  1643. if (copied)
  1644. goto out;
  1645. copied = sk_stream_error(sk, msg->msg_flags, ret);
  1646. goto out;
  1647. }
  1648. static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied);
  1649. static int __mptcp_recvmsg_mskq(struct mptcp_sock *msk,
  1650. struct msghdr *msg,
  1651. size_t len, int flags,
  1652. struct scm_timestamping_internal *tss,
  1653. int *cmsg_flags)
  1654. {
  1655. struct sk_buff *skb, *tmp;
  1656. int copied = 0;
  1657. skb_queue_walk_safe(&msk->receive_queue, skb, tmp) {
  1658. u32 offset = MPTCP_SKB_CB(skb)->offset;
  1659. u32 data_len = skb->len - offset;
  1660. u32 count = min_t(size_t, len - copied, data_len);
  1661. int err;
  1662. if (!(flags & MSG_TRUNC)) {
  1663. err = skb_copy_datagram_msg(skb, offset, msg, count);
  1664. if (unlikely(err < 0)) {
  1665. if (!copied)
  1666. return err;
  1667. break;
  1668. }
  1669. }
  1670. if (MPTCP_SKB_CB(skb)->has_rxtstamp) {
  1671. tcp_update_recv_tstamps(skb, tss);
  1672. *cmsg_flags |= MPTCP_CMSG_TS;
  1673. }
  1674. copied += count;
  1675. if (count < data_len) {
  1676. if (!(flags & MSG_PEEK)) {
  1677. MPTCP_SKB_CB(skb)->offset += count;
  1678. MPTCP_SKB_CB(skb)->map_seq += count;
  1679. msk->bytes_consumed += count;
  1680. }
  1681. break;
  1682. }
  1683. if (!(flags & MSG_PEEK)) {
  1684. /* we will bulk release the skb memory later */
  1685. skb->destructor = NULL;
  1686. WRITE_ONCE(msk->rmem_released, msk->rmem_released + skb->truesize);
  1687. __skb_unlink(skb, &msk->receive_queue);
  1688. __kfree_skb(skb);
  1689. msk->bytes_consumed += count;
  1690. }
  1691. if (copied >= len)
  1692. break;
  1693. }
  1694. mptcp_rcv_space_adjust(msk, copied);
  1695. return copied;
  1696. }
  1697. /* receive buffer autotuning. See tcp_rcv_space_adjust for more information.
  1698. *
  1699. * Only difference: Use highest rtt estimate of the subflows in use.
  1700. */
  1701. static void mptcp_rcv_space_adjust(struct mptcp_sock *msk, int copied)
  1702. {
  1703. struct mptcp_subflow_context *subflow;
  1704. struct sock *sk = (struct sock *)msk;
  1705. u8 scaling_ratio = U8_MAX;
  1706. u32 time, advmss = 1;
  1707. u64 rtt_us, mstamp;
  1708. msk_owned_by_me(msk);
  1709. if (copied <= 0)
  1710. return;
  1711. if (!msk->rcvspace_init)
  1712. mptcp_rcv_space_init(msk, msk->first);
  1713. msk->rcvq_space.copied += copied;
  1714. mstamp = div_u64(tcp_clock_ns(), NSEC_PER_USEC);
  1715. time = tcp_stamp_us_delta(mstamp, msk->rcvq_space.time);
  1716. rtt_us = msk->rcvq_space.rtt_us;
  1717. if (rtt_us && time < (rtt_us >> 3))
  1718. return;
  1719. rtt_us = 0;
  1720. mptcp_for_each_subflow(msk, subflow) {
  1721. const struct tcp_sock *tp;
  1722. u64 sf_rtt_us;
  1723. u32 sf_advmss;
  1724. tp = tcp_sk(mptcp_subflow_tcp_sock(subflow));
  1725. sf_rtt_us = READ_ONCE(tp->rcv_rtt_est.rtt_us);
  1726. sf_advmss = READ_ONCE(tp->advmss);
  1727. rtt_us = max(sf_rtt_us, rtt_us);
  1728. advmss = max(sf_advmss, advmss);
  1729. scaling_ratio = min(tp->scaling_ratio, scaling_ratio);
  1730. }
  1731. msk->rcvq_space.rtt_us = rtt_us;
  1732. msk->scaling_ratio = scaling_ratio;
  1733. if (time < (rtt_us >> 3) || rtt_us == 0)
  1734. return;
  1735. if (msk->rcvq_space.copied <= msk->rcvq_space.space)
  1736. goto new_measure;
  1737. if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
  1738. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  1739. u64 rcvwin, grow;
  1740. int rcvbuf;
  1741. rcvwin = ((u64)msk->rcvq_space.copied << 1) + 16 * advmss;
  1742. grow = rcvwin * (msk->rcvq_space.copied - msk->rcvq_space.space);
  1743. do_div(grow, msk->rcvq_space.space);
  1744. rcvwin += (grow << 1);
  1745. rcvbuf = min_t(u64, mptcp_space_from_win(sk, rcvwin),
  1746. READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
  1747. if (rcvbuf > sk->sk_rcvbuf) {
  1748. u32 window_clamp;
  1749. window_clamp = mptcp_win_from_space(sk, rcvbuf);
  1750. WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
  1751. /* Make subflows follow along. If we do not do this, we
  1752. * get drops at subflow level if skbs can't be moved to
  1753. * the mptcp rx queue fast enough (announced rcv_win can
  1754. * exceed ssk->sk_rcvbuf).
  1755. */
  1756. mptcp_for_each_subflow(msk, subflow) {
  1757. struct sock *ssk;
  1758. bool slow;
  1759. ssk = mptcp_subflow_tcp_sock(subflow);
  1760. slow = lock_sock_fast(ssk);
  1761. WRITE_ONCE(ssk->sk_rcvbuf, rcvbuf);
  1762. WRITE_ONCE(tcp_sk(ssk)->window_clamp, window_clamp);
  1763. if (tcp_can_send_ack(ssk))
  1764. tcp_cleanup_rbuf(ssk, 1);
  1765. unlock_sock_fast(ssk, slow);
  1766. }
  1767. }
  1768. }
  1769. msk->rcvq_space.space = msk->rcvq_space.copied;
  1770. new_measure:
  1771. msk->rcvq_space.copied = 0;
  1772. msk->rcvq_space.time = mstamp;
  1773. }
  1774. static void __mptcp_update_rmem(struct sock *sk)
  1775. {
  1776. struct mptcp_sock *msk = mptcp_sk(sk);
  1777. if (!msk->rmem_released)
  1778. return;
  1779. atomic_sub(msk->rmem_released, &sk->sk_rmem_alloc);
  1780. mptcp_rmem_uncharge(sk, msk->rmem_released);
  1781. WRITE_ONCE(msk->rmem_released, 0);
  1782. }
  1783. static void __mptcp_splice_receive_queue(struct sock *sk)
  1784. {
  1785. struct mptcp_sock *msk = mptcp_sk(sk);
  1786. skb_queue_splice_tail_init(&sk->sk_receive_queue, &msk->receive_queue);
  1787. }
  1788. static bool __mptcp_move_skbs(struct mptcp_sock *msk)
  1789. {
  1790. struct sock *sk = (struct sock *)msk;
  1791. unsigned int moved = 0;
  1792. bool ret, done;
  1793. do {
  1794. struct sock *ssk = mptcp_subflow_recv_lookup(msk);
  1795. bool slowpath;
  1796. /* we can have data pending in the subflows only if the msk
  1797. * receive buffer was full at subflow_data_ready() time,
  1798. * that is an unlikely slow path.
  1799. */
  1800. if (likely(!ssk))
  1801. break;
  1802. slowpath = lock_sock_fast(ssk);
  1803. mptcp_data_lock(sk);
  1804. __mptcp_update_rmem(sk);
  1805. done = __mptcp_move_skbs_from_subflow(msk, ssk, &moved);
  1806. mptcp_data_unlock(sk);
  1807. if (unlikely(ssk->sk_err))
  1808. __mptcp_error_report(sk);
  1809. unlock_sock_fast(ssk, slowpath);
  1810. } while (!done);
  1811. /* acquire the data lock only if some input data is pending */
  1812. ret = moved > 0;
  1813. if (!RB_EMPTY_ROOT(&msk->out_of_order_queue) ||
  1814. !skb_queue_empty_lockless(&sk->sk_receive_queue)) {
  1815. mptcp_data_lock(sk);
  1816. __mptcp_update_rmem(sk);
  1817. ret |= __mptcp_ofo_queue(msk);
  1818. __mptcp_splice_receive_queue(sk);
  1819. mptcp_data_unlock(sk);
  1820. }
  1821. if (ret)
  1822. mptcp_check_data_fin((struct sock *)msk);
  1823. return !skb_queue_empty(&msk->receive_queue);
  1824. }
  1825. static unsigned int mptcp_inq_hint(const struct sock *sk)
  1826. {
  1827. const struct mptcp_sock *msk = mptcp_sk(sk);
  1828. const struct sk_buff *skb;
  1829. skb = skb_peek(&msk->receive_queue);
  1830. if (skb) {
  1831. u64 hint_val = READ_ONCE(msk->ack_seq) - MPTCP_SKB_CB(skb)->map_seq;
  1832. if (hint_val >= INT_MAX)
  1833. return INT_MAX;
  1834. return (unsigned int)hint_val;
  1835. }
  1836. if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
  1837. return 1;
  1838. return 0;
  1839. }
  1840. static int mptcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
  1841. int flags, int *addr_len)
  1842. {
  1843. struct mptcp_sock *msk = mptcp_sk(sk);
  1844. struct scm_timestamping_internal tss;
  1845. int copied = 0, cmsg_flags = 0;
  1846. int target;
  1847. long timeo;
  1848. /* MSG_ERRQUEUE is really a no-op till we support IP_RECVERR */
  1849. if (unlikely(flags & MSG_ERRQUEUE))
  1850. return inet_recv_error(sk, msg, len, addr_len);
  1851. lock_sock(sk);
  1852. if (unlikely(sk->sk_state == TCP_LISTEN)) {
  1853. copied = -ENOTCONN;
  1854. goto out_err;
  1855. }
  1856. timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
  1857. len = min_t(size_t, len, INT_MAX);
  1858. target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
  1859. if (unlikely(msk->recvmsg_inq))
  1860. cmsg_flags = MPTCP_CMSG_INQ;
  1861. while (copied < len) {
  1862. int err, bytes_read;
  1863. bytes_read = __mptcp_recvmsg_mskq(msk, msg, len - copied, flags, &tss, &cmsg_flags);
  1864. if (unlikely(bytes_read < 0)) {
  1865. if (!copied)
  1866. copied = bytes_read;
  1867. goto out_err;
  1868. }
  1869. copied += bytes_read;
  1870. if (skb_queue_empty(&msk->receive_queue) && __mptcp_move_skbs(msk))
  1871. continue;
  1872. /* only the MPTCP socket status is relevant here. The exit
  1873. * conditions mirror closely tcp_recvmsg()
  1874. */
  1875. if (copied >= target)
  1876. break;
  1877. if (copied) {
  1878. if (sk->sk_err ||
  1879. sk->sk_state == TCP_CLOSE ||
  1880. (sk->sk_shutdown & RCV_SHUTDOWN) ||
  1881. !timeo ||
  1882. signal_pending(current))
  1883. break;
  1884. } else {
  1885. if (sk->sk_err) {
  1886. copied = sock_error(sk);
  1887. break;
  1888. }
  1889. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  1890. /* race breaker: the shutdown could be after the
  1891. * previous receive queue check
  1892. */
  1893. if (__mptcp_move_skbs(msk))
  1894. continue;
  1895. break;
  1896. }
  1897. if (sk->sk_state == TCP_CLOSE) {
  1898. copied = -ENOTCONN;
  1899. break;
  1900. }
  1901. if (!timeo) {
  1902. copied = -EAGAIN;
  1903. break;
  1904. }
  1905. if (signal_pending(current)) {
  1906. copied = sock_intr_errno(timeo);
  1907. break;
  1908. }
  1909. }
  1910. pr_debug("block timeout %ld\n", timeo);
  1911. mptcp_cleanup_rbuf(msk, copied);
  1912. err = sk_wait_data(sk, &timeo, NULL);
  1913. if (err < 0) {
  1914. err = copied ? : err;
  1915. goto out_err;
  1916. }
  1917. }
  1918. mptcp_cleanup_rbuf(msk, copied);
  1919. out_err:
  1920. if (cmsg_flags && copied >= 0) {
  1921. if (cmsg_flags & MPTCP_CMSG_TS)
  1922. tcp_recv_timestamp(msg, sk, &tss);
  1923. if (cmsg_flags & MPTCP_CMSG_INQ) {
  1924. unsigned int inq = mptcp_inq_hint(sk);
  1925. put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
  1926. }
  1927. }
  1928. pr_debug("msk=%p rx queue empty=%d:%d copied=%d\n",
  1929. msk, skb_queue_empty_lockless(&sk->sk_receive_queue),
  1930. skb_queue_empty(&msk->receive_queue), copied);
  1931. release_sock(sk);
  1932. return copied;
  1933. }
  1934. static void mptcp_retransmit_timer(struct timer_list *t)
  1935. {
  1936. struct inet_connection_sock *icsk = from_timer(icsk, t,
  1937. icsk_retransmit_timer);
  1938. struct sock *sk = &icsk->icsk_inet.sk;
  1939. struct mptcp_sock *msk = mptcp_sk(sk);
  1940. bh_lock_sock(sk);
  1941. if (!sock_owned_by_user(sk)) {
  1942. /* we need a process context to retransmit */
  1943. if (!test_and_set_bit(MPTCP_WORK_RTX, &msk->flags))
  1944. mptcp_schedule_work(sk);
  1945. } else {
  1946. /* delegate our work to tcp_release_cb() */
  1947. __set_bit(MPTCP_RETRANSMIT, &msk->cb_flags);
  1948. }
  1949. bh_unlock_sock(sk);
  1950. sock_put(sk);
  1951. }
  1952. static void mptcp_tout_timer(struct timer_list *t)
  1953. {
  1954. struct sock *sk = from_timer(sk, t, sk_timer);
  1955. mptcp_schedule_work(sk);
  1956. sock_put(sk);
  1957. }
  1958. /* Find an idle subflow. Return NULL if there is unacked data at tcp
  1959. * level.
  1960. *
  1961. * A backup subflow is returned only if that is the only kind available.
  1962. */
  1963. struct sock *mptcp_subflow_get_retrans(struct mptcp_sock *msk)
  1964. {
  1965. struct sock *backup = NULL, *pick = NULL;
  1966. struct mptcp_subflow_context *subflow;
  1967. int min_stale_count = INT_MAX;
  1968. mptcp_for_each_subflow(msk, subflow) {
  1969. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  1970. if (!__mptcp_subflow_active(subflow))
  1971. continue;
  1972. /* still data outstanding at TCP level? skip this */
  1973. if (!tcp_rtx_and_write_queues_empty(ssk)) {
  1974. mptcp_pm_subflow_chk_stale(msk, ssk);
  1975. min_stale_count = min_t(int, min_stale_count, subflow->stale_count);
  1976. continue;
  1977. }
  1978. if (subflow->backup || subflow->request_bkup) {
  1979. if (!backup)
  1980. backup = ssk;
  1981. continue;
  1982. }
  1983. if (!pick)
  1984. pick = ssk;
  1985. }
  1986. if (pick)
  1987. return pick;
  1988. /* use backup only if there are no progresses anywhere */
  1989. return min_stale_count > 1 ? backup : NULL;
  1990. }
  1991. bool __mptcp_retransmit_pending_data(struct sock *sk)
  1992. {
  1993. struct mptcp_data_frag *cur, *rtx_head;
  1994. struct mptcp_sock *msk = mptcp_sk(sk);
  1995. if (__mptcp_check_fallback(msk))
  1996. return false;
  1997. /* the closing socket has some data untransmitted and/or unacked:
  1998. * some data in the mptcp rtx queue has not really xmitted yet.
  1999. * keep it simple and re-inject the whole mptcp level rtx queue
  2000. */
  2001. mptcp_data_lock(sk);
  2002. __mptcp_clean_una_wakeup(sk);
  2003. rtx_head = mptcp_rtx_head(sk);
  2004. if (!rtx_head) {
  2005. mptcp_data_unlock(sk);
  2006. return false;
  2007. }
  2008. msk->recovery_snd_nxt = msk->snd_nxt;
  2009. msk->recovery = true;
  2010. mptcp_data_unlock(sk);
  2011. msk->first_pending = rtx_head;
  2012. msk->snd_burst = 0;
  2013. /* be sure to clear the "sent status" on all re-injected fragments */
  2014. list_for_each_entry(cur, &msk->rtx_queue, list) {
  2015. if (!cur->already_sent)
  2016. break;
  2017. cur->already_sent = 0;
  2018. }
  2019. return true;
  2020. }
  2021. /* flags for __mptcp_close_ssk() */
  2022. #define MPTCP_CF_PUSH BIT(1)
  2023. #define MPTCP_CF_FASTCLOSE BIT(2)
  2024. /* be sure to send a reset only if the caller asked for it, also
  2025. * clean completely the subflow status when the subflow reaches
  2026. * TCP_CLOSE state
  2027. */
  2028. static void __mptcp_subflow_disconnect(struct sock *ssk,
  2029. struct mptcp_subflow_context *subflow,
  2030. unsigned int flags)
  2031. {
  2032. if (((1 << ssk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)) ||
  2033. (flags & MPTCP_CF_FASTCLOSE)) {
  2034. /* The MPTCP code never wait on the subflow sockets, TCP-level
  2035. * disconnect should never fail
  2036. */
  2037. WARN_ON_ONCE(tcp_disconnect(ssk, 0));
  2038. mptcp_subflow_ctx_reset(subflow);
  2039. } else {
  2040. tcp_shutdown(ssk, SEND_SHUTDOWN);
  2041. }
  2042. }
  2043. /* subflow sockets can be either outgoing (connect) or incoming
  2044. * (accept).
  2045. *
  2046. * Outgoing subflows use in-kernel sockets.
  2047. * Incoming subflows do not have their own 'struct socket' allocated,
  2048. * so we need to use tcp_close() after detaching them from the mptcp
  2049. * parent socket.
  2050. */
  2051. static void __mptcp_close_ssk(struct sock *sk, struct sock *ssk,
  2052. struct mptcp_subflow_context *subflow,
  2053. unsigned int flags)
  2054. {
  2055. struct mptcp_sock *msk = mptcp_sk(sk);
  2056. bool dispose_it, need_push = false;
  2057. /* If the first subflow moved to a close state before accept, e.g. due
  2058. * to an incoming reset or listener shutdown, the subflow socket is
  2059. * already deleted by inet_child_forget() and the mptcp socket can't
  2060. * survive too.
  2061. */
  2062. if (msk->in_accept_queue && msk->first == ssk &&
  2063. (sock_flag(sk, SOCK_DEAD) || sock_flag(ssk, SOCK_DEAD))) {
  2064. /* ensure later check in mptcp_worker() will dispose the msk */
  2065. sock_set_flag(sk, SOCK_DEAD);
  2066. mptcp_set_close_tout(sk, tcp_jiffies32 - (mptcp_close_timeout(sk) + 1));
  2067. lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
  2068. mptcp_subflow_drop_ctx(ssk);
  2069. goto out_release;
  2070. }
  2071. dispose_it = msk->free_first || ssk != msk->first;
  2072. if (dispose_it)
  2073. list_del(&subflow->node);
  2074. lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
  2075. if ((flags & MPTCP_CF_FASTCLOSE) && !__mptcp_check_fallback(msk)) {
  2076. /* be sure to force the tcp_close path
  2077. * to generate the egress reset
  2078. */
  2079. ssk->sk_lingertime = 0;
  2080. sock_set_flag(ssk, SOCK_LINGER);
  2081. subflow->send_fastclose = 1;
  2082. }
  2083. need_push = (flags & MPTCP_CF_PUSH) && __mptcp_retransmit_pending_data(sk);
  2084. if (!dispose_it) {
  2085. __mptcp_subflow_disconnect(ssk, subflow, flags);
  2086. release_sock(ssk);
  2087. goto out;
  2088. }
  2089. subflow->disposable = 1;
  2090. /* if ssk hit tcp_done(), tcp_cleanup_ulp() cleared the related ops
  2091. * the ssk has been already destroyed, we just need to release the
  2092. * reference owned by msk;
  2093. */
  2094. if (!inet_csk(ssk)->icsk_ulp_ops) {
  2095. WARN_ON_ONCE(!sock_flag(ssk, SOCK_DEAD));
  2096. kfree_rcu(subflow, rcu);
  2097. } else {
  2098. /* otherwise tcp will dispose of the ssk and subflow ctx */
  2099. __tcp_close(ssk, 0);
  2100. /* close acquired an extra ref */
  2101. __sock_put(ssk);
  2102. }
  2103. out_release:
  2104. __mptcp_subflow_error_report(sk, ssk);
  2105. release_sock(ssk);
  2106. sock_put(ssk);
  2107. if (ssk == msk->first)
  2108. WRITE_ONCE(msk->first, NULL);
  2109. out:
  2110. __mptcp_sync_sndbuf(sk);
  2111. if (need_push)
  2112. __mptcp_push_pending(sk, 0);
  2113. /* Catch every 'all subflows closed' scenario, including peers silently
  2114. * closing them, e.g. due to timeout.
  2115. * For established sockets, allow an additional timeout before closing,
  2116. * as the protocol can still create more subflows.
  2117. */
  2118. if (list_is_singular(&msk->conn_list) && msk->first &&
  2119. inet_sk_state_load(msk->first) == TCP_CLOSE) {
  2120. if (sk->sk_state != TCP_ESTABLISHED ||
  2121. msk->in_accept_queue || sock_flag(sk, SOCK_DEAD)) {
  2122. mptcp_set_state(sk, TCP_CLOSE);
  2123. mptcp_close_wake_up(sk);
  2124. } else {
  2125. mptcp_start_tout_timer(sk);
  2126. }
  2127. }
  2128. }
  2129. void mptcp_close_ssk(struct sock *sk, struct sock *ssk,
  2130. struct mptcp_subflow_context *subflow)
  2131. {
  2132. /* The first subflow can already be closed and still in the list */
  2133. if (subflow->close_event_done)
  2134. return;
  2135. subflow->close_event_done = true;
  2136. if (sk->sk_state == TCP_ESTABLISHED)
  2137. mptcp_event(MPTCP_EVENT_SUB_CLOSED, mptcp_sk(sk), ssk, GFP_KERNEL);
  2138. /* subflow aborted before reaching the fully_established status
  2139. * attempt the creation of the next subflow
  2140. */
  2141. mptcp_pm_subflow_check_next(mptcp_sk(sk), subflow);
  2142. __mptcp_close_ssk(sk, ssk, subflow, MPTCP_CF_PUSH);
  2143. }
  2144. static unsigned int mptcp_sync_mss(struct sock *sk, u32 pmtu)
  2145. {
  2146. return 0;
  2147. }
  2148. static void __mptcp_close_subflow(struct sock *sk)
  2149. {
  2150. struct mptcp_subflow_context *subflow, *tmp;
  2151. struct mptcp_sock *msk = mptcp_sk(sk);
  2152. might_sleep();
  2153. mptcp_for_each_subflow_safe(msk, subflow, tmp) {
  2154. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  2155. int ssk_state = inet_sk_state_load(ssk);
  2156. if (ssk_state != TCP_CLOSE &&
  2157. (ssk_state != TCP_CLOSE_WAIT ||
  2158. inet_sk_state_load(sk) != TCP_ESTABLISHED))
  2159. continue;
  2160. /* 'subflow_data_ready' will re-sched once rx queue is empty */
  2161. if (!skb_queue_empty_lockless(&ssk->sk_receive_queue))
  2162. continue;
  2163. mptcp_close_ssk(sk, ssk, subflow);
  2164. }
  2165. }
  2166. static bool mptcp_close_tout_expired(const struct sock *sk)
  2167. {
  2168. if (!inet_csk(sk)->icsk_mtup.probe_timestamp ||
  2169. sk->sk_state == TCP_CLOSE)
  2170. return false;
  2171. return time_after32(tcp_jiffies32,
  2172. inet_csk(sk)->icsk_mtup.probe_timestamp + mptcp_close_timeout(sk));
  2173. }
  2174. static void mptcp_check_fastclose(struct mptcp_sock *msk)
  2175. {
  2176. struct mptcp_subflow_context *subflow, *tmp;
  2177. struct sock *sk = (struct sock *)msk;
  2178. if (likely(!READ_ONCE(msk->rcv_fastclose)))
  2179. return;
  2180. mptcp_token_destroy(msk);
  2181. mptcp_for_each_subflow_safe(msk, subflow, tmp) {
  2182. struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
  2183. bool slow;
  2184. slow = lock_sock_fast(tcp_sk);
  2185. if (tcp_sk->sk_state != TCP_CLOSE) {
  2186. mptcp_send_active_reset_reason(tcp_sk);
  2187. tcp_set_state(tcp_sk, TCP_CLOSE);
  2188. }
  2189. unlock_sock_fast(tcp_sk, slow);
  2190. }
  2191. /* Mirror the tcp_reset() error propagation */
  2192. switch (sk->sk_state) {
  2193. case TCP_SYN_SENT:
  2194. WRITE_ONCE(sk->sk_err, ECONNREFUSED);
  2195. break;
  2196. case TCP_CLOSE_WAIT:
  2197. WRITE_ONCE(sk->sk_err, EPIPE);
  2198. break;
  2199. case TCP_CLOSE:
  2200. return;
  2201. default:
  2202. WRITE_ONCE(sk->sk_err, ECONNRESET);
  2203. }
  2204. mptcp_set_state(sk, TCP_CLOSE);
  2205. WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
  2206. smp_mb__before_atomic(); /* SHUTDOWN must be visible first */
  2207. set_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags);
  2208. /* the calling mptcp_worker will properly destroy the socket */
  2209. if (sock_flag(sk, SOCK_DEAD))
  2210. return;
  2211. sk->sk_state_change(sk);
  2212. sk_error_report(sk);
  2213. }
  2214. static void __mptcp_retrans(struct sock *sk)
  2215. {
  2216. struct mptcp_sendmsg_info info = { .data_lock_held = true, };
  2217. struct mptcp_sock *msk = mptcp_sk(sk);
  2218. struct mptcp_subflow_context *subflow;
  2219. struct mptcp_data_frag *dfrag;
  2220. struct sock *ssk;
  2221. int ret, err;
  2222. u16 len = 0;
  2223. mptcp_clean_una_wakeup(sk);
  2224. /* first check ssk: need to kick "stale" logic */
  2225. err = mptcp_sched_get_retrans(msk);
  2226. dfrag = mptcp_rtx_head(sk);
  2227. if (!dfrag) {
  2228. if (mptcp_data_fin_enabled(msk)) {
  2229. struct inet_connection_sock *icsk = inet_csk(sk);
  2230. icsk->icsk_retransmits++;
  2231. mptcp_set_datafin_timeout(sk);
  2232. mptcp_send_ack(msk);
  2233. goto reset_timer;
  2234. }
  2235. if (!mptcp_send_head(sk))
  2236. return;
  2237. goto reset_timer;
  2238. }
  2239. if (err)
  2240. goto reset_timer;
  2241. mptcp_for_each_subflow(msk, subflow) {
  2242. if (READ_ONCE(subflow->scheduled)) {
  2243. u16 copied = 0;
  2244. mptcp_subflow_set_scheduled(subflow, false);
  2245. ssk = mptcp_subflow_tcp_sock(subflow);
  2246. lock_sock(ssk);
  2247. /* limit retransmission to the bytes already sent on some subflows */
  2248. info.sent = 0;
  2249. info.limit = READ_ONCE(msk->csum_enabled) ? dfrag->data_len :
  2250. dfrag->already_sent;
  2251. /*
  2252. * make the whole retrans decision, xmit, disallow
  2253. * fallback atomic
  2254. */
  2255. spin_lock_bh(&msk->fallback_lock);
  2256. if (__mptcp_check_fallback(msk)) {
  2257. spin_unlock_bh(&msk->fallback_lock);
  2258. release_sock(ssk);
  2259. return;
  2260. }
  2261. while (info.sent < info.limit) {
  2262. ret = mptcp_sendmsg_frag(sk, ssk, dfrag, &info);
  2263. if (ret <= 0)
  2264. break;
  2265. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_RETRANSSEGS);
  2266. copied += ret;
  2267. info.sent += ret;
  2268. }
  2269. if (copied) {
  2270. len = max(copied, len);
  2271. tcp_push(ssk, 0, info.mss_now, tcp_sk(ssk)->nonagle,
  2272. info.size_goal);
  2273. msk->allow_infinite_fallback = false;
  2274. }
  2275. spin_unlock_bh(&msk->fallback_lock);
  2276. release_sock(ssk);
  2277. }
  2278. }
  2279. msk->bytes_retrans += len;
  2280. dfrag->already_sent = max(dfrag->already_sent, len);
  2281. reset_timer:
  2282. mptcp_check_and_set_pending(sk);
  2283. if (!mptcp_rtx_timer_pending(sk))
  2284. mptcp_reset_rtx_timer(sk);
  2285. }
  2286. /* schedule the timeout timer for the relevant event: either close timeout
  2287. * or mp_fail timeout. The close timeout takes precedence on the mp_fail one
  2288. */
  2289. void mptcp_reset_tout_timer(struct mptcp_sock *msk, unsigned long fail_tout)
  2290. {
  2291. struct sock *sk = (struct sock *)msk;
  2292. unsigned long timeout, close_timeout;
  2293. if (!fail_tout && !inet_csk(sk)->icsk_mtup.probe_timestamp)
  2294. return;
  2295. close_timeout = (unsigned long)inet_csk(sk)->icsk_mtup.probe_timestamp -
  2296. tcp_jiffies32 + jiffies + mptcp_close_timeout(sk);
  2297. /* the close timeout takes precedence on the fail one, and here at least one of
  2298. * them is active
  2299. */
  2300. timeout = inet_csk(sk)->icsk_mtup.probe_timestamp ? close_timeout : fail_tout;
  2301. sk_reset_timer(sk, &sk->sk_timer, timeout);
  2302. }
  2303. static void mptcp_mp_fail_no_response(struct mptcp_sock *msk)
  2304. {
  2305. struct sock *ssk = msk->first;
  2306. bool slow;
  2307. if (!ssk)
  2308. return;
  2309. pr_debug("MP_FAIL doesn't respond, reset the subflow\n");
  2310. slow = lock_sock_fast(ssk);
  2311. mptcp_subflow_reset(ssk);
  2312. WRITE_ONCE(mptcp_subflow_ctx(ssk)->fail_tout, 0);
  2313. unlock_sock_fast(ssk, slow);
  2314. }
  2315. static void mptcp_do_fastclose(struct sock *sk)
  2316. {
  2317. struct mptcp_subflow_context *subflow, *tmp;
  2318. struct mptcp_sock *msk = mptcp_sk(sk);
  2319. mptcp_set_state(sk, TCP_CLOSE);
  2320. mptcp_for_each_subflow_safe(msk, subflow, tmp)
  2321. __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow),
  2322. subflow, MPTCP_CF_FASTCLOSE);
  2323. }
  2324. static void mptcp_worker(struct work_struct *work)
  2325. {
  2326. struct mptcp_sock *msk = container_of(work, struct mptcp_sock, work);
  2327. struct sock *sk = (struct sock *)msk;
  2328. unsigned long fail_tout;
  2329. int state;
  2330. lock_sock(sk);
  2331. state = sk->sk_state;
  2332. if (unlikely((1 << state) & (TCPF_CLOSE | TCPF_LISTEN)))
  2333. goto unlock;
  2334. mptcp_check_fastclose(msk);
  2335. mptcp_pm_nl_work(msk);
  2336. mptcp_check_send_data_fin(sk);
  2337. mptcp_check_data_fin_ack(sk);
  2338. mptcp_check_data_fin(sk);
  2339. if (test_and_clear_bit(MPTCP_WORK_CLOSE_SUBFLOW, &msk->flags))
  2340. __mptcp_close_subflow(sk);
  2341. if (mptcp_close_tout_expired(sk)) {
  2342. mptcp_do_fastclose(sk);
  2343. mptcp_close_wake_up(sk);
  2344. }
  2345. if (sock_flag(sk, SOCK_DEAD) && sk->sk_state == TCP_CLOSE) {
  2346. __mptcp_destroy_sock(sk);
  2347. goto unlock;
  2348. }
  2349. if (test_and_clear_bit(MPTCP_WORK_RTX, &msk->flags))
  2350. __mptcp_retrans(sk);
  2351. fail_tout = msk->first ? READ_ONCE(mptcp_subflow_ctx(msk->first)->fail_tout) : 0;
  2352. if (fail_tout && time_after(jiffies, fail_tout))
  2353. mptcp_mp_fail_no_response(msk);
  2354. unlock:
  2355. release_sock(sk);
  2356. sock_put(sk);
  2357. }
  2358. static void __mptcp_init_sock(struct sock *sk)
  2359. {
  2360. struct mptcp_sock *msk = mptcp_sk(sk);
  2361. INIT_LIST_HEAD(&msk->conn_list);
  2362. INIT_LIST_HEAD(&msk->join_list);
  2363. INIT_LIST_HEAD(&msk->rtx_queue);
  2364. INIT_WORK(&msk->work, mptcp_worker);
  2365. __skb_queue_head_init(&msk->receive_queue);
  2366. msk->out_of_order_queue = RB_ROOT;
  2367. msk->first_pending = NULL;
  2368. WRITE_ONCE(msk->rmem_fwd_alloc, 0);
  2369. WRITE_ONCE(msk->rmem_released, 0);
  2370. msk->timer_ival = TCP_RTO_MIN;
  2371. msk->scaling_ratio = TCP_DEFAULT_SCALING_RATIO;
  2372. WRITE_ONCE(msk->first, NULL);
  2373. inet_csk(sk)->icsk_sync_mss = mptcp_sync_mss;
  2374. WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
  2375. msk->allow_infinite_fallback = true;
  2376. msk->allow_subflows = true;
  2377. msk->recovery = false;
  2378. msk->subflow_id = 1;
  2379. msk->last_data_sent = tcp_jiffies32;
  2380. msk->last_data_recv = tcp_jiffies32;
  2381. msk->last_ack_recv = tcp_jiffies32;
  2382. mptcp_pm_data_init(msk);
  2383. spin_lock_init(&msk->fallback_lock);
  2384. /* re-use the csk retrans timer for MPTCP-level retrans */
  2385. timer_setup(&msk->sk.icsk_retransmit_timer, mptcp_retransmit_timer, 0);
  2386. timer_setup(&sk->sk_timer, mptcp_tout_timer, 0);
  2387. }
  2388. static void mptcp_ca_reset(struct sock *sk)
  2389. {
  2390. struct inet_connection_sock *icsk = inet_csk(sk);
  2391. tcp_assign_congestion_control(sk);
  2392. strscpy(mptcp_sk(sk)->ca_name, icsk->icsk_ca_ops->name,
  2393. sizeof(mptcp_sk(sk)->ca_name));
  2394. /* no need to keep a reference to the ops, the name will suffice */
  2395. tcp_cleanup_congestion_control(sk);
  2396. icsk->icsk_ca_ops = NULL;
  2397. }
  2398. static int mptcp_init_sock(struct sock *sk)
  2399. {
  2400. struct net *net = sock_net(sk);
  2401. int ret;
  2402. __mptcp_init_sock(sk);
  2403. if (!mptcp_is_enabled(net))
  2404. return -ENOPROTOOPT;
  2405. if (unlikely(!net->mib.mptcp_statistics) && !mptcp_mib_alloc(net))
  2406. return -ENOMEM;
  2407. rcu_read_lock();
  2408. ret = mptcp_init_sched(mptcp_sk(sk),
  2409. mptcp_sched_find(mptcp_get_scheduler(net)));
  2410. rcu_read_unlock();
  2411. if (ret)
  2412. return ret;
  2413. set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
  2414. /* fetch the ca name; do it outside __mptcp_init_sock(), so that clone will
  2415. * propagate the correct value
  2416. */
  2417. mptcp_ca_reset(sk);
  2418. sk_sockets_allocated_inc(sk);
  2419. sk->sk_rcvbuf = READ_ONCE(net->ipv4.sysctl_tcp_rmem[1]);
  2420. sk->sk_sndbuf = READ_ONCE(net->ipv4.sysctl_tcp_wmem[1]);
  2421. return 0;
  2422. }
  2423. static void __mptcp_clear_xmit(struct sock *sk)
  2424. {
  2425. struct mptcp_sock *msk = mptcp_sk(sk);
  2426. struct mptcp_data_frag *dtmp, *dfrag;
  2427. WRITE_ONCE(msk->first_pending, NULL);
  2428. list_for_each_entry_safe(dfrag, dtmp, &msk->rtx_queue, list)
  2429. dfrag_clear(sk, dfrag);
  2430. }
  2431. void mptcp_cancel_work(struct sock *sk)
  2432. {
  2433. struct mptcp_sock *msk = mptcp_sk(sk);
  2434. if (cancel_work_sync(&msk->work))
  2435. __sock_put(sk);
  2436. }
  2437. void mptcp_subflow_shutdown(struct sock *sk, struct sock *ssk, int how)
  2438. {
  2439. lock_sock(ssk);
  2440. switch (ssk->sk_state) {
  2441. case TCP_LISTEN:
  2442. if (!(how & RCV_SHUTDOWN))
  2443. break;
  2444. fallthrough;
  2445. case TCP_SYN_SENT:
  2446. WARN_ON_ONCE(tcp_disconnect(ssk, O_NONBLOCK));
  2447. break;
  2448. default:
  2449. if (__mptcp_check_fallback(mptcp_sk(sk))) {
  2450. pr_debug("Fallback\n");
  2451. ssk->sk_shutdown |= how;
  2452. tcp_shutdown(ssk, how);
  2453. /* simulate the data_fin ack reception to let the state
  2454. * machine move forward
  2455. */
  2456. WRITE_ONCE(mptcp_sk(sk)->snd_una, mptcp_sk(sk)->snd_nxt);
  2457. mptcp_schedule_work(sk);
  2458. } else {
  2459. pr_debug("Sending DATA_FIN on subflow %p\n", ssk);
  2460. tcp_send_ack(ssk);
  2461. if (!mptcp_rtx_timer_pending(sk))
  2462. mptcp_reset_rtx_timer(sk);
  2463. }
  2464. break;
  2465. }
  2466. release_sock(ssk);
  2467. }
  2468. void mptcp_set_state(struct sock *sk, int state)
  2469. {
  2470. int oldstate = sk->sk_state;
  2471. switch (state) {
  2472. case TCP_ESTABLISHED:
  2473. if (oldstate != TCP_ESTABLISHED)
  2474. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
  2475. break;
  2476. case TCP_CLOSE_WAIT:
  2477. /* Unlike TCP, MPTCP sk would not have the TCP_SYN_RECV state:
  2478. * MPTCP "accepted" sockets will be created later on. So no
  2479. * transition from TCP_SYN_RECV to TCP_CLOSE_WAIT.
  2480. */
  2481. break;
  2482. default:
  2483. if (oldstate == TCP_ESTABLISHED || oldstate == TCP_CLOSE_WAIT)
  2484. MPTCP_DEC_STATS(sock_net(sk), MPTCP_MIB_CURRESTAB);
  2485. }
  2486. inet_sk_state_store(sk, state);
  2487. }
  2488. static const unsigned char new_state[16] = {
  2489. /* current state: new state: action: */
  2490. [0 /* (Invalid) */] = TCP_CLOSE,
  2491. [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  2492. [TCP_SYN_SENT] = TCP_CLOSE,
  2493. [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
  2494. [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
  2495. [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
  2496. [TCP_TIME_WAIT] = TCP_CLOSE, /* should not happen ! */
  2497. [TCP_CLOSE] = TCP_CLOSE,
  2498. [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
  2499. [TCP_LAST_ACK] = TCP_LAST_ACK,
  2500. [TCP_LISTEN] = TCP_CLOSE,
  2501. [TCP_CLOSING] = TCP_CLOSING,
  2502. [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
  2503. };
  2504. static int mptcp_close_state(struct sock *sk)
  2505. {
  2506. int next = (int)new_state[sk->sk_state];
  2507. int ns = next & TCP_STATE_MASK;
  2508. mptcp_set_state(sk, ns);
  2509. return next & TCP_ACTION_FIN;
  2510. }
  2511. static void mptcp_check_send_data_fin(struct sock *sk)
  2512. {
  2513. struct mptcp_subflow_context *subflow;
  2514. struct mptcp_sock *msk = mptcp_sk(sk);
  2515. pr_debug("msk=%p snd_data_fin_enable=%d pending=%d snd_nxt=%llu write_seq=%llu\n",
  2516. msk, msk->snd_data_fin_enable, !!mptcp_send_head(sk),
  2517. msk->snd_nxt, msk->write_seq);
  2518. /* we still need to enqueue subflows or not really shutting down,
  2519. * skip this
  2520. */
  2521. if (!msk->snd_data_fin_enable || msk->snd_nxt + 1 != msk->write_seq ||
  2522. mptcp_send_head(sk))
  2523. return;
  2524. WRITE_ONCE(msk->snd_nxt, msk->write_seq);
  2525. mptcp_for_each_subflow(msk, subflow) {
  2526. struct sock *tcp_sk = mptcp_subflow_tcp_sock(subflow);
  2527. mptcp_subflow_shutdown(sk, tcp_sk, SEND_SHUTDOWN);
  2528. }
  2529. }
  2530. static void __mptcp_wr_shutdown(struct sock *sk)
  2531. {
  2532. struct mptcp_sock *msk = mptcp_sk(sk);
  2533. pr_debug("msk=%p snd_data_fin_enable=%d shutdown=%x state=%d pending=%d\n",
  2534. msk, msk->snd_data_fin_enable, sk->sk_shutdown, sk->sk_state,
  2535. !!mptcp_send_head(sk));
  2536. /* will be ignored by fallback sockets */
  2537. WRITE_ONCE(msk->write_seq, msk->write_seq + 1);
  2538. WRITE_ONCE(msk->snd_data_fin_enable, 1);
  2539. mptcp_check_send_data_fin(sk);
  2540. }
  2541. static void __mptcp_destroy_sock(struct sock *sk)
  2542. {
  2543. struct mptcp_sock *msk = mptcp_sk(sk);
  2544. pr_debug("msk=%p\n", msk);
  2545. might_sleep();
  2546. mptcp_stop_rtx_timer(sk);
  2547. sk_stop_timer(sk, &sk->sk_timer);
  2548. msk->pm.status = 0;
  2549. mptcp_release_sched(msk);
  2550. sk->sk_prot->destroy(sk);
  2551. WARN_ON_ONCE(READ_ONCE(msk->rmem_fwd_alloc));
  2552. WARN_ON_ONCE(msk->rmem_released);
  2553. sk_stream_kill_queues(sk);
  2554. xfrm_sk_free_policy(sk);
  2555. sock_put(sk);
  2556. }
  2557. void __mptcp_unaccepted_force_close(struct sock *sk)
  2558. {
  2559. sock_set_flag(sk, SOCK_DEAD);
  2560. mptcp_do_fastclose(sk);
  2561. __mptcp_destroy_sock(sk);
  2562. }
  2563. static __poll_t mptcp_check_readable(struct sock *sk)
  2564. {
  2565. return mptcp_epollin_ready(sk) ? EPOLLIN | EPOLLRDNORM : 0;
  2566. }
  2567. static void mptcp_check_listen_stop(struct sock *sk)
  2568. {
  2569. struct sock *ssk;
  2570. if (inet_sk_state_load(sk) != TCP_LISTEN)
  2571. return;
  2572. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
  2573. ssk = mptcp_sk(sk)->first;
  2574. if (WARN_ON_ONCE(!ssk || inet_sk_state_load(ssk) != TCP_LISTEN))
  2575. return;
  2576. lock_sock_nested(ssk, SINGLE_DEPTH_NESTING);
  2577. tcp_set_state(ssk, TCP_CLOSE);
  2578. mptcp_subflow_queue_clean(sk, ssk);
  2579. inet_csk_listen_stop(ssk);
  2580. mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CLOSED);
  2581. release_sock(ssk);
  2582. }
  2583. bool __mptcp_close(struct sock *sk, long timeout)
  2584. {
  2585. struct mptcp_subflow_context *subflow;
  2586. struct mptcp_sock *msk = mptcp_sk(sk);
  2587. bool do_cancel_work = false;
  2588. int subflows_alive = 0;
  2589. WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
  2590. if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) {
  2591. mptcp_check_listen_stop(sk);
  2592. mptcp_set_state(sk, TCP_CLOSE);
  2593. goto cleanup;
  2594. }
  2595. if (mptcp_data_avail(msk) || timeout < 0) {
  2596. /* If the msk has read data, or the caller explicitly ask it,
  2597. * do the MPTCP equivalent of TCP reset, aka MPTCP fastclose
  2598. */
  2599. mptcp_do_fastclose(sk);
  2600. timeout = 0;
  2601. } else if (mptcp_close_state(sk)) {
  2602. __mptcp_wr_shutdown(sk);
  2603. }
  2604. sk_stream_wait_close(sk, timeout);
  2605. cleanup:
  2606. /* orphan all the subflows */
  2607. mptcp_for_each_subflow(msk, subflow) {
  2608. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  2609. bool slow = lock_sock_fast_nested(ssk);
  2610. subflows_alive += ssk->sk_state != TCP_CLOSE;
  2611. /* since the close timeout takes precedence on the fail one,
  2612. * cancel the latter
  2613. */
  2614. if (ssk == msk->first)
  2615. subflow->fail_tout = 0;
  2616. /* detach from the parent socket, but allow data_ready to
  2617. * push incoming data into the mptcp stack, to properly ack it
  2618. */
  2619. ssk->sk_socket = NULL;
  2620. ssk->sk_wq = NULL;
  2621. unlock_sock_fast(ssk, slow);
  2622. }
  2623. sock_orphan(sk);
  2624. /* all the subflows are closed, only timeout can change the msk
  2625. * state, let's not keep resources busy for no reasons
  2626. */
  2627. if (subflows_alive == 0)
  2628. mptcp_set_state(sk, TCP_CLOSE);
  2629. sock_hold(sk);
  2630. pr_debug("msk=%p state=%d\n", sk, sk->sk_state);
  2631. if (msk->token)
  2632. mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
  2633. if (sk->sk_state == TCP_CLOSE) {
  2634. __mptcp_destroy_sock(sk);
  2635. do_cancel_work = true;
  2636. } else {
  2637. mptcp_start_tout_timer(sk);
  2638. }
  2639. return do_cancel_work;
  2640. }
  2641. static void mptcp_close(struct sock *sk, long timeout)
  2642. {
  2643. bool do_cancel_work;
  2644. lock_sock(sk);
  2645. do_cancel_work = __mptcp_close(sk, timeout);
  2646. release_sock(sk);
  2647. if (do_cancel_work)
  2648. mptcp_cancel_work(sk);
  2649. sock_put(sk);
  2650. }
  2651. static void mptcp_copy_inaddrs(struct sock *msk, const struct sock *ssk)
  2652. {
  2653. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  2654. const struct ipv6_pinfo *ssk6 = inet6_sk(ssk);
  2655. struct ipv6_pinfo *msk6 = inet6_sk(msk);
  2656. msk->sk_v6_daddr = ssk->sk_v6_daddr;
  2657. msk->sk_v6_rcv_saddr = ssk->sk_v6_rcv_saddr;
  2658. if (msk6 && ssk6) {
  2659. msk6->saddr = ssk6->saddr;
  2660. msk6->flow_label = ssk6->flow_label;
  2661. }
  2662. #endif
  2663. inet_sk(msk)->inet_num = inet_sk(ssk)->inet_num;
  2664. inet_sk(msk)->inet_dport = inet_sk(ssk)->inet_dport;
  2665. inet_sk(msk)->inet_sport = inet_sk(ssk)->inet_sport;
  2666. inet_sk(msk)->inet_daddr = inet_sk(ssk)->inet_daddr;
  2667. inet_sk(msk)->inet_saddr = inet_sk(ssk)->inet_saddr;
  2668. inet_sk(msk)->inet_rcv_saddr = inet_sk(ssk)->inet_rcv_saddr;
  2669. }
  2670. static int mptcp_disconnect(struct sock *sk, int flags)
  2671. {
  2672. struct mptcp_sock *msk = mptcp_sk(sk);
  2673. /* We are on the fastopen error path. We can't call straight into the
  2674. * subflows cleanup code due to lock nesting (we are already under
  2675. * msk->firstsocket lock).
  2676. */
  2677. if (msk->fastopening)
  2678. return -EBUSY;
  2679. mptcp_check_listen_stop(sk);
  2680. mptcp_set_state(sk, TCP_CLOSE);
  2681. mptcp_stop_rtx_timer(sk);
  2682. mptcp_stop_tout_timer(sk);
  2683. if (msk->token)
  2684. mptcp_event(MPTCP_EVENT_CLOSED, msk, NULL, GFP_KERNEL);
  2685. /* msk->subflow is still intact, the following will not free the first
  2686. * subflow
  2687. */
  2688. mptcp_destroy_common(msk, MPTCP_CF_FASTCLOSE);
  2689. /* The first subflow is already in TCP_CLOSE status, the following
  2690. * can't overlap with a fallback anymore
  2691. */
  2692. spin_lock_bh(&msk->fallback_lock);
  2693. msk->allow_subflows = true;
  2694. msk->allow_infinite_fallback = true;
  2695. WRITE_ONCE(msk->flags, 0);
  2696. spin_unlock_bh(&msk->fallback_lock);
  2697. msk->cb_flags = 0;
  2698. msk->recovery = false;
  2699. WRITE_ONCE(msk->can_ack, false);
  2700. WRITE_ONCE(msk->fully_established, false);
  2701. WRITE_ONCE(msk->rcv_data_fin, false);
  2702. WRITE_ONCE(msk->snd_data_fin_enable, false);
  2703. WRITE_ONCE(msk->rcv_fastclose, false);
  2704. WRITE_ONCE(msk->use_64bit_ack, false);
  2705. WRITE_ONCE(msk->csum_enabled, mptcp_is_checksum_enabled(sock_net(sk)));
  2706. mptcp_pm_data_reset(msk);
  2707. mptcp_ca_reset(sk);
  2708. msk->bytes_consumed = 0;
  2709. msk->bytes_acked = 0;
  2710. msk->bytes_received = 0;
  2711. msk->bytes_sent = 0;
  2712. msk->bytes_retrans = 0;
  2713. msk->rcvspace_init = 0;
  2714. WRITE_ONCE(sk->sk_shutdown, 0);
  2715. sk_error_report(sk);
  2716. return 0;
  2717. }
  2718. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  2719. static struct ipv6_pinfo *mptcp_inet6_sk(const struct sock *sk)
  2720. {
  2721. unsigned int offset = sizeof(struct mptcp6_sock) - sizeof(struct ipv6_pinfo);
  2722. return (struct ipv6_pinfo *)(((u8 *)sk) + offset);
  2723. }
  2724. static void mptcp_copy_ip6_options(struct sock *newsk, const struct sock *sk)
  2725. {
  2726. const struct ipv6_pinfo *np = inet6_sk(sk);
  2727. struct ipv6_txoptions *opt;
  2728. struct ipv6_pinfo *newnp;
  2729. newnp = inet6_sk(newsk);
  2730. rcu_read_lock();
  2731. opt = rcu_dereference(np->opt);
  2732. if (opt) {
  2733. opt = ipv6_dup_options(newsk, opt);
  2734. if (!opt)
  2735. net_warn_ratelimited("%s: Failed to copy ip6 options\n", __func__);
  2736. }
  2737. RCU_INIT_POINTER(newnp->opt, opt);
  2738. rcu_read_unlock();
  2739. }
  2740. #endif
  2741. static void mptcp_copy_ip_options(struct sock *newsk, const struct sock *sk)
  2742. {
  2743. struct ip_options_rcu *inet_opt, *newopt = NULL;
  2744. const struct inet_sock *inet = inet_sk(sk);
  2745. struct inet_sock *newinet;
  2746. newinet = inet_sk(newsk);
  2747. rcu_read_lock();
  2748. inet_opt = rcu_dereference(inet->inet_opt);
  2749. if (inet_opt) {
  2750. newopt = sock_kmalloc(newsk, sizeof(*inet_opt) +
  2751. inet_opt->opt.optlen, GFP_ATOMIC);
  2752. if (newopt)
  2753. memcpy(newopt, inet_opt, sizeof(*inet_opt) +
  2754. inet_opt->opt.optlen);
  2755. else
  2756. net_warn_ratelimited("%s: Failed to copy ip options\n", __func__);
  2757. }
  2758. RCU_INIT_POINTER(newinet->inet_opt, newopt);
  2759. rcu_read_unlock();
  2760. }
  2761. struct sock *mptcp_sk_clone_init(const struct sock *sk,
  2762. const struct mptcp_options_received *mp_opt,
  2763. struct sock *ssk,
  2764. struct request_sock *req)
  2765. {
  2766. struct mptcp_subflow_request_sock *subflow_req = mptcp_subflow_rsk(req);
  2767. struct sock *nsk = sk_clone_lock(sk, GFP_ATOMIC);
  2768. struct mptcp_subflow_context *subflow;
  2769. struct mptcp_sock *msk;
  2770. if (!nsk)
  2771. return NULL;
  2772. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  2773. if (nsk->sk_family == AF_INET6)
  2774. inet_sk(nsk)->pinet6 = mptcp_inet6_sk(nsk);
  2775. #endif
  2776. __mptcp_init_sock(nsk);
  2777. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  2778. if (nsk->sk_family == AF_INET6)
  2779. mptcp_copy_ip6_options(nsk, sk);
  2780. else
  2781. #endif
  2782. mptcp_copy_ip_options(nsk, sk);
  2783. msk = mptcp_sk(nsk);
  2784. WRITE_ONCE(msk->local_key, subflow_req->local_key);
  2785. WRITE_ONCE(msk->token, subflow_req->token);
  2786. msk->in_accept_queue = 1;
  2787. WRITE_ONCE(msk->fully_established, false);
  2788. if (mp_opt->suboptions & OPTION_MPTCP_CSUMREQD)
  2789. WRITE_ONCE(msk->csum_enabled, true);
  2790. WRITE_ONCE(msk->write_seq, subflow_req->idsn + 1);
  2791. WRITE_ONCE(msk->snd_nxt, msk->write_seq);
  2792. WRITE_ONCE(msk->snd_una, msk->write_seq);
  2793. WRITE_ONCE(msk->wnd_end, msk->snd_nxt + tcp_sk(ssk)->snd_wnd);
  2794. msk->setsockopt_seq = mptcp_sk(sk)->setsockopt_seq;
  2795. mptcp_init_sched(msk, mptcp_sk(sk)->sched);
  2796. /* passive msk is created after the first/MPC subflow */
  2797. msk->subflow_id = 2;
  2798. sock_reset_flag(nsk, SOCK_RCU_FREE);
  2799. security_inet_csk_clone(nsk, req);
  2800. /* this can't race with mptcp_close(), as the msk is
  2801. * not yet exposted to user-space
  2802. */
  2803. mptcp_set_state(nsk, TCP_ESTABLISHED);
  2804. /* The msk maintain a ref to each subflow in the connections list */
  2805. WRITE_ONCE(msk->first, ssk);
  2806. subflow = mptcp_subflow_ctx(ssk);
  2807. list_add(&subflow->node, &msk->conn_list);
  2808. sock_hold(ssk);
  2809. /* new mpc subflow takes ownership of the newly
  2810. * created mptcp socket
  2811. */
  2812. mptcp_token_accept(subflow_req, msk);
  2813. /* set msk addresses early to ensure mptcp_pm_get_local_id()
  2814. * uses the correct data
  2815. */
  2816. mptcp_copy_inaddrs(nsk, ssk);
  2817. __mptcp_propagate_sndbuf(nsk, ssk);
  2818. mptcp_rcv_space_init(msk, ssk);
  2819. if (mp_opt->suboptions & OPTION_MPTCP_MPC_ACK)
  2820. __mptcp_subflow_fully_established(msk, subflow, mp_opt);
  2821. bh_unlock_sock(nsk);
  2822. /* note: the newly allocated socket refcount is 2 now */
  2823. return nsk;
  2824. }
  2825. void mptcp_rcv_space_init(struct mptcp_sock *msk, const struct sock *ssk)
  2826. {
  2827. const struct tcp_sock *tp = tcp_sk(ssk);
  2828. msk->rcvspace_init = 1;
  2829. msk->rcvq_space.copied = 0;
  2830. msk->rcvq_space.rtt_us = 0;
  2831. msk->rcvq_space.time = tp->tcp_mstamp;
  2832. /* initial rcv_space offering made to peer */
  2833. msk->rcvq_space.space = min_t(u32, tp->rcv_wnd,
  2834. TCP_INIT_CWND * tp->advmss);
  2835. if (msk->rcvq_space.space == 0)
  2836. msk->rcvq_space.space = TCP_INIT_CWND * TCP_MSS_DEFAULT;
  2837. }
  2838. void mptcp_destroy_common(struct mptcp_sock *msk, unsigned int flags)
  2839. {
  2840. struct mptcp_subflow_context *subflow, *tmp;
  2841. struct sock *sk = (struct sock *)msk;
  2842. __mptcp_clear_xmit(sk);
  2843. /* join list will be eventually flushed (with rst) at sock lock release time */
  2844. mptcp_for_each_subflow_safe(msk, subflow, tmp)
  2845. __mptcp_close_ssk(sk, mptcp_subflow_tcp_sock(subflow), subflow, flags);
  2846. /* move to sk_receive_queue, sk_stream_kill_queues will purge it */
  2847. mptcp_data_lock(sk);
  2848. skb_queue_splice_tail_init(&msk->receive_queue, &sk->sk_receive_queue);
  2849. __skb_queue_purge(&sk->sk_receive_queue);
  2850. skb_rbtree_purge(&msk->out_of_order_queue);
  2851. mptcp_data_unlock(sk);
  2852. /* move all the rx fwd alloc into the sk_mem_reclaim_final in
  2853. * inet_sock_destruct() will dispose it
  2854. */
  2855. sk_forward_alloc_add(sk, msk->rmem_fwd_alloc);
  2856. WRITE_ONCE(msk->rmem_fwd_alloc, 0);
  2857. mptcp_token_destroy(msk);
  2858. mptcp_pm_free_anno_list(msk);
  2859. mptcp_free_local_addr_list(msk);
  2860. }
  2861. static void mptcp_destroy(struct sock *sk)
  2862. {
  2863. struct mptcp_sock *msk = mptcp_sk(sk);
  2864. /* allow the following to close even the initial subflow */
  2865. msk->free_first = 1;
  2866. mptcp_destroy_common(msk, 0);
  2867. sk_sockets_allocated_dec(sk);
  2868. }
  2869. void __mptcp_data_acked(struct sock *sk)
  2870. {
  2871. if (!sock_owned_by_user(sk))
  2872. __mptcp_clean_una(sk);
  2873. else
  2874. __set_bit(MPTCP_CLEAN_UNA, &mptcp_sk(sk)->cb_flags);
  2875. }
  2876. void __mptcp_check_push(struct sock *sk, struct sock *ssk)
  2877. {
  2878. if (!mptcp_send_head(sk))
  2879. return;
  2880. if (!sock_owned_by_user(sk))
  2881. __mptcp_subflow_push_pending(sk, ssk, false);
  2882. else
  2883. __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
  2884. }
  2885. #define MPTCP_FLAGS_PROCESS_CTX_NEED (BIT(MPTCP_PUSH_PENDING) | \
  2886. BIT(MPTCP_RETRANSMIT) | \
  2887. BIT(MPTCP_FLUSH_JOIN_LIST))
  2888. /* processes deferred events and flush wmem */
  2889. static void mptcp_release_cb(struct sock *sk)
  2890. __must_hold(&sk->sk_lock.slock)
  2891. {
  2892. struct mptcp_sock *msk = mptcp_sk(sk);
  2893. for (;;) {
  2894. unsigned long flags = (msk->cb_flags & MPTCP_FLAGS_PROCESS_CTX_NEED);
  2895. struct list_head join_list;
  2896. if (!flags)
  2897. break;
  2898. INIT_LIST_HEAD(&join_list);
  2899. list_splice_init(&msk->join_list, &join_list);
  2900. /* the following actions acquire the subflow socket lock
  2901. *
  2902. * 1) can't be invoked in atomic scope
  2903. * 2) must avoid ABBA deadlock with msk socket spinlock: the RX
  2904. * datapath acquires the msk socket spinlock while helding
  2905. * the subflow socket lock
  2906. */
  2907. msk->cb_flags &= ~flags;
  2908. spin_unlock_bh(&sk->sk_lock.slock);
  2909. if (flags & BIT(MPTCP_FLUSH_JOIN_LIST))
  2910. __mptcp_flush_join_list(sk, &join_list);
  2911. if (flags & BIT(MPTCP_PUSH_PENDING))
  2912. __mptcp_push_pending(sk, 0);
  2913. if (flags & BIT(MPTCP_RETRANSMIT))
  2914. __mptcp_retrans(sk);
  2915. cond_resched();
  2916. spin_lock_bh(&sk->sk_lock.slock);
  2917. }
  2918. if (__test_and_clear_bit(MPTCP_CLEAN_UNA, &msk->cb_flags))
  2919. __mptcp_clean_una_wakeup(sk);
  2920. if (unlikely(msk->cb_flags)) {
  2921. /* be sure to sync the msk state before taking actions
  2922. * depending on sk_state (MPTCP_ERROR_REPORT)
  2923. * On sk release avoid actions depending on the first subflow
  2924. */
  2925. if (__test_and_clear_bit(MPTCP_SYNC_STATE, &msk->cb_flags) && msk->first)
  2926. __mptcp_sync_state(sk, msk->pending_state);
  2927. if (__test_and_clear_bit(MPTCP_ERROR_REPORT, &msk->cb_flags))
  2928. __mptcp_error_report(sk);
  2929. if (__test_and_clear_bit(MPTCP_SYNC_SNDBUF, &msk->cb_flags))
  2930. __mptcp_sync_sndbuf(sk);
  2931. }
  2932. __mptcp_update_rmem(sk);
  2933. }
  2934. /* MP_JOIN client subflow must wait for 4th ack before sending any data:
  2935. * TCP can't schedule delack timer before the subflow is fully established.
  2936. * MPTCP uses the delack timer to do 3rd ack retransmissions
  2937. */
  2938. static void schedule_3rdack_retransmission(struct sock *ssk)
  2939. {
  2940. struct inet_connection_sock *icsk = inet_csk(ssk);
  2941. struct tcp_sock *tp = tcp_sk(ssk);
  2942. unsigned long timeout;
  2943. if (READ_ONCE(mptcp_subflow_ctx(ssk)->fully_established))
  2944. return;
  2945. /* reschedule with a timeout above RTT, as we must look only for drop */
  2946. if (tp->srtt_us)
  2947. timeout = usecs_to_jiffies(tp->srtt_us >> (3 - 1));
  2948. else
  2949. timeout = TCP_TIMEOUT_INIT;
  2950. timeout += jiffies;
  2951. WARN_ON_ONCE(icsk->icsk_ack.pending & ICSK_ACK_TIMER);
  2952. icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER;
  2953. icsk->icsk_ack.timeout = timeout;
  2954. sk_reset_timer(ssk, &icsk->icsk_delack_timer, timeout);
  2955. }
  2956. void mptcp_subflow_process_delegated(struct sock *ssk, long status)
  2957. {
  2958. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  2959. struct sock *sk = subflow->conn;
  2960. if (status & BIT(MPTCP_DELEGATE_SEND)) {
  2961. mptcp_data_lock(sk);
  2962. if (!sock_owned_by_user(sk))
  2963. __mptcp_subflow_push_pending(sk, ssk, true);
  2964. else
  2965. __set_bit(MPTCP_PUSH_PENDING, &mptcp_sk(sk)->cb_flags);
  2966. mptcp_data_unlock(sk);
  2967. }
  2968. if (status & BIT(MPTCP_DELEGATE_SNDBUF)) {
  2969. mptcp_data_lock(sk);
  2970. if (!sock_owned_by_user(sk))
  2971. __mptcp_sync_sndbuf(sk);
  2972. else
  2973. __set_bit(MPTCP_SYNC_SNDBUF, &mptcp_sk(sk)->cb_flags);
  2974. mptcp_data_unlock(sk);
  2975. }
  2976. if (status & BIT(MPTCP_DELEGATE_ACK))
  2977. schedule_3rdack_retransmission(ssk);
  2978. }
  2979. static int mptcp_hash(struct sock *sk)
  2980. {
  2981. /* should never be called,
  2982. * we hash the TCP subflows not the MPTCP socket
  2983. */
  2984. WARN_ON_ONCE(1);
  2985. return 0;
  2986. }
  2987. static void mptcp_unhash(struct sock *sk)
  2988. {
  2989. /* called from sk_common_release(), but nothing to do here */
  2990. }
  2991. static int mptcp_get_port(struct sock *sk, unsigned short snum)
  2992. {
  2993. struct mptcp_sock *msk = mptcp_sk(sk);
  2994. pr_debug("msk=%p, ssk=%p\n", msk, msk->first);
  2995. if (WARN_ON_ONCE(!msk->first))
  2996. return -EINVAL;
  2997. return inet_csk_get_port(msk->first, snum);
  2998. }
  2999. void mptcp_finish_connect(struct sock *ssk)
  3000. {
  3001. struct mptcp_subflow_context *subflow;
  3002. struct mptcp_sock *msk;
  3003. struct sock *sk;
  3004. subflow = mptcp_subflow_ctx(ssk);
  3005. sk = subflow->conn;
  3006. msk = mptcp_sk(sk);
  3007. pr_debug("msk=%p, token=%u\n", sk, subflow->token);
  3008. subflow->map_seq = subflow->iasn;
  3009. subflow->map_subflow_seq = 1;
  3010. /* the socket is not connected yet, no msk/subflow ops can access/race
  3011. * accessing the field below
  3012. */
  3013. WRITE_ONCE(msk->local_key, subflow->local_key);
  3014. mptcp_pm_new_connection(msk, ssk, 0);
  3015. }
  3016. void mptcp_sock_graft(struct sock *sk, struct socket *parent)
  3017. {
  3018. write_lock_bh(&sk->sk_callback_lock);
  3019. rcu_assign_pointer(sk->sk_wq, &parent->wq);
  3020. sk_set_socket(sk, parent);
  3021. sk->sk_uid = SOCK_INODE(parent)->i_uid;
  3022. write_unlock_bh(&sk->sk_callback_lock);
  3023. }
  3024. bool mptcp_finish_join(struct sock *ssk)
  3025. {
  3026. struct mptcp_subflow_context *subflow = mptcp_subflow_ctx(ssk);
  3027. struct mptcp_sock *msk = mptcp_sk(subflow->conn);
  3028. struct sock *parent = (void *)msk;
  3029. bool ret = true;
  3030. pr_debug("msk=%p, subflow=%p\n", msk, subflow);
  3031. /* mptcp socket already closing? */
  3032. if (!mptcp_is_fully_established(parent)) {
  3033. subflow->reset_reason = MPTCP_RST_EMPTCP;
  3034. return false;
  3035. }
  3036. /* active subflow, already present inside the conn_list */
  3037. if (!list_empty(&subflow->node)) {
  3038. spin_lock_bh(&msk->fallback_lock);
  3039. if (!msk->allow_subflows) {
  3040. spin_unlock_bh(&msk->fallback_lock);
  3041. return false;
  3042. }
  3043. mptcp_subflow_joined(msk, ssk);
  3044. spin_unlock_bh(&msk->fallback_lock);
  3045. mptcp_propagate_sndbuf(parent, ssk);
  3046. return true;
  3047. }
  3048. if (!mptcp_pm_allow_new_subflow(msk))
  3049. goto err_prohibited;
  3050. /* If we can't acquire msk socket lock here, let the release callback
  3051. * handle it
  3052. */
  3053. mptcp_data_lock(parent);
  3054. if (!sock_owned_by_user(parent)) {
  3055. ret = __mptcp_finish_join(msk, ssk);
  3056. if (ret) {
  3057. sock_hold(ssk);
  3058. list_add_tail(&subflow->node, &msk->conn_list);
  3059. }
  3060. } else {
  3061. sock_hold(ssk);
  3062. list_add_tail(&subflow->node, &msk->join_list);
  3063. __set_bit(MPTCP_FLUSH_JOIN_LIST, &msk->cb_flags);
  3064. }
  3065. mptcp_data_unlock(parent);
  3066. if (!ret) {
  3067. err_prohibited:
  3068. subflow->reset_reason = MPTCP_RST_EPROHIBIT;
  3069. return false;
  3070. }
  3071. return true;
  3072. }
  3073. static void mptcp_shutdown(struct sock *sk, int how)
  3074. {
  3075. pr_debug("sk=%p, how=%d\n", sk, how);
  3076. if ((how & SEND_SHUTDOWN) && mptcp_close_state(sk))
  3077. __mptcp_wr_shutdown(sk);
  3078. }
  3079. static int mptcp_forward_alloc_get(const struct sock *sk)
  3080. {
  3081. return READ_ONCE(sk->sk_forward_alloc) +
  3082. READ_ONCE(mptcp_sk(sk)->rmem_fwd_alloc);
  3083. }
  3084. static int mptcp_ioctl_outq(const struct mptcp_sock *msk, u64 v)
  3085. {
  3086. const struct sock *sk = (void *)msk;
  3087. u64 delta;
  3088. if (sk->sk_state == TCP_LISTEN)
  3089. return -EINVAL;
  3090. if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
  3091. return 0;
  3092. delta = msk->write_seq - v;
  3093. if (__mptcp_check_fallback(msk) && msk->first) {
  3094. struct tcp_sock *tp = tcp_sk(msk->first);
  3095. /* the first subflow is disconnected after close - see
  3096. * __mptcp_close_ssk(). tcp_disconnect() moves the write_seq
  3097. * so ignore that status, too.
  3098. */
  3099. if (!((1 << msk->first->sk_state) &
  3100. (TCPF_SYN_SENT | TCPF_SYN_RECV | TCPF_CLOSE)))
  3101. delta += READ_ONCE(tp->write_seq) - tp->snd_una;
  3102. }
  3103. if (delta > INT_MAX)
  3104. delta = INT_MAX;
  3105. return (int)delta;
  3106. }
  3107. static int mptcp_ioctl(struct sock *sk, int cmd, int *karg)
  3108. {
  3109. struct mptcp_sock *msk = mptcp_sk(sk);
  3110. bool slow;
  3111. switch (cmd) {
  3112. case SIOCINQ:
  3113. if (sk->sk_state == TCP_LISTEN)
  3114. return -EINVAL;
  3115. lock_sock(sk);
  3116. __mptcp_move_skbs(msk);
  3117. *karg = mptcp_inq_hint(sk);
  3118. release_sock(sk);
  3119. break;
  3120. case SIOCOUTQ:
  3121. slow = lock_sock_fast(sk);
  3122. *karg = mptcp_ioctl_outq(msk, READ_ONCE(msk->snd_una));
  3123. unlock_sock_fast(sk, slow);
  3124. break;
  3125. case SIOCOUTQNSD:
  3126. slow = lock_sock_fast(sk);
  3127. *karg = mptcp_ioctl_outq(msk, msk->snd_nxt);
  3128. unlock_sock_fast(sk, slow);
  3129. break;
  3130. default:
  3131. return -ENOIOCTLCMD;
  3132. }
  3133. return 0;
  3134. }
  3135. static int mptcp_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
  3136. {
  3137. struct mptcp_subflow_context *subflow;
  3138. struct mptcp_sock *msk = mptcp_sk(sk);
  3139. int err = -EINVAL;
  3140. struct sock *ssk;
  3141. ssk = __mptcp_nmpc_sk(msk);
  3142. if (IS_ERR(ssk))
  3143. return PTR_ERR(ssk);
  3144. mptcp_set_state(sk, TCP_SYN_SENT);
  3145. subflow = mptcp_subflow_ctx(ssk);
  3146. #ifdef CONFIG_TCP_MD5SIG
  3147. /* no MPTCP if MD5SIG is enabled on this socket or we may run out of
  3148. * TCP option space.
  3149. */
  3150. if (rcu_access_pointer(tcp_sk(ssk)->md5sig_info))
  3151. mptcp_subflow_early_fallback(msk, subflow);
  3152. #endif
  3153. if (subflow->request_mptcp) {
  3154. if (mptcp_active_should_disable(sk)) {
  3155. MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEACTIVEDISABLED);
  3156. mptcp_subflow_early_fallback(msk, subflow);
  3157. } else if (mptcp_token_new_connect(ssk) < 0) {
  3158. MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_TOKENFALLBACKINIT);
  3159. mptcp_subflow_early_fallback(msk, subflow);
  3160. }
  3161. }
  3162. WRITE_ONCE(msk->write_seq, subflow->idsn);
  3163. WRITE_ONCE(msk->snd_nxt, subflow->idsn);
  3164. WRITE_ONCE(msk->snd_una, subflow->idsn);
  3165. if (likely(!__mptcp_check_fallback(msk)))
  3166. MPTCP_INC_STATS(sock_net(sk), MPTCP_MIB_MPCAPABLEACTIVE);
  3167. /* if reaching here via the fastopen/sendmsg path, the caller already
  3168. * acquired the subflow socket lock, too.
  3169. */
  3170. if (!msk->fastopening)
  3171. lock_sock(ssk);
  3172. /* the following mirrors closely a very small chunk of code from
  3173. * __inet_stream_connect()
  3174. */
  3175. if (ssk->sk_state != TCP_CLOSE)
  3176. goto out;
  3177. if (BPF_CGROUP_PRE_CONNECT_ENABLED(ssk)) {
  3178. err = ssk->sk_prot->pre_connect(ssk, uaddr, addr_len);
  3179. if (err)
  3180. goto out;
  3181. }
  3182. err = ssk->sk_prot->connect(ssk, uaddr, addr_len);
  3183. if (err < 0)
  3184. goto out;
  3185. inet_assign_bit(DEFER_CONNECT, sk, inet_test_bit(DEFER_CONNECT, ssk));
  3186. out:
  3187. if (!msk->fastopening)
  3188. release_sock(ssk);
  3189. /* on successful connect, the msk state will be moved to established by
  3190. * subflow_finish_connect()
  3191. */
  3192. if (unlikely(err)) {
  3193. /* avoid leaving a dangling token in an unconnected socket */
  3194. mptcp_token_destroy(msk);
  3195. mptcp_set_state(sk, TCP_CLOSE);
  3196. return err;
  3197. }
  3198. mptcp_copy_inaddrs(sk, ssk);
  3199. return 0;
  3200. }
  3201. static struct proto mptcp_prot = {
  3202. .name = "MPTCP",
  3203. .owner = THIS_MODULE,
  3204. .init = mptcp_init_sock,
  3205. .connect = mptcp_connect,
  3206. .disconnect = mptcp_disconnect,
  3207. .close = mptcp_close,
  3208. .setsockopt = mptcp_setsockopt,
  3209. .getsockopt = mptcp_getsockopt,
  3210. .shutdown = mptcp_shutdown,
  3211. .destroy = mptcp_destroy,
  3212. .sendmsg = mptcp_sendmsg,
  3213. .ioctl = mptcp_ioctl,
  3214. .recvmsg = mptcp_recvmsg,
  3215. .release_cb = mptcp_release_cb,
  3216. .hash = mptcp_hash,
  3217. .unhash = mptcp_unhash,
  3218. .get_port = mptcp_get_port,
  3219. .forward_alloc_get = mptcp_forward_alloc_get,
  3220. .stream_memory_free = mptcp_stream_memory_free,
  3221. .sockets_allocated = &mptcp_sockets_allocated,
  3222. .memory_allocated = &tcp_memory_allocated,
  3223. .per_cpu_fw_alloc = &tcp_memory_per_cpu_fw_alloc,
  3224. .memory_pressure = &tcp_memory_pressure,
  3225. .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem),
  3226. .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem),
  3227. .sysctl_mem = sysctl_tcp_mem,
  3228. .obj_size = sizeof(struct mptcp_sock),
  3229. .slab_flags = SLAB_TYPESAFE_BY_RCU,
  3230. .no_autobind = true,
  3231. };
  3232. static int mptcp_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len)
  3233. {
  3234. struct mptcp_sock *msk = mptcp_sk(sock->sk);
  3235. struct sock *ssk, *sk = sock->sk;
  3236. int err = -EINVAL;
  3237. lock_sock(sk);
  3238. ssk = __mptcp_nmpc_sk(msk);
  3239. if (IS_ERR(ssk)) {
  3240. err = PTR_ERR(ssk);
  3241. goto unlock;
  3242. }
  3243. if (sk->sk_family == AF_INET)
  3244. err = inet_bind_sk(ssk, uaddr, addr_len);
  3245. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  3246. else if (sk->sk_family == AF_INET6)
  3247. err = inet6_bind_sk(ssk, uaddr, addr_len);
  3248. #endif
  3249. if (!err)
  3250. mptcp_copy_inaddrs(sk, ssk);
  3251. unlock:
  3252. release_sock(sk);
  3253. return err;
  3254. }
  3255. static int mptcp_listen(struct socket *sock, int backlog)
  3256. {
  3257. struct mptcp_sock *msk = mptcp_sk(sock->sk);
  3258. struct sock *sk = sock->sk;
  3259. struct sock *ssk;
  3260. int err;
  3261. pr_debug("msk=%p\n", msk);
  3262. lock_sock(sk);
  3263. err = -EINVAL;
  3264. if (sock->state != SS_UNCONNECTED || sock->type != SOCK_STREAM)
  3265. goto unlock;
  3266. ssk = __mptcp_nmpc_sk(msk);
  3267. if (IS_ERR(ssk)) {
  3268. err = PTR_ERR(ssk);
  3269. goto unlock;
  3270. }
  3271. mptcp_set_state(sk, TCP_LISTEN);
  3272. sock_set_flag(sk, SOCK_RCU_FREE);
  3273. lock_sock(ssk);
  3274. err = __inet_listen_sk(ssk, backlog);
  3275. release_sock(ssk);
  3276. mptcp_set_state(sk, inet_sk_state_load(ssk));
  3277. if (!err) {
  3278. sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
  3279. mptcp_copy_inaddrs(sk, ssk);
  3280. mptcp_event_pm_listener(ssk, MPTCP_EVENT_LISTENER_CREATED);
  3281. }
  3282. unlock:
  3283. release_sock(sk);
  3284. return err;
  3285. }
  3286. static int mptcp_stream_accept(struct socket *sock, struct socket *newsock,
  3287. struct proto_accept_arg *arg)
  3288. {
  3289. struct mptcp_sock *msk = mptcp_sk(sock->sk);
  3290. struct sock *ssk, *newsk;
  3291. pr_debug("msk=%p\n", msk);
  3292. /* Buggy applications can call accept on socket states other then LISTEN
  3293. * but no need to allocate the first subflow just to error out.
  3294. */
  3295. ssk = READ_ONCE(msk->first);
  3296. if (!ssk)
  3297. return -EINVAL;
  3298. pr_debug("ssk=%p, listener=%p\n", ssk, mptcp_subflow_ctx(ssk));
  3299. newsk = inet_csk_accept(ssk, arg);
  3300. if (!newsk)
  3301. return arg->err;
  3302. pr_debug("newsk=%p, subflow is mptcp=%d\n", newsk, sk_is_mptcp(newsk));
  3303. if (sk_is_mptcp(newsk)) {
  3304. struct mptcp_subflow_context *subflow;
  3305. struct sock *new_mptcp_sock;
  3306. subflow = mptcp_subflow_ctx(newsk);
  3307. new_mptcp_sock = subflow->conn;
  3308. /* is_mptcp should be false if subflow->conn is missing, see
  3309. * subflow_syn_recv_sock()
  3310. */
  3311. if (WARN_ON_ONCE(!new_mptcp_sock)) {
  3312. tcp_sk(newsk)->is_mptcp = 0;
  3313. goto tcpfallback;
  3314. }
  3315. newsk = new_mptcp_sock;
  3316. MPTCP_INC_STATS(sock_net(ssk), MPTCP_MIB_MPCAPABLEPASSIVEACK);
  3317. newsk->sk_kern_sock = arg->kern;
  3318. lock_sock(newsk);
  3319. __inet_accept(sock, newsock, newsk);
  3320. set_bit(SOCK_CUSTOM_SOCKOPT, &newsock->flags);
  3321. msk = mptcp_sk(newsk);
  3322. msk->in_accept_queue = 0;
  3323. /* set ssk->sk_socket of accept()ed flows to mptcp socket.
  3324. * This is needed so NOSPACE flag can be set from tcp stack.
  3325. */
  3326. mptcp_for_each_subflow(msk, subflow) {
  3327. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  3328. if (!ssk->sk_socket)
  3329. mptcp_sock_graft(ssk, newsock);
  3330. }
  3331. /* Do late cleanup for the first subflow as necessary. Also
  3332. * deal with bad peers not doing a complete shutdown.
  3333. */
  3334. if (unlikely(inet_sk_state_load(msk->first) == TCP_CLOSE)) {
  3335. __mptcp_close_ssk(newsk, msk->first,
  3336. mptcp_subflow_ctx(msk->first), 0);
  3337. if (unlikely(list_is_singular(&msk->conn_list)))
  3338. mptcp_set_state(newsk, TCP_CLOSE);
  3339. }
  3340. } else {
  3341. tcpfallback:
  3342. newsk->sk_kern_sock = arg->kern;
  3343. lock_sock(newsk);
  3344. __inet_accept(sock, newsock, newsk);
  3345. /* we are being invoked after accepting a non-mp-capable
  3346. * flow: sk is a tcp_sk, not an mptcp one.
  3347. *
  3348. * Hand the socket over to tcp so all further socket ops
  3349. * bypass mptcp.
  3350. */
  3351. WRITE_ONCE(newsock->sk->sk_socket->ops,
  3352. mptcp_fallback_tcp_ops(newsock->sk));
  3353. }
  3354. release_sock(newsk);
  3355. return 0;
  3356. }
  3357. static __poll_t mptcp_check_writeable(struct mptcp_sock *msk)
  3358. {
  3359. struct sock *sk = (struct sock *)msk;
  3360. if (__mptcp_stream_is_writeable(sk, 1))
  3361. return EPOLLOUT | EPOLLWRNORM;
  3362. set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
  3363. smp_mb__after_atomic(); /* NOSPACE is changed by mptcp_write_space() */
  3364. if (__mptcp_stream_is_writeable(sk, 1))
  3365. return EPOLLOUT | EPOLLWRNORM;
  3366. return 0;
  3367. }
  3368. static __poll_t mptcp_poll(struct file *file, struct socket *sock,
  3369. struct poll_table_struct *wait)
  3370. {
  3371. struct sock *sk = sock->sk;
  3372. struct mptcp_sock *msk;
  3373. __poll_t mask = 0;
  3374. u8 shutdown;
  3375. int state;
  3376. msk = mptcp_sk(sk);
  3377. sock_poll_wait(file, sock, wait);
  3378. state = inet_sk_state_load(sk);
  3379. pr_debug("msk=%p state=%d flags=%lx\n", msk, state, msk->flags);
  3380. if (state == TCP_LISTEN) {
  3381. struct sock *ssk = READ_ONCE(msk->first);
  3382. if (WARN_ON_ONCE(!ssk))
  3383. return 0;
  3384. return inet_csk_listen_poll(ssk);
  3385. }
  3386. shutdown = READ_ONCE(sk->sk_shutdown);
  3387. if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
  3388. mask |= EPOLLHUP;
  3389. if (shutdown & RCV_SHUTDOWN)
  3390. mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
  3391. if (state != TCP_SYN_SENT && state != TCP_SYN_RECV) {
  3392. mask |= mptcp_check_readable(sk);
  3393. if (shutdown & SEND_SHUTDOWN)
  3394. mask |= EPOLLOUT | EPOLLWRNORM;
  3395. else
  3396. mask |= mptcp_check_writeable(msk);
  3397. } else if (state == TCP_SYN_SENT &&
  3398. inet_test_bit(DEFER_CONNECT, sk)) {
  3399. /* cf tcp_poll() note about TFO */
  3400. mask |= EPOLLOUT | EPOLLWRNORM;
  3401. }
  3402. /* This barrier is coupled with smp_wmb() in __mptcp_error_report() */
  3403. smp_rmb();
  3404. if (READ_ONCE(sk->sk_err))
  3405. mask |= EPOLLERR;
  3406. return mask;
  3407. }
  3408. static const struct proto_ops mptcp_stream_ops = {
  3409. .family = PF_INET,
  3410. .owner = THIS_MODULE,
  3411. .release = inet_release,
  3412. .bind = mptcp_bind,
  3413. .connect = inet_stream_connect,
  3414. .socketpair = sock_no_socketpair,
  3415. .accept = mptcp_stream_accept,
  3416. .getname = inet_getname,
  3417. .poll = mptcp_poll,
  3418. .ioctl = inet_ioctl,
  3419. .gettstamp = sock_gettstamp,
  3420. .listen = mptcp_listen,
  3421. .shutdown = inet_shutdown,
  3422. .setsockopt = sock_common_setsockopt,
  3423. .getsockopt = sock_common_getsockopt,
  3424. .sendmsg = inet_sendmsg,
  3425. .recvmsg = inet_recvmsg,
  3426. .mmap = sock_no_mmap,
  3427. .set_rcvlowat = mptcp_set_rcvlowat,
  3428. };
  3429. static struct inet_protosw mptcp_protosw = {
  3430. .type = SOCK_STREAM,
  3431. .protocol = IPPROTO_MPTCP,
  3432. .prot = &mptcp_prot,
  3433. .ops = &mptcp_stream_ops,
  3434. .flags = INET_PROTOSW_ICSK,
  3435. };
  3436. static int mptcp_napi_poll(struct napi_struct *napi, int budget)
  3437. {
  3438. struct mptcp_delegated_action *delegated;
  3439. struct mptcp_subflow_context *subflow;
  3440. int work_done = 0;
  3441. delegated = container_of(napi, struct mptcp_delegated_action, napi);
  3442. while ((subflow = mptcp_subflow_delegated_next(delegated)) != NULL) {
  3443. struct sock *ssk = mptcp_subflow_tcp_sock(subflow);
  3444. bh_lock_sock_nested(ssk);
  3445. if (!sock_owned_by_user(ssk)) {
  3446. mptcp_subflow_process_delegated(ssk, xchg(&subflow->delegated_status, 0));
  3447. } else {
  3448. /* tcp_release_cb_override already processed
  3449. * the action or will do at next release_sock().
  3450. * In both case must dequeue the subflow here - on the same
  3451. * CPU that scheduled it.
  3452. */
  3453. smp_wmb();
  3454. clear_bit(MPTCP_DELEGATE_SCHEDULED, &subflow->delegated_status);
  3455. }
  3456. bh_unlock_sock(ssk);
  3457. sock_put(ssk);
  3458. if (++work_done == budget)
  3459. return budget;
  3460. }
  3461. /* always provide a 0 'work_done' argument, so that napi_complete_done
  3462. * will not try accessing the NULL napi->dev ptr
  3463. */
  3464. napi_complete_done(napi, 0);
  3465. return work_done;
  3466. }
  3467. void __init mptcp_proto_init(void)
  3468. {
  3469. struct mptcp_delegated_action *delegated;
  3470. int cpu;
  3471. mptcp_prot.h.hashinfo = tcp_prot.h.hashinfo;
  3472. if (percpu_counter_init(&mptcp_sockets_allocated, 0, GFP_KERNEL))
  3473. panic("Failed to allocate MPTCP pcpu counter\n");
  3474. init_dummy_netdev(&mptcp_napi_dev);
  3475. for_each_possible_cpu(cpu) {
  3476. delegated = per_cpu_ptr(&mptcp_delegated_actions, cpu);
  3477. INIT_LIST_HEAD(&delegated->head);
  3478. netif_napi_add_tx(&mptcp_napi_dev, &delegated->napi,
  3479. mptcp_napi_poll);
  3480. napi_enable(&delegated->napi);
  3481. }
  3482. mptcp_subflow_init();
  3483. mptcp_pm_init();
  3484. mptcp_sched_init();
  3485. mptcp_token_init();
  3486. if (proto_register(&mptcp_prot, 1) != 0)
  3487. panic("Failed to register MPTCP proto.\n");
  3488. inet_register_protosw(&mptcp_protosw);
  3489. BUILD_BUG_ON(sizeof(struct mptcp_skb_cb) > sizeof_field(struct sk_buff, cb));
  3490. }
  3491. #if IS_ENABLED(CONFIG_MPTCP_IPV6)
  3492. static const struct proto_ops mptcp_v6_stream_ops = {
  3493. .family = PF_INET6,
  3494. .owner = THIS_MODULE,
  3495. .release = inet6_release,
  3496. .bind = mptcp_bind,
  3497. .connect = inet_stream_connect,
  3498. .socketpair = sock_no_socketpair,
  3499. .accept = mptcp_stream_accept,
  3500. .getname = inet6_getname,
  3501. .poll = mptcp_poll,
  3502. .ioctl = inet6_ioctl,
  3503. .gettstamp = sock_gettstamp,
  3504. .listen = mptcp_listen,
  3505. .shutdown = inet_shutdown,
  3506. .setsockopt = sock_common_setsockopt,
  3507. .getsockopt = sock_common_getsockopt,
  3508. .sendmsg = inet6_sendmsg,
  3509. .recvmsg = inet6_recvmsg,
  3510. .mmap = sock_no_mmap,
  3511. #ifdef CONFIG_COMPAT
  3512. .compat_ioctl = inet6_compat_ioctl,
  3513. #endif
  3514. .set_rcvlowat = mptcp_set_rcvlowat,
  3515. };
  3516. static struct proto mptcp_v6_prot;
  3517. static struct inet_protosw mptcp_v6_protosw = {
  3518. .type = SOCK_STREAM,
  3519. .protocol = IPPROTO_MPTCP,
  3520. .prot = &mptcp_v6_prot,
  3521. .ops = &mptcp_v6_stream_ops,
  3522. .flags = INET_PROTOSW_ICSK,
  3523. };
  3524. int __init mptcp_proto_v6_init(void)
  3525. {
  3526. int err;
  3527. mptcp_v6_prot = mptcp_prot;
  3528. strscpy(mptcp_v6_prot.name, "MPTCPv6", sizeof(mptcp_v6_prot.name));
  3529. mptcp_v6_prot.slab = NULL;
  3530. mptcp_v6_prot.obj_size = sizeof(struct mptcp6_sock);
  3531. mptcp_v6_prot.ipv6_pinfo_offset = offsetof(struct mptcp6_sock, np);
  3532. err = proto_register(&mptcp_v6_prot, 1);
  3533. if (err)
  3534. return err;
  3535. err = inet6_register_protosw(&mptcp_v6_protosw);
  3536. if (err)
  3537. proto_unregister(&mptcp_v6_prot);
  3538. return err;
  3539. }
  3540. #endif