| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690 |
- // SPDX-License-Identifier: GPL-2.0
- // Copyright (C) 2024 Google LLC.
- //! A linked list implementation.
- // May not be needed in Rust 1.87.0 (pending beta backport).
- #![allow(clippy::ptr_eq)]
- use crate::init::PinInit;
- use crate::sync::ArcBorrow;
- use crate::types::Opaque;
- use core::iter::{DoubleEndedIterator, FusedIterator};
- use core::marker::PhantomData;
- use core::ptr;
- mod impl_list_item_mod;
- pub use self::impl_list_item_mod::{
- impl_has_list_links, impl_has_list_links_self_ptr, impl_list_item, HasListLinks, HasSelfPtr,
- };
- mod arc;
- pub use self::arc::{impl_list_arc_safe, AtomicTracker, ListArc, ListArcSafe, TryNewListArc};
- mod arc_field;
- pub use self::arc_field::{define_list_arc_field_getter, ListArcField};
- /// A linked list.
- ///
- /// All elements in this linked list will be [`ListArc`] references to the value. Since a value can
- /// only have one `ListArc` (for each pair of prev/next pointers), this ensures that the same
- /// prev/next pointers are not used for several linked lists.
- ///
- /// # Invariants
- ///
- /// * If the list is empty, then `first` is null. Otherwise, `first` points at the `ListLinks`
- /// field of the first element in the list.
- /// * All prev/next pointers in `ListLinks` fields of items in the list are valid and form a cycle.
- /// * For every item in the list, the list owns the associated [`ListArc`] reference and has
- /// exclusive access to the `ListLinks` field.
- pub struct List<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
- first: *mut ListLinksFields,
- _ty: PhantomData<ListArc<T, ID>>,
- }
- // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
- // type of access to the `ListArc<T, ID>` elements.
- unsafe impl<T, const ID: u64> Send for List<T, ID>
- where
- ListArc<T, ID>: Send,
- T: ?Sized + ListItem<ID>,
- {
- }
- // SAFETY: This is a container of `ListArc<T, ID>`, and access to the container allows the same
- // type of access to the `ListArc<T, ID>` elements.
- unsafe impl<T, const ID: u64> Sync for List<T, ID>
- where
- ListArc<T, ID>: Sync,
- T: ?Sized + ListItem<ID>,
- {
- }
- /// Implemented by types where a [`ListArc<Self>`] can be inserted into a [`List`].
- ///
- /// # Safety
- ///
- /// Implementers must ensure that they provide the guarantees documented on methods provided by
- /// this trait.
- ///
- /// [`ListArc<Self>`]: ListArc
- pub unsafe trait ListItem<const ID: u64 = 0>: ListArcSafe<ID> {
- /// Views the [`ListLinks`] for this value.
- ///
- /// # Guarantees
- ///
- /// If there is a previous call to `prepare_to_insert` and there is no call to `post_remove`
- /// since the most recent such call, then this returns the same pointer as the one returned by
- /// the most recent call to `prepare_to_insert`.
- ///
- /// Otherwise, the returned pointer points at a read-only [`ListLinks`] with two null pointers.
- ///
- /// # Safety
- ///
- /// The provided pointer must point at a valid value. (It need not be in an `Arc`.)
- unsafe fn view_links(me: *const Self) -> *mut ListLinks<ID>;
- /// View the full value given its [`ListLinks`] field.
- ///
- /// Can only be used when the value is in a list.
- ///
- /// # Guarantees
- ///
- /// * Returns the same pointer as the one passed to the most recent call to `prepare_to_insert`.
- /// * The returned pointer is valid until the next call to `post_remove`.
- ///
- /// # Safety
- ///
- /// * The provided pointer must originate from the most recent call to `prepare_to_insert`, or
- /// from a call to `view_links` that happened after the most recent call to
- /// `prepare_to_insert`.
- /// * Since the most recent call to `prepare_to_insert`, the `post_remove` method must not have
- /// been called.
- unsafe fn view_value(me: *mut ListLinks<ID>) -> *const Self;
- /// This is called when an item is inserted into a [`List`].
- ///
- /// # Guarantees
- ///
- /// The caller is granted exclusive access to the returned [`ListLinks`] until `post_remove` is
- /// called.
- ///
- /// # Safety
- ///
- /// * The provided pointer must point at a valid value in an [`Arc`].
- /// * Calls to `prepare_to_insert` and `post_remove` on the same value must alternate.
- /// * The caller must own the [`ListArc`] for this value.
- /// * The caller must not give up ownership of the [`ListArc`] unless `post_remove` has been
- /// called after this call to `prepare_to_insert`.
- ///
- /// [`Arc`]: crate::sync::Arc
- unsafe fn prepare_to_insert(me: *const Self) -> *mut ListLinks<ID>;
- /// This undoes a previous call to `prepare_to_insert`.
- ///
- /// # Guarantees
- ///
- /// The returned pointer is the pointer that was originally passed to `prepare_to_insert`.
- ///
- /// # Safety
- ///
- /// The provided pointer must be the pointer returned by the most recent call to
- /// `prepare_to_insert`.
- unsafe fn post_remove(me: *mut ListLinks<ID>) -> *const Self;
- }
- #[repr(C)]
- #[derive(Copy, Clone)]
- struct ListLinksFields {
- next: *mut ListLinksFields,
- prev: *mut ListLinksFields,
- }
- /// The prev/next pointers for an item in a linked list.
- ///
- /// # Invariants
- ///
- /// The fields are null if and only if this item is not in a list.
- #[repr(transparent)]
- pub struct ListLinks<const ID: u64 = 0> {
- // This type is `!Unpin` for aliasing reasons as the pointers are part of an intrusive linked
- // list.
- inner: Opaque<ListLinksFields>,
- }
- // SAFETY: The only way to access/modify the pointers inside of `ListLinks<ID>` is via holding the
- // associated `ListArc<T, ID>`. Since that type correctly implements `Send`, it is impossible to
- // move this an instance of this type to a different thread if the pointees are `!Send`.
- unsafe impl<const ID: u64> Send for ListLinks<ID> {}
- // SAFETY: The type is opaque so immutable references to a ListLinks are useless. Therefore, it's
- // okay to have immutable access to a ListLinks from several threads at once.
- unsafe impl<const ID: u64> Sync for ListLinks<ID> {}
- impl<const ID: u64> ListLinks<ID> {
- /// Creates a new initializer for this type.
- pub fn new() -> impl PinInit<Self> {
- // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
- // not be constructed in an `Arc` that already has a `ListArc`.
- ListLinks {
- inner: Opaque::new(ListLinksFields {
- prev: ptr::null_mut(),
- next: ptr::null_mut(),
- }),
- }
- }
- /// # Safety
- ///
- /// `me` must be dereferenceable.
- #[inline]
- unsafe fn fields(me: *mut Self) -> *mut ListLinksFields {
- // SAFETY: The caller promises that the pointer is valid.
- unsafe { Opaque::raw_get(ptr::addr_of!((*me).inner)) }
- }
- /// # Safety
- ///
- /// `me` must be dereferenceable.
- #[inline]
- unsafe fn from_fields(me: *mut ListLinksFields) -> *mut Self {
- me.cast()
- }
- }
- /// Similar to [`ListLinks`], but also contains a pointer to the full value.
- ///
- /// This type can be used instead of [`ListLinks`] to support lists with trait objects.
- #[repr(C)]
- pub struct ListLinksSelfPtr<T: ?Sized, const ID: u64 = 0> {
- /// The `ListLinks` field inside this value.
- ///
- /// This is public so that it can be used with `impl_has_list_links!`.
- pub inner: ListLinks<ID>,
- // UnsafeCell is not enough here because we use `Opaque::uninit` as a dummy value, and
- // `ptr::null()` doesn't work for `T: ?Sized`.
- self_ptr: Opaque<*const T>,
- }
- // SAFETY: The fields of a ListLinksSelfPtr can be moved across thread boundaries.
- unsafe impl<T: ?Sized + Send, const ID: u64> Send for ListLinksSelfPtr<T, ID> {}
- // SAFETY: The type is opaque so immutable references to a ListLinksSelfPtr are useless. Therefore,
- // it's okay to have immutable access to a ListLinks from several threads at once.
- //
- // Note that `inner` being a public field does not prevent this type from being opaque, since
- // `inner` is a opaque type.
- unsafe impl<T: ?Sized + Sync, const ID: u64> Sync for ListLinksSelfPtr<T, ID> {}
- impl<T: ?Sized, const ID: u64> ListLinksSelfPtr<T, ID> {
- /// The offset from the [`ListLinks`] to the self pointer field.
- pub const LIST_LINKS_SELF_PTR_OFFSET: usize = core::mem::offset_of!(Self, self_ptr);
- /// Creates a new initializer for this type.
- pub fn new() -> impl PinInit<Self> {
- // INVARIANT: Pin-init initializers can't be used on an existing `Arc`, so this value will
- // not be constructed in an `Arc` that already has a `ListArc`.
- Self {
- inner: ListLinks {
- inner: Opaque::new(ListLinksFields {
- prev: ptr::null_mut(),
- next: ptr::null_mut(),
- }),
- },
- self_ptr: Opaque::uninit(),
- }
- }
- }
- impl<T: ?Sized + ListItem<ID>, const ID: u64> List<T, ID> {
- /// Creates a new empty list.
- pub const fn new() -> Self {
- Self {
- first: ptr::null_mut(),
- _ty: PhantomData,
- }
- }
- /// Returns whether this list is empty.
- pub fn is_empty(&self) -> bool {
- self.first.is_null()
- }
- /// Add the provided item to the back of the list.
- pub fn push_back(&mut self, item: ListArc<T, ID>) {
- let raw_item = ListArc::into_raw(item);
- // SAFETY:
- // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
- // * Since we have ownership of the `ListArc`, `post_remove` must have been called after
- // the most recent call to `prepare_to_insert`, if any.
- // * We own the `ListArc`.
- // * Removing items from this list is always done using `remove_internal_inner`, which
- // calls `post_remove` before giving up ownership.
- let list_links = unsafe { T::prepare_to_insert(raw_item) };
- // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
- let item = unsafe { ListLinks::fields(list_links) };
- if self.first.is_null() {
- self.first = item;
- // SAFETY: The caller just gave us ownership of these fields.
- // INVARIANT: A linked list with one item should be cyclic.
- unsafe {
- (*item).next = item;
- (*item).prev = item;
- }
- } else {
- let next = self.first;
- // SAFETY: By the type invariant, this pointer is valid or null. We just checked that
- // it's not null, so it must be valid.
- let prev = unsafe { (*next).prev };
- // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
- // ownership of the fields on `item`.
- // INVARIANT: This correctly inserts `item` between `prev` and `next`.
- unsafe {
- (*item).next = next;
- (*item).prev = prev;
- (*prev).next = item;
- (*next).prev = item;
- }
- }
- }
- /// Add the provided item to the front of the list.
- pub fn push_front(&mut self, item: ListArc<T, ID>) {
- let raw_item = ListArc::into_raw(item);
- // SAFETY:
- // * We just got `raw_item` from a `ListArc`, so it's in an `Arc`.
- // * If this requirement is violated, then the previous caller of `prepare_to_insert`
- // violated the safety requirement that they can't give up ownership of the `ListArc`
- // until they call `post_remove`.
- // * We own the `ListArc`.
- // * Removing items] from this list is always done using `remove_internal_inner`, which
- // calls `post_remove` before giving up ownership.
- let list_links = unsafe { T::prepare_to_insert(raw_item) };
- // SAFETY: We have not yet called `post_remove`, so `list_links` is still valid.
- let item = unsafe { ListLinks::fields(list_links) };
- if self.first.is_null() {
- // SAFETY: The caller just gave us ownership of these fields.
- // INVARIANT: A linked list with one item should be cyclic.
- unsafe {
- (*item).next = item;
- (*item).prev = item;
- }
- } else {
- let next = self.first;
- // SAFETY: We just checked that `next` is non-null.
- let prev = unsafe { (*next).prev };
- // SAFETY: Pointers in a linked list are never dangling, and the caller just gave us
- // ownership of the fields on `item`.
- // INVARIANT: This correctly inserts `item` between `prev` and `next`.
- unsafe {
- (*item).next = next;
- (*item).prev = prev;
- (*prev).next = item;
- (*next).prev = item;
- }
- }
- self.first = item;
- }
- /// Removes the last item from this list.
- pub fn pop_back(&mut self) -> Option<ListArc<T, ID>> {
- if self.first.is_null() {
- return None;
- }
- // SAFETY: We just checked that the list is not empty.
- let last = unsafe { (*self.first).prev };
- // SAFETY: The last item of this list is in this list.
- Some(unsafe { self.remove_internal(last) })
- }
- /// Removes the first item from this list.
- pub fn pop_front(&mut self) -> Option<ListArc<T, ID>> {
- if self.first.is_null() {
- return None;
- }
- // SAFETY: The first item of this list is in this list.
- Some(unsafe { self.remove_internal(self.first) })
- }
- /// Removes the provided item from this list and returns it.
- ///
- /// This returns `None` if the item is not in the list. (Note that by the safety requirements,
- /// this means that the item is not in any list.)
- ///
- /// # Safety
- ///
- /// `item` must not be in a different linked list (with the same id).
- pub unsafe fn remove(&mut self, item: &T) -> Option<ListArc<T, ID>> {
- // SAFETY: TODO.
- let mut item = unsafe { ListLinks::fields(T::view_links(item)) };
- // SAFETY: The user provided a reference, and reference are never dangling.
- //
- // As for why this is not a data race, there are two cases:
- //
- // * If `item` is not in any list, then these fields are read-only and null.
- // * If `item` is in this list, then we have exclusive access to these fields since we
- // have a mutable reference to the list.
- //
- // In either case, there's no race.
- let ListLinksFields { next, prev } = unsafe { *item };
- debug_assert_eq!(next.is_null(), prev.is_null());
- if !next.is_null() {
- // This is really a no-op, but this ensures that `item` is a raw pointer that was
- // obtained without going through a pointer->reference->pointer conversion roundtrip.
- // This ensures that the list is valid under the more restrictive strict provenance
- // ruleset.
- //
- // SAFETY: We just checked that `next` is not null, and it's not dangling by the
- // list invariants.
- unsafe {
- debug_assert_eq!(item, (*next).prev);
- item = (*next).prev;
- }
- // SAFETY: We just checked that `item` is in a list, so the caller guarantees that it
- // is in this list. The pointers are in the right order.
- Some(unsafe { self.remove_internal_inner(item, next, prev) })
- } else {
- None
- }
- }
- /// Removes the provided item from the list.
- ///
- /// # Safety
- ///
- /// `item` must point at an item in this list.
- unsafe fn remove_internal(&mut self, item: *mut ListLinksFields) -> ListArc<T, ID> {
- // SAFETY: The caller promises that this pointer is not dangling, and there's no data race
- // since we have a mutable reference to the list containing `item`.
- let ListLinksFields { next, prev } = unsafe { *item };
- // SAFETY: The pointers are ok and in the right order.
- unsafe { self.remove_internal_inner(item, next, prev) }
- }
- /// Removes the provided item from the list.
- ///
- /// # Safety
- ///
- /// The `item` pointer must point at an item in this list, and we must have `(*item).next ==
- /// next` and `(*item).prev == prev`.
- unsafe fn remove_internal_inner(
- &mut self,
- item: *mut ListLinksFields,
- next: *mut ListLinksFields,
- prev: *mut ListLinksFields,
- ) -> ListArc<T, ID> {
- // SAFETY: We have exclusive access to the pointers of items in the list, and the prev/next
- // pointers are always valid for items in a list.
- //
- // INVARIANT: There are three cases:
- // * If the list has at least three items, then after removing the item, `prev` and `next`
- // will be next to each other.
- // * If the list has two items, then the remaining item will point at itself.
- // * If the list has one item, then `next == prev == item`, so these writes have no
- // effect. The list remains unchanged and `item` is still in the list for now.
- unsafe {
- (*next).prev = prev;
- (*prev).next = next;
- }
- // SAFETY: We have exclusive access to items in the list.
- // INVARIANT: `item` is being removed, so the pointers should be null.
- unsafe {
- (*item).prev = ptr::null_mut();
- (*item).next = ptr::null_mut();
- }
- // INVARIANT: There are three cases:
- // * If `item` was not the first item, then `self.first` should remain unchanged.
- // * If `item` was the first item and there is another item, then we just updated
- // `prev->next` to `next`, which is the new first item, and setting `item->next` to null
- // did not modify `prev->next`.
- // * If `item` was the only item in the list, then `prev == item`, and we just set
- // `item->next` to null, so this correctly sets `first` to null now that the list is
- // empty.
- if self.first == item {
- // SAFETY: The `prev` pointer is the value that `item->prev` had when it was in this
- // list, so it must be valid. There is no race since `prev` is still in the list and we
- // still have exclusive access to the list.
- self.first = unsafe { (*prev).next };
- }
- // SAFETY: `item` used to be in the list, so it is dereferenceable by the type invariants
- // of `List`.
- let list_links = unsafe { ListLinks::from_fields(item) };
- // SAFETY: Any pointer in the list originates from a `prepare_to_insert` call.
- let raw_item = unsafe { T::post_remove(list_links) };
- // SAFETY: The above call to `post_remove` guarantees that we can recreate the `ListArc`.
- unsafe { ListArc::from_raw(raw_item) }
- }
- /// Moves all items from `other` into `self`.
- ///
- /// The items of `other` are added to the back of `self`, so the last item of `other` becomes
- /// the last item of `self`.
- pub fn push_all_back(&mut self, other: &mut List<T, ID>) {
- // First, we insert the elements into `self`. At the end, we make `other` empty.
- if self.is_empty() {
- // INVARIANT: All of the elements in `other` become elements of `self`.
- self.first = other.first;
- } else if !other.is_empty() {
- let other_first = other.first;
- // SAFETY: The other list is not empty, so this pointer is valid.
- let other_last = unsafe { (*other_first).prev };
- let self_first = self.first;
- // SAFETY: The self list is not empty, so this pointer is valid.
- let self_last = unsafe { (*self_first).prev };
- // SAFETY: We have exclusive access to both lists, so we can update the pointers.
- // INVARIANT: This correctly sets the pointers to merge both lists. We do not need to
- // update `self.first` because the first element of `self` does not change.
- unsafe {
- (*self_first).prev = other_last;
- (*other_last).next = self_first;
- (*self_last).next = other_first;
- (*other_first).prev = self_last;
- }
- }
- // INVARIANT: The other list is now empty, so update its pointer.
- other.first = ptr::null_mut();
- }
- /// Returns a cursor to the first element of the list.
- ///
- /// If the list is empty, this returns `None`.
- pub fn cursor_front(&mut self) -> Option<Cursor<'_, T, ID>> {
- if self.first.is_null() {
- None
- } else {
- Some(Cursor {
- current: self.first,
- list: self,
- })
- }
- }
- /// Creates an iterator over the list.
- pub fn iter(&self) -> Iter<'_, T, ID> {
- // INVARIANT: If the list is empty, both pointers are null. Otherwise, both pointers point
- // at the first element of the same list.
- Iter {
- current: self.first,
- stop: self.first,
- _ty: PhantomData,
- }
- }
- }
- impl<T: ?Sized + ListItem<ID>, const ID: u64> Default for List<T, ID> {
- fn default() -> Self {
- List::new()
- }
- }
- impl<T: ?Sized + ListItem<ID>, const ID: u64> Drop for List<T, ID> {
- fn drop(&mut self) {
- while let Some(item) = self.pop_front() {
- drop(item);
- }
- }
- }
- /// An iterator over a [`List`].
- ///
- /// # Invariants
- ///
- /// * There must be a [`List`] that is immutably borrowed for the duration of `'a`.
- /// * The `current` pointer is null or points at a value in that [`List`].
- /// * The `stop` pointer is equal to the `first` field of that [`List`].
- #[derive(Clone)]
- pub struct Iter<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
- current: *mut ListLinksFields,
- stop: *mut ListLinksFields,
- _ty: PhantomData<&'a ListArc<T, ID>>,
- }
- impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Iterator for Iter<'a, T, ID> {
- type Item = ArcBorrow<'a, T>;
- fn next(&mut self) -> Option<ArcBorrow<'a, T>> {
- if self.current.is_null() {
- return None;
- }
- let current = self.current;
- // SAFETY: We just checked that `current` is not null, so it is in a list, and hence not
- // dangling. There's no race because the iterator holds an immutable borrow to the list.
- let next = unsafe { (*current).next };
- // INVARIANT: If `current` was the last element of the list, then this updates it to null.
- // Otherwise, we update it to the next element.
- self.current = if next != self.stop {
- next
- } else {
- ptr::null_mut()
- };
- // SAFETY: The `current` pointer points at a value in the list.
- let item = unsafe { T::view_value(ListLinks::from_fields(current)) };
- // SAFETY:
- // * All values in a list are stored in an `Arc`.
- // * The value cannot be removed from the list for the duration of the lifetime annotated
- // on the returned `ArcBorrow`, because removing it from the list would require mutable
- // access to the list. However, the `ArcBorrow` is annotated with the iterator's
- // lifetime, and the list is immutably borrowed for that lifetime.
- // * Values in a list never have a `UniqueArc` reference.
- Some(unsafe { ArcBorrow::from_raw(item) })
- }
- }
- /// A cursor into a [`List`].
- ///
- /// # Invariants
- ///
- /// The `current` pointer points a value in `list`.
- pub struct Cursor<'a, T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
- current: *mut ListLinksFields,
- list: &'a mut List<T, ID>,
- }
- impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> Cursor<'a, T, ID> {
- /// Access the current element of this cursor.
- pub fn current(&self) -> ArcBorrow<'_, T> {
- // SAFETY: The `current` pointer points a value in the list.
- let me = unsafe { T::view_value(ListLinks::from_fields(self.current)) };
- // SAFETY:
- // * All values in a list are stored in an `Arc`.
- // * The value cannot be removed from the list for the duration of the lifetime annotated
- // on the returned `ArcBorrow`, because removing it from the list would require mutable
- // access to the cursor or the list. However, the `ArcBorrow` holds an immutable borrow
- // on the cursor, which in turn holds a mutable borrow on the list, so any such
- // mutable access requires first releasing the immutable borrow on the cursor.
- // * Values in a list never have a `UniqueArc` reference, because the list has a `ListArc`
- // reference, and `UniqueArc` references must be unique.
- unsafe { ArcBorrow::from_raw(me) }
- }
- /// Move the cursor to the next element.
- pub fn next(self) -> Option<Cursor<'a, T, ID>> {
- // SAFETY: The `current` field is always in a list.
- let next = unsafe { (*self.current).next };
- if next == self.list.first {
- None
- } else {
- // INVARIANT: Since `self.current` is in the `list`, its `next` pointer is also in the
- // `list`.
- Some(Cursor {
- current: next,
- list: self.list,
- })
- }
- }
- /// Move the cursor to the previous element.
- pub fn prev(self) -> Option<Cursor<'a, T, ID>> {
- // SAFETY: The `current` field is always in a list.
- let prev = unsafe { (*self.current).prev };
- if self.current == self.list.first {
- None
- } else {
- // INVARIANT: Since `self.current` is in the `list`, its `prev` pointer is also in the
- // `list`.
- Some(Cursor {
- current: prev,
- list: self.list,
- })
- }
- }
- /// Remove the current element from the list.
- pub fn remove(self) -> ListArc<T, ID> {
- // SAFETY: The `current` pointer always points at a member of the list.
- unsafe { self.list.remove_internal(self.current) }
- }
- }
- impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for Iter<'a, T, ID> {}
- impl<'a, T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for &'a List<T, ID> {
- type IntoIter = Iter<'a, T, ID>;
- type Item = ArcBorrow<'a, T>;
- fn into_iter(self) -> Iter<'a, T, ID> {
- self.iter()
- }
- }
- /// An owning iterator into a [`List`].
- pub struct IntoIter<T: ?Sized + ListItem<ID>, const ID: u64 = 0> {
- list: List<T, ID>,
- }
- impl<T: ?Sized + ListItem<ID>, const ID: u64> Iterator for IntoIter<T, ID> {
- type Item = ListArc<T, ID>;
- fn next(&mut self) -> Option<ListArc<T, ID>> {
- self.list.pop_front()
- }
- }
- impl<T: ?Sized + ListItem<ID>, const ID: u64> FusedIterator for IntoIter<T, ID> {}
- impl<T: ?Sized + ListItem<ID>, const ID: u64> DoubleEndedIterator for IntoIter<T, ID> {
- fn next_back(&mut self) -> Option<ListArc<T, ID>> {
- self.list.pop_back()
- }
- }
- impl<T: ?Sized + ListItem<ID>, const ID: u64> IntoIterator for List<T, ID> {
- type IntoIter = IntoIter<T, ID>;
- type Item = ListArc<T, ID>;
- fn into_iter(self) -> IntoIter<T, ID> {
- IntoIter { list: self }
- }
- }
|