| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754 |
- // SPDX-License-Identifier: GPL-2.0
- //! A reference-counted pointer.
- //!
- //! This module implements a way for users to create reference-counted objects and pointers to
- //! them. Such a pointer automatically increments and decrements the count, and drops the
- //! underlying object when it reaches zero. It is also safe to use concurrently from multiple
- //! threads.
- //!
- //! It is different from the standard library's [`Arc`] in a few ways:
- //! 1. It is backed by the kernel's `refcount_t` type.
- //! 2. It does not support weak references, which allows it to be half the size.
- //! 3. It saturates the reference count instead of aborting when it goes over a threshold.
- //! 4. It does not provide a `get_mut` method, so the ref counted object is pinned.
- //! 5. The object in [`Arc`] is pinned implicitly.
- //!
- //! [`Arc`]: https://doc.rust-lang.org/std/sync/struct.Arc.html
- use crate::{
- alloc::{AllocError, Flags, KBox},
- bindings,
- init::{self, InPlaceInit, Init, PinInit},
- try_init,
- types::{ForeignOwnable, Opaque},
- };
- use core::{
- alloc::Layout,
- fmt,
- marker::{PhantomData, Unsize},
- mem::{ManuallyDrop, MaybeUninit},
- ops::{Deref, DerefMut},
- pin::Pin,
- ptr::NonNull,
- };
- use macros::pin_data;
- mod std_vendor;
- /// A reference-counted pointer to an instance of `T`.
- ///
- /// The reference count is incremented when new instances of [`Arc`] are created, and decremented
- /// when they are dropped. When the count reaches zero, the underlying `T` is also dropped.
- ///
- /// # Invariants
- ///
- /// The reference count on an instance of [`Arc`] is always non-zero.
- /// The object pointed to by [`Arc`] is always pinned.
- ///
- /// # Examples
- ///
- /// ```
- /// use kernel::sync::Arc;
- ///
- /// struct Example {
- /// a: u32,
- /// b: u32,
- /// }
- ///
- /// // Create a refcounted instance of `Example`.
- /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
- ///
- /// // Get a new pointer to `obj` and increment the refcount.
- /// let cloned = obj.clone();
- ///
- /// // Assert that both `obj` and `cloned` point to the same underlying object.
- /// assert!(core::ptr::eq(&*obj, &*cloned));
- ///
- /// // Destroy `obj` and decrement its refcount.
- /// drop(obj);
- ///
- /// // Check that the values are still accessible through `cloned`.
- /// assert_eq!(cloned.a, 10);
- /// assert_eq!(cloned.b, 20);
- ///
- /// // The refcount drops to zero when `cloned` goes out of scope, and the memory is freed.
- /// # Ok::<(), Error>(())
- /// ```
- ///
- /// Using `Arc<T>` as the type of `self`:
- ///
- /// ```
- /// use kernel::sync::Arc;
- ///
- /// struct Example {
- /// a: u32,
- /// b: u32,
- /// }
- ///
- /// impl Example {
- /// fn take_over(self: Arc<Self>) {
- /// // ...
- /// }
- ///
- /// fn use_reference(self: &Arc<Self>) {
- /// // ...
- /// }
- /// }
- ///
- /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
- /// obj.use_reference();
- /// obj.take_over();
- /// # Ok::<(), Error>(())
- /// ```
- ///
- /// Coercion from `Arc<Example>` to `Arc<dyn MyTrait>`:
- ///
- /// ```
- /// use kernel::sync::{Arc, ArcBorrow};
- ///
- /// trait MyTrait {
- /// // Trait has a function whose `self` type is `Arc<Self>`.
- /// fn example1(self: Arc<Self>) {}
- ///
- /// // Trait has a function whose `self` type is `ArcBorrow<'_, Self>`.
- /// fn example2(self: ArcBorrow<'_, Self>) {}
- /// }
- ///
- /// struct Example;
- /// impl MyTrait for Example {}
- ///
- /// // `obj` has type `Arc<Example>`.
- /// let obj: Arc<Example> = Arc::new(Example, GFP_KERNEL)?;
- ///
- /// // `coerced` has type `Arc<dyn MyTrait>`.
- /// let coerced: Arc<dyn MyTrait> = obj;
- /// # Ok::<(), Error>(())
- /// ```
- pub struct Arc<T: ?Sized> {
- ptr: NonNull<ArcInner<T>>,
- _p: PhantomData<ArcInner<T>>,
- }
- #[pin_data]
- #[repr(C)]
- struct ArcInner<T: ?Sized> {
- refcount: Opaque<bindings::refcount_t>,
- data: T,
- }
- impl<T: ?Sized> ArcInner<T> {
- /// Converts a pointer to the contents of an [`Arc`] into a pointer to the [`ArcInner`].
- ///
- /// # Safety
- ///
- /// `ptr` must have been returned by a previous call to [`Arc::into_raw`], and the `Arc` must
- /// not yet have been destroyed.
- unsafe fn container_of(ptr: *const T) -> NonNull<ArcInner<T>> {
- let refcount_layout = Layout::new::<bindings::refcount_t>();
- // SAFETY: The caller guarantees that the pointer is valid.
- let val_layout = Layout::for_value(unsafe { &*ptr });
- // SAFETY: We're computing the layout of a real struct that existed when compiling this
- // binary, so its layout is not so large that it can trigger arithmetic overflow.
- let val_offset = unsafe { refcount_layout.extend(val_layout).unwrap_unchecked().1 };
- // Pointer casts leave the metadata unchanged. This is okay because the metadata of `T` and
- // `ArcInner<T>` is the same since `ArcInner` is a struct with `T` as its last field.
- //
- // This is documented at:
- // <https://doc.rust-lang.org/std/ptr/trait.Pointee.html>.
- let ptr = ptr as *const ArcInner<T>;
- // SAFETY: The pointer is in-bounds of an allocation both before and after offsetting the
- // pointer, since it originates from a previous call to `Arc::into_raw` on an `Arc` that is
- // still valid.
- let ptr = unsafe { ptr.byte_sub(val_offset) };
- // SAFETY: The pointer can't be null since you can't have an `ArcInner<T>` value at the null
- // address.
- unsafe { NonNull::new_unchecked(ptr.cast_mut()) }
- }
- }
- // This is to allow coercion from `Arc<T>` to `Arc<U>` if `T` can be converted to the
- // dynamically-sized type (DST) `U`.
- impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::CoerceUnsized<Arc<U>> for Arc<T> {}
- // This is to allow `Arc<U>` to be dispatched on when `Arc<T>` can be coerced into `Arc<U>`.
- impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<Arc<U>> for Arc<T> {}
- // SAFETY: It is safe to send `Arc<T>` to another thread when the underlying `T` is `Sync` because
- // it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally, it needs
- // `T` to be `Send` because any thread that has an `Arc<T>` may ultimately access `T` using a
- // mutable reference when the reference count reaches zero and `T` is dropped.
- unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
- // SAFETY: It is safe to send `&Arc<T>` to another thread when the underlying `T` is `Sync`
- // because it effectively means sharing `&T` (which is safe because `T` is `Sync`); additionally,
- // it needs `T` to be `Send` because any thread that has a `&Arc<T>` may clone it and get an
- // `Arc<T>` on that thread, so the thread may ultimately access `T` using a mutable reference when
- // the reference count reaches zero and `T` is dropped.
- unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
- impl<T> Arc<T> {
- /// Constructs a new reference counted instance of `T`.
- pub fn new(contents: T, flags: Flags) -> Result<Self, AllocError> {
- // INVARIANT: The refcount is initialised to a non-zero value.
- let value = ArcInner {
- // SAFETY: There are no safety requirements for this FFI call.
- refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
- data: contents,
- };
- let inner = KBox::new(value, flags)?;
- // SAFETY: We just created `inner` with a reference count of 1, which is owned by the new
- // `Arc` object.
- Ok(unsafe { Self::from_inner(KBox::leak(inner).into()) })
- }
- }
- impl<T: ?Sized> Arc<T> {
- /// Constructs a new [`Arc`] from an existing [`ArcInner`].
- ///
- /// # Safety
- ///
- /// The caller must ensure that `inner` points to a valid location and has a non-zero reference
- /// count, one of which will be owned by the new [`Arc`] instance.
- unsafe fn from_inner(inner: NonNull<ArcInner<T>>) -> Self {
- // INVARIANT: By the safety requirements, the invariants hold.
- Arc {
- ptr: inner,
- _p: PhantomData,
- }
- }
- /// Convert the [`Arc`] into a raw pointer.
- ///
- /// The raw pointer has ownership of the refcount that this Arc object owned.
- pub fn into_raw(self) -> *const T {
- let ptr = self.ptr.as_ptr();
- core::mem::forget(self);
- // SAFETY: The pointer is valid.
- unsafe { core::ptr::addr_of!((*ptr).data) }
- }
- /// Recreates an [`Arc`] instance previously deconstructed via [`Arc::into_raw`].
- ///
- /// # Safety
- ///
- /// `ptr` must have been returned by a previous call to [`Arc::into_raw`]. Additionally, it
- /// must not be called more than once for each previous call to [`Arc::into_raw`].
- pub unsafe fn from_raw(ptr: *const T) -> Self {
- // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
- // `Arc` that is still valid.
- let ptr = unsafe { ArcInner::container_of(ptr) };
- // SAFETY: By the safety requirements we know that `ptr` came from `Arc::into_raw`, so the
- // reference count held then will be owned by the new `Arc` object.
- unsafe { Self::from_inner(ptr) }
- }
- /// Returns an [`ArcBorrow`] from the given [`Arc`].
- ///
- /// This is useful when the argument of a function call is an [`ArcBorrow`] (e.g., in a method
- /// receiver), but we have an [`Arc`] instead. Getting an [`ArcBorrow`] is free when optimised.
- #[inline]
- pub fn as_arc_borrow(&self) -> ArcBorrow<'_, T> {
- // SAFETY: The constraint that the lifetime of the shared reference must outlive that of
- // the returned `ArcBorrow` ensures that the object remains alive and that no mutable
- // reference can be created.
- unsafe { ArcBorrow::new(self.ptr) }
- }
- /// Compare whether two [`Arc`] pointers reference the same underlying object.
- pub fn ptr_eq(this: &Self, other: &Self) -> bool {
- core::ptr::eq(this.ptr.as_ptr(), other.ptr.as_ptr())
- }
- /// Converts this [`Arc`] into a [`UniqueArc`], or destroys it if it is not unique.
- ///
- /// When this destroys the `Arc`, it does so while properly avoiding races. This means that
- /// this method will never call the destructor of the value.
- ///
- /// # Examples
- ///
- /// ```
- /// use kernel::sync::{Arc, UniqueArc};
- ///
- /// let arc = Arc::new(42, GFP_KERNEL)?;
- /// let unique_arc = arc.into_unique_or_drop();
- ///
- /// // The above conversion should succeed since refcount of `arc` is 1.
- /// assert!(unique_arc.is_some());
- ///
- /// assert_eq!(*(unique_arc.unwrap()), 42);
- ///
- /// # Ok::<(), Error>(())
- /// ```
- ///
- /// ```
- /// use kernel::sync::{Arc, UniqueArc};
- ///
- /// let arc = Arc::new(42, GFP_KERNEL)?;
- /// let another = arc.clone();
- ///
- /// let unique_arc = arc.into_unique_or_drop();
- ///
- /// // The above conversion should fail since refcount of `arc` is >1.
- /// assert!(unique_arc.is_none());
- ///
- /// # Ok::<(), Error>(())
- /// ```
- pub fn into_unique_or_drop(self) -> Option<Pin<UniqueArc<T>>> {
- // We will manually manage the refcount in this method, so we disable the destructor.
- let me = ManuallyDrop::new(self);
- // SAFETY: We own a refcount, so the pointer is still valid.
- let refcount = unsafe { me.ptr.as_ref() }.refcount.get();
- // If the refcount reaches a non-zero value, then we have destroyed this `Arc` and will
- // return without further touching the `Arc`. If the refcount reaches zero, then there are
- // no other arcs, and we can create a `UniqueArc`.
- //
- // SAFETY: We own a refcount, so the pointer is not dangling.
- let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
- if is_zero {
- // SAFETY: We have exclusive access to the arc, so we can perform unsynchronized
- // accesses to the refcount.
- unsafe { core::ptr::write(refcount, bindings::REFCOUNT_INIT(1)) };
- // INVARIANT: We own the only refcount to this arc, so we may create a `UniqueArc`. We
- // must pin the `UniqueArc` because the values was previously in an `Arc`, and they pin
- // their values.
- Some(Pin::from(UniqueArc {
- inner: ManuallyDrop::into_inner(me),
- }))
- } else {
- None
- }
- }
- }
- impl<T: 'static> ForeignOwnable for Arc<T> {
- type Borrowed<'a> = ArcBorrow<'a, T>;
- fn into_foreign(self) -> *const crate::ffi::c_void {
- ManuallyDrop::new(self).ptr.as_ptr() as _
- }
- unsafe fn borrow<'a>(ptr: *const crate::ffi::c_void) -> ArcBorrow<'a, T> {
- // By the safety requirement of this function, we know that `ptr` came from
- // a previous call to `Arc::into_foreign`.
- let inner = NonNull::new(ptr as *mut ArcInner<T>).unwrap();
- // SAFETY: The safety requirements of `from_foreign` ensure that the object remains alive
- // for the lifetime of the returned value.
- unsafe { ArcBorrow::new(inner) }
- }
- unsafe fn from_foreign(ptr: *const crate::ffi::c_void) -> Self {
- // SAFETY: By the safety requirement of this function, we know that `ptr` came from
- // a previous call to `Arc::into_foreign`, which guarantees that `ptr` is valid and
- // holds a reference count increment that is transferrable to us.
- unsafe { Self::from_inner(NonNull::new(ptr as _).unwrap()) }
- }
- }
- impl<T: ?Sized> Deref for Arc<T> {
- type Target = T;
- fn deref(&self) -> &Self::Target {
- // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
- // safe to dereference it.
- unsafe { &self.ptr.as_ref().data }
- }
- }
- impl<T: ?Sized> AsRef<T> for Arc<T> {
- fn as_ref(&self) -> &T {
- self.deref()
- }
- }
- impl<T: ?Sized> Clone for Arc<T> {
- fn clone(&self) -> Self {
- // INVARIANT: C `refcount_inc` saturates the refcount, so it cannot overflow to zero.
- // SAFETY: By the type invariant, there is necessarily a reference to the object, so it is
- // safe to increment the refcount.
- unsafe { bindings::refcount_inc(self.ptr.as_ref().refcount.get()) };
- // SAFETY: We just incremented the refcount. This increment is now owned by the new `Arc`.
- unsafe { Self::from_inner(self.ptr) }
- }
- }
- impl<T: ?Sized> Drop for Arc<T> {
- fn drop(&mut self) {
- // SAFETY: By the type invariant, there is necessarily a reference to the object. We cannot
- // touch `refcount` after it's decremented to a non-zero value because another thread/CPU
- // may concurrently decrement it to zero and free it. It is ok to have a raw pointer to
- // freed/invalid memory as long as it is never dereferenced.
- let refcount = unsafe { self.ptr.as_ref() }.refcount.get();
- // INVARIANT: If the refcount reaches zero, there are no other instances of `Arc`, and
- // this instance is being dropped, so the broken invariant is not observable.
- // SAFETY: Also by the type invariant, we are allowed to decrement the refcount.
- let is_zero = unsafe { bindings::refcount_dec_and_test(refcount) };
- if is_zero {
- // The count reached zero, we must free the memory.
- //
- // SAFETY: The pointer was initialised from the result of `KBox::leak`.
- unsafe { drop(KBox::from_raw(self.ptr.as_ptr())) };
- }
- }
- }
- impl<T: ?Sized> From<UniqueArc<T>> for Arc<T> {
- fn from(item: UniqueArc<T>) -> Self {
- item.inner
- }
- }
- impl<T: ?Sized> From<Pin<UniqueArc<T>>> for Arc<T> {
- fn from(item: Pin<UniqueArc<T>>) -> Self {
- // SAFETY: The type invariants of `Arc` guarantee that the data is pinned.
- unsafe { Pin::into_inner_unchecked(item).inner }
- }
- }
- /// A borrowed reference to an [`Arc`] instance.
- ///
- /// For cases when one doesn't ever need to increment the refcount on the allocation, it is simpler
- /// to use just `&T`, which we can trivially get from an [`Arc<T>`] instance.
- ///
- /// However, when one may need to increment the refcount, it is preferable to use an `ArcBorrow<T>`
- /// over `&Arc<T>` because the latter results in a double-indirection: a pointer (shared reference)
- /// to a pointer ([`Arc<T>`]) to the object (`T`). An [`ArcBorrow`] eliminates this double
- /// indirection while still allowing one to increment the refcount and getting an [`Arc<T>`] when/if
- /// needed.
- ///
- /// # Invariants
- ///
- /// There are no mutable references to the underlying [`Arc`], and it remains valid for the
- /// lifetime of the [`ArcBorrow`] instance.
- ///
- /// # Example
- ///
- /// ```
- /// use kernel::sync::{Arc, ArcBorrow};
- ///
- /// struct Example;
- ///
- /// fn do_something(e: ArcBorrow<'_, Example>) -> Arc<Example> {
- /// e.into()
- /// }
- ///
- /// let obj = Arc::new(Example, GFP_KERNEL)?;
- /// let cloned = do_something(obj.as_arc_borrow());
- ///
- /// // Assert that both `obj` and `cloned` point to the same underlying object.
- /// assert!(core::ptr::eq(&*obj, &*cloned));
- /// # Ok::<(), Error>(())
- /// ```
- ///
- /// Using `ArcBorrow<T>` as the type of `self`:
- ///
- /// ```
- /// use kernel::sync::{Arc, ArcBorrow};
- ///
- /// struct Example {
- /// a: u32,
- /// b: u32,
- /// }
- ///
- /// impl Example {
- /// fn use_reference(self: ArcBorrow<'_, Self>) {
- /// // ...
- /// }
- /// }
- ///
- /// let obj = Arc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
- /// obj.as_arc_borrow().use_reference();
- /// # Ok::<(), Error>(())
- /// ```
- pub struct ArcBorrow<'a, T: ?Sized + 'a> {
- inner: NonNull<ArcInner<T>>,
- _p: PhantomData<&'a ()>,
- }
- // This is to allow `ArcBorrow<U>` to be dispatched on when `ArcBorrow<T>` can be coerced into
- // `ArcBorrow<U>`.
- impl<T: ?Sized + Unsize<U>, U: ?Sized> core::ops::DispatchFromDyn<ArcBorrow<'_, U>>
- for ArcBorrow<'_, T>
- {
- }
- impl<T: ?Sized> Clone for ArcBorrow<'_, T> {
- fn clone(&self) -> Self {
- *self
- }
- }
- impl<T: ?Sized> Copy for ArcBorrow<'_, T> {}
- impl<T: ?Sized> ArcBorrow<'_, T> {
- /// Creates a new [`ArcBorrow`] instance.
- ///
- /// # Safety
- ///
- /// Callers must ensure the following for the lifetime of the returned [`ArcBorrow`] instance:
- /// 1. That `inner` remains valid;
- /// 2. That no mutable references to `inner` are created.
- unsafe fn new(inner: NonNull<ArcInner<T>>) -> Self {
- // INVARIANT: The safety requirements guarantee the invariants.
- Self {
- inner,
- _p: PhantomData,
- }
- }
- /// Creates an [`ArcBorrow`] to an [`Arc`] that has previously been deconstructed with
- /// [`Arc::into_raw`].
- ///
- /// # Safety
- ///
- /// * The provided pointer must originate from a call to [`Arc::into_raw`].
- /// * For the duration of the lifetime annotated on this `ArcBorrow`, the reference count must
- /// not hit zero.
- /// * For the duration of the lifetime annotated on this `ArcBorrow`, there must not be a
- /// [`UniqueArc`] reference to this value.
- pub unsafe fn from_raw(ptr: *const T) -> Self {
- // SAFETY: The caller promises that this pointer originates from a call to `into_raw` on an
- // `Arc` that is still valid.
- let ptr = unsafe { ArcInner::container_of(ptr) };
- // SAFETY: The caller promises that the value remains valid since the reference count must
- // not hit zero, and no mutable reference will be created since that would involve a
- // `UniqueArc`.
- unsafe { Self::new(ptr) }
- }
- }
- impl<T: ?Sized> From<ArcBorrow<'_, T>> for Arc<T> {
- fn from(b: ArcBorrow<'_, T>) -> Self {
- // SAFETY: The existence of `b` guarantees that the refcount is non-zero. `ManuallyDrop`
- // guarantees that `drop` isn't called, so it's ok that the temporary `Arc` doesn't own the
- // increment.
- ManuallyDrop::new(unsafe { Arc::from_inner(b.inner) })
- .deref()
- .clone()
- }
- }
- impl<T: ?Sized> Deref for ArcBorrow<'_, T> {
- type Target = T;
- fn deref(&self) -> &Self::Target {
- // SAFETY: By the type invariant, the underlying object is still alive with no mutable
- // references to it, so it is safe to create a shared reference.
- unsafe { &self.inner.as_ref().data }
- }
- }
- /// A refcounted object that is known to have a refcount of 1.
- ///
- /// It is mutable and can be converted to an [`Arc`] so that it can be shared.
- ///
- /// # Invariants
- ///
- /// `inner` always has a reference count of 1.
- ///
- /// # Examples
- ///
- /// In the following example, we make changes to the inner object before turning it into an
- /// `Arc<Test>` object (after which point, it cannot be mutated directly). Note that `x.into()`
- /// cannot fail.
- ///
- /// ```
- /// use kernel::sync::{Arc, UniqueArc};
- ///
- /// struct Example {
- /// a: u32,
- /// b: u32,
- /// }
- ///
- /// fn test() -> Result<Arc<Example>> {
- /// let mut x = UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?;
- /// x.a += 1;
- /// x.b += 1;
- /// Ok(x.into())
- /// }
- ///
- /// # test().unwrap();
- /// ```
- ///
- /// In the following example we first allocate memory for a refcounted `Example` but we don't
- /// initialise it on allocation. We do initialise it later with a call to [`UniqueArc::write`],
- /// followed by a conversion to `Arc<Example>`. This is particularly useful when allocation happens
- /// in one context (e.g., sleepable) and initialisation in another (e.g., atomic):
- ///
- /// ```
- /// use kernel::sync::{Arc, UniqueArc};
- ///
- /// struct Example {
- /// a: u32,
- /// b: u32,
- /// }
- ///
- /// fn test() -> Result<Arc<Example>> {
- /// let x = UniqueArc::new_uninit(GFP_KERNEL)?;
- /// Ok(x.write(Example { a: 10, b: 20 }).into())
- /// }
- ///
- /// # test().unwrap();
- /// ```
- ///
- /// In the last example below, the caller gets a pinned instance of `Example` while converting to
- /// `Arc<Example>`; this is useful in scenarios where one needs a pinned reference during
- /// initialisation, for example, when initialising fields that are wrapped in locks.
- ///
- /// ```
- /// use kernel::sync::{Arc, UniqueArc};
- ///
- /// struct Example {
- /// a: u32,
- /// b: u32,
- /// }
- ///
- /// fn test() -> Result<Arc<Example>> {
- /// let mut pinned = Pin::from(UniqueArc::new(Example { a: 10, b: 20 }, GFP_KERNEL)?);
- /// // We can modify `pinned` because it is `Unpin`.
- /// pinned.as_mut().a += 1;
- /// Ok(pinned.into())
- /// }
- ///
- /// # test().unwrap();
- /// ```
- pub struct UniqueArc<T: ?Sized> {
- inner: Arc<T>,
- }
- impl<T> UniqueArc<T> {
- /// Tries to allocate a new [`UniqueArc`] instance.
- pub fn new(value: T, flags: Flags) -> Result<Self, AllocError> {
- Ok(Self {
- // INVARIANT: The newly-created object has a refcount of 1.
- inner: Arc::new(value, flags)?,
- })
- }
- /// Tries to allocate a new [`UniqueArc`] instance whose contents are not initialised yet.
- pub fn new_uninit(flags: Flags) -> Result<UniqueArc<MaybeUninit<T>>, AllocError> {
- // INVARIANT: The refcount is initialised to a non-zero value.
- let inner = KBox::try_init::<AllocError>(
- try_init!(ArcInner {
- // SAFETY: There are no safety requirements for this FFI call.
- refcount: Opaque::new(unsafe { bindings::REFCOUNT_INIT(1) }),
- data <- init::uninit::<T, AllocError>(),
- }? AllocError),
- flags,
- )?;
- Ok(UniqueArc {
- // INVARIANT: The newly-created object has a refcount of 1.
- // SAFETY: The pointer from the `KBox` is valid.
- inner: unsafe { Arc::from_inner(KBox::leak(inner).into()) },
- })
- }
- }
- impl<T> UniqueArc<MaybeUninit<T>> {
- /// Converts a `UniqueArc<MaybeUninit<T>>` into a `UniqueArc<T>` by writing a value into it.
- pub fn write(mut self, value: T) -> UniqueArc<T> {
- self.deref_mut().write(value);
- // SAFETY: We just wrote the value to be initialized.
- unsafe { self.assume_init() }
- }
- /// Unsafely assume that `self` is initialized.
- ///
- /// # Safety
- ///
- /// The caller guarantees that the value behind this pointer has been initialized. It is
- /// *immediate* UB to call this when the value is not initialized.
- pub unsafe fn assume_init(self) -> UniqueArc<T> {
- let inner = ManuallyDrop::new(self).inner.ptr;
- UniqueArc {
- // SAFETY: The new `Arc` is taking over `ptr` from `self.inner` (which won't be
- // dropped). The types are compatible because `MaybeUninit<T>` is compatible with `T`.
- inner: unsafe { Arc::from_inner(inner.cast()) },
- }
- }
- /// Initialize `self` using the given initializer.
- pub fn init_with<E>(mut self, init: impl Init<T, E>) -> core::result::Result<UniqueArc<T>, E> {
- // SAFETY: The supplied pointer is valid for initialization.
- match unsafe { init.__init(self.as_mut_ptr()) } {
- // SAFETY: Initialization completed successfully.
- Ok(()) => Ok(unsafe { self.assume_init() }),
- Err(err) => Err(err),
- }
- }
- /// Pin-initialize `self` using the given pin-initializer.
- pub fn pin_init_with<E>(
- mut self,
- init: impl PinInit<T, E>,
- ) -> core::result::Result<Pin<UniqueArc<T>>, E> {
- // SAFETY: The supplied pointer is valid for initialization and we will later pin the value
- // to ensure it does not move.
- match unsafe { init.__pinned_init(self.as_mut_ptr()) } {
- // SAFETY: Initialization completed successfully.
- Ok(()) => Ok(unsafe { self.assume_init() }.into()),
- Err(err) => Err(err),
- }
- }
- }
- impl<T: ?Sized> From<UniqueArc<T>> for Pin<UniqueArc<T>> {
- fn from(obj: UniqueArc<T>) -> Self {
- // SAFETY: It is not possible to move/replace `T` inside a `Pin<UniqueArc<T>>` (unless `T`
- // is `Unpin`), so it is ok to convert it to `Pin<UniqueArc<T>>`.
- unsafe { Pin::new_unchecked(obj) }
- }
- }
- impl<T: ?Sized> Deref for UniqueArc<T> {
- type Target = T;
- fn deref(&self) -> &Self::Target {
- self.inner.deref()
- }
- }
- impl<T: ?Sized> DerefMut for UniqueArc<T> {
- fn deref_mut(&mut self) -> &mut Self::Target {
- // SAFETY: By the `Arc` type invariant, there is necessarily a reference to the object, so
- // it is safe to dereference it. Additionally, we know there is only one reference when
- // it's inside a `UniqueArc`, so it is safe to get a mutable reference.
- unsafe { &mut self.inner.ptr.as_mut().data }
- }
- }
- impl<T: fmt::Display + ?Sized> fmt::Display for UniqueArc<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt::Display::fmt(self.deref(), f)
- }
- }
- impl<T: fmt::Display + ?Sized> fmt::Display for Arc<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt::Display::fmt(self.deref(), f)
- }
- }
- impl<T: fmt::Debug + ?Sized> fmt::Debug for UniqueArc<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt::Debug::fmt(self.deref(), f)
- }
- }
- impl<T: fmt::Debug + ?Sized> fmt::Debug for Arc<T> {
- fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
- fmt::Debug::fmt(self.deref(), f)
- }
- }
|