lmb.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Procedures for maintaining information about logical memory blocks.
  4. *
  5. * Peter Bergner, IBM Corp. June 2001.
  6. * Copyright (C) 2001 Peter Bergner.
  7. */
  8. #include <common.h>
  9. #include <efi_loader.h>
  10. #include <image.h>
  11. #include <mapmem.h>
  12. #include <lmb.h>
  13. #include <log.h>
  14. #include <malloc.h>
  15. #include <asm/global_data.h>
  16. #include <asm/sections.h>
  17. DECLARE_GLOBAL_DATA_PTR;
  18. #define LMB_ALLOC_ANYWHERE 0
  19. static void lmb_dump_region(struct lmb_region *rgn, char *name)
  20. {
  21. unsigned long long base, size, end;
  22. enum lmb_flags flags;
  23. int i;
  24. printf(" %s.cnt = 0x%lx / max = 0x%lx\n", name, rgn->cnt, rgn->max);
  25. for (i = 0; i < rgn->cnt; i++) {
  26. base = rgn->region[i].base;
  27. size = rgn->region[i].size;
  28. end = base + size - 1;
  29. flags = rgn->region[i].flags;
  30. printf(" %s[%d]\t[0x%llx-0x%llx], 0x%08llx bytes flags: %x\n",
  31. name, i, base, end, size, flags);
  32. }
  33. }
  34. void lmb_dump_all_force(struct lmb *lmb)
  35. {
  36. printf("lmb_dump_all:\n");
  37. lmb_dump_region(&lmb->memory, "memory");
  38. lmb_dump_region(&lmb->reserved, "reserved");
  39. }
  40. void lmb_dump_all(struct lmb *lmb)
  41. {
  42. #ifdef DEBUG
  43. lmb_dump_all_force(lmb);
  44. #endif
  45. }
  46. static long lmb_addrs_overlap(phys_addr_t base1, phys_size_t size1,
  47. phys_addr_t base2, phys_size_t size2)
  48. {
  49. const phys_addr_t base1_end = base1 + size1 - 1;
  50. const phys_addr_t base2_end = base2 + size2 - 1;
  51. return ((base1 <= base2_end) && (base2 <= base1_end));
  52. }
  53. static long lmb_addrs_adjacent(phys_addr_t base1, phys_size_t size1,
  54. phys_addr_t base2, phys_size_t size2)
  55. {
  56. if (base2 == base1 + size1)
  57. return 1;
  58. else if (base1 == base2 + size2)
  59. return -1;
  60. return 0;
  61. }
  62. static long lmb_regions_adjacent(struct lmb_region *rgn, unsigned long r1,
  63. unsigned long r2)
  64. {
  65. phys_addr_t base1 = rgn->region[r1].base;
  66. phys_size_t size1 = rgn->region[r1].size;
  67. phys_addr_t base2 = rgn->region[r2].base;
  68. phys_size_t size2 = rgn->region[r2].size;
  69. return lmb_addrs_adjacent(base1, size1, base2, size2);
  70. }
  71. static void lmb_remove_region(struct lmb_region *rgn, unsigned long r)
  72. {
  73. unsigned long i;
  74. for (i = r; i < rgn->cnt - 1; i++) {
  75. rgn->region[i].base = rgn->region[i + 1].base;
  76. rgn->region[i].size = rgn->region[i + 1].size;
  77. rgn->region[i].flags = rgn->region[i + 1].flags;
  78. }
  79. rgn->cnt--;
  80. }
  81. /* Assumption: base addr of region 1 < base addr of region 2 */
  82. static void lmb_coalesce_regions(struct lmb_region *rgn, unsigned long r1,
  83. unsigned long r2)
  84. {
  85. rgn->region[r1].size += rgn->region[r2].size;
  86. lmb_remove_region(rgn, r2);
  87. }
  88. void lmb_init(struct lmb *lmb)
  89. {
  90. #if IS_ENABLED(CONFIG_LMB_USE_MAX_REGIONS)
  91. lmb->memory.max = CONFIG_LMB_MAX_REGIONS;
  92. lmb->reserved.max = CONFIG_LMB_MAX_REGIONS;
  93. #else
  94. lmb->memory.max = CONFIG_LMB_MEMORY_REGIONS;
  95. lmb->reserved.max = CONFIG_LMB_RESERVED_REGIONS;
  96. lmb->memory.region = lmb->memory_regions;
  97. lmb->reserved.region = lmb->reserved_regions;
  98. #endif
  99. lmb->memory.cnt = 0;
  100. lmb->reserved.cnt = 0;
  101. }
  102. void arch_lmb_reserve_generic(struct lmb *lmb, ulong sp, ulong end, ulong align)
  103. {
  104. ulong bank_end;
  105. int bank;
  106. /*
  107. * Reserve memory from aligned address below the bottom of U-Boot stack
  108. * until end of U-Boot area using LMB to prevent U-Boot from overwriting
  109. * that memory.
  110. */
  111. debug("## Current stack ends at 0x%08lx ", sp);
  112. /* adjust sp by 4K to be safe */
  113. sp -= align;
  114. for (bank = 0; bank < CONFIG_NR_DRAM_BANKS; bank++) {
  115. if (!gd->bd->bi_dram[bank].size ||
  116. sp < gd->bd->bi_dram[bank].start)
  117. continue;
  118. /* Watch out for RAM at end of address space! */
  119. bank_end = gd->bd->bi_dram[bank].start +
  120. gd->bd->bi_dram[bank].size - 1;
  121. if (sp > bank_end)
  122. continue;
  123. if (bank_end > end)
  124. bank_end = end - 1;
  125. lmb_reserve(lmb, sp, bank_end - sp + 1);
  126. if (gd->flags & GD_FLG_SKIP_RELOC)
  127. lmb_reserve(lmb, (phys_addr_t)(uintptr_t)_start, gd->mon_len);
  128. break;
  129. }
  130. }
  131. /**
  132. * efi_lmb_reserve() - add reservations for EFI memory
  133. *
  134. * Add reservations for all EFI memory areas that are not
  135. * EFI_CONVENTIONAL_MEMORY.
  136. *
  137. * @lmb: lmb environment
  138. * Return: 0 on success, 1 on failure
  139. */
  140. static __maybe_unused int efi_lmb_reserve(struct lmb *lmb)
  141. {
  142. struct efi_mem_desc *memmap = NULL, *map;
  143. efi_uintn_t i, map_size = 0;
  144. efi_status_t ret;
  145. ret = efi_get_memory_map_alloc(&map_size, &memmap);
  146. if (ret != EFI_SUCCESS)
  147. return 1;
  148. for (i = 0, map = memmap; i < map_size / sizeof(*map); ++map, ++i) {
  149. if (map->type != EFI_CONVENTIONAL_MEMORY) {
  150. lmb_reserve_flags(lmb,
  151. map_to_sysmem((void *)(uintptr_t)
  152. map->physical_start),
  153. map->num_pages * EFI_PAGE_SIZE,
  154. map->type == EFI_RESERVED_MEMORY_TYPE
  155. ? LMB_NOMAP : LMB_NONE);
  156. }
  157. }
  158. efi_free_pool(memmap);
  159. return 0;
  160. }
  161. static void lmb_reserve_common(struct lmb *lmb, void *fdt_blob)
  162. {
  163. arch_lmb_reserve(lmb);
  164. board_lmb_reserve(lmb);
  165. if (CONFIG_IS_ENABLED(OF_LIBFDT) && fdt_blob)
  166. boot_fdt_add_mem_rsv_regions(lmb, fdt_blob);
  167. if (CONFIG_IS_ENABLED(EFI_LOADER))
  168. efi_lmb_reserve(lmb);
  169. }
  170. /* Initialize the struct, add memory and call arch/board reserve functions */
  171. void lmb_init_and_reserve(struct lmb *lmb, struct bd_info *bd, void *fdt_blob)
  172. {
  173. int i;
  174. lmb_init(lmb);
  175. for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {
  176. if (bd->bi_dram[i].size) {
  177. lmb_add(lmb, bd->bi_dram[i].start,
  178. bd->bi_dram[i].size);
  179. }
  180. }
  181. lmb_reserve_common(lmb, fdt_blob);
  182. }
  183. /* Initialize the struct, add memory and call arch/board reserve functions */
  184. void lmb_init_and_reserve_range(struct lmb *lmb, phys_addr_t base,
  185. phys_size_t size, void *fdt_blob)
  186. {
  187. lmb_init(lmb);
  188. lmb_add(lmb, base, size);
  189. lmb_reserve_common(lmb, fdt_blob);
  190. }
  191. /* This routine called with relocation disabled. */
  192. static long lmb_add_region_flags(struct lmb_region *rgn, phys_addr_t base,
  193. phys_size_t size, enum lmb_flags flags)
  194. {
  195. unsigned long coalesced = 0;
  196. long adjacent, i;
  197. if (rgn->cnt == 0) {
  198. rgn->region[0].base = base;
  199. rgn->region[0].size = size;
  200. rgn->region[0].flags = flags;
  201. rgn->cnt = 1;
  202. return 0;
  203. }
  204. /* First try and coalesce this LMB with another. */
  205. for (i = 0; i < rgn->cnt; i++) {
  206. phys_addr_t rgnbase = rgn->region[i].base;
  207. phys_size_t rgnsize = rgn->region[i].size;
  208. phys_size_t rgnflags = rgn->region[i].flags;
  209. phys_addr_t end = base + size - 1;
  210. phys_addr_t rgnend = rgnbase + rgnsize - 1;
  211. if (rgnbase <= base && end <= rgnend) {
  212. if (flags == rgnflags)
  213. /* Already have this region, so we're done */
  214. return 0;
  215. else
  216. return -1; /* regions with new flags */
  217. }
  218. adjacent = lmb_addrs_adjacent(base, size, rgnbase, rgnsize);
  219. if (adjacent > 0) {
  220. if (flags != rgnflags)
  221. break;
  222. rgn->region[i].base -= size;
  223. rgn->region[i].size += size;
  224. coalesced++;
  225. break;
  226. } else if (adjacent < 0) {
  227. if (flags != rgnflags)
  228. break;
  229. rgn->region[i].size += size;
  230. coalesced++;
  231. break;
  232. } else if (lmb_addrs_overlap(base, size, rgnbase, rgnsize)) {
  233. /* regions overlap */
  234. return -1;
  235. }
  236. }
  237. if ((i < rgn->cnt - 1) && lmb_regions_adjacent(rgn, i, i + 1)) {
  238. if (rgn->region[i].flags == rgn->region[i + 1].flags) {
  239. lmb_coalesce_regions(rgn, i, i + 1);
  240. coalesced++;
  241. }
  242. }
  243. if (coalesced)
  244. return coalesced;
  245. if (rgn->cnt >= rgn->max)
  246. return -1;
  247. /* Couldn't coalesce the LMB, so add it to the sorted table. */
  248. for (i = rgn->cnt-1; i >= 0; i--) {
  249. if (base < rgn->region[i].base) {
  250. rgn->region[i + 1].base = rgn->region[i].base;
  251. rgn->region[i + 1].size = rgn->region[i].size;
  252. rgn->region[i + 1].flags = rgn->region[i].flags;
  253. } else {
  254. rgn->region[i + 1].base = base;
  255. rgn->region[i + 1].size = size;
  256. rgn->region[i + 1].flags = flags;
  257. break;
  258. }
  259. }
  260. if (base < rgn->region[0].base) {
  261. rgn->region[0].base = base;
  262. rgn->region[0].size = size;
  263. rgn->region[0].flags = flags;
  264. }
  265. rgn->cnt++;
  266. return 0;
  267. }
  268. static long lmb_add_region(struct lmb_region *rgn, phys_addr_t base,
  269. phys_size_t size)
  270. {
  271. return lmb_add_region_flags(rgn, base, size, LMB_NONE);
  272. }
  273. /* This routine may be called with relocation disabled. */
  274. long lmb_add(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  275. {
  276. struct lmb_region *_rgn = &(lmb->memory);
  277. return lmb_add_region(_rgn, base, size);
  278. }
  279. long lmb_free(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  280. {
  281. struct lmb_region *rgn = &(lmb->reserved);
  282. phys_addr_t rgnbegin, rgnend;
  283. phys_addr_t end = base + size - 1;
  284. int i;
  285. rgnbegin = rgnend = 0; /* supress gcc warnings */
  286. /* Find the region where (base, size) belongs to */
  287. for (i = 0; i < rgn->cnt; i++) {
  288. rgnbegin = rgn->region[i].base;
  289. rgnend = rgnbegin + rgn->region[i].size - 1;
  290. if ((rgnbegin <= base) && (end <= rgnend))
  291. break;
  292. }
  293. /* Didn't find the region */
  294. if (i == rgn->cnt)
  295. return -1;
  296. /* Check to see if we are removing entire region */
  297. if ((rgnbegin == base) && (rgnend == end)) {
  298. lmb_remove_region(rgn, i);
  299. return 0;
  300. }
  301. /* Check to see if region is matching at the front */
  302. if (rgnbegin == base) {
  303. rgn->region[i].base = end + 1;
  304. rgn->region[i].size -= size;
  305. return 0;
  306. }
  307. /* Check to see if the region is matching at the end */
  308. if (rgnend == end) {
  309. rgn->region[i].size -= size;
  310. return 0;
  311. }
  312. /*
  313. * We need to split the entry - adjust the current one to the
  314. * beginging of the hole and add the region after hole.
  315. */
  316. rgn->region[i].size = base - rgn->region[i].base;
  317. return lmb_add_region_flags(rgn, end + 1, rgnend - end,
  318. rgn->region[i].flags);
  319. }
  320. long lmb_reserve_flags(struct lmb *lmb, phys_addr_t base, phys_size_t size,
  321. enum lmb_flags flags)
  322. {
  323. struct lmb_region *_rgn = &(lmb->reserved);
  324. return lmb_add_region_flags(_rgn, base, size, flags);
  325. }
  326. long lmb_reserve(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  327. {
  328. return lmb_reserve_flags(lmb, base, size, LMB_NONE);
  329. }
  330. static long lmb_overlaps_region(struct lmb_region *rgn, phys_addr_t base,
  331. phys_size_t size)
  332. {
  333. unsigned long i;
  334. for (i = 0; i < rgn->cnt; i++) {
  335. phys_addr_t rgnbase = rgn->region[i].base;
  336. phys_size_t rgnsize = rgn->region[i].size;
  337. if (lmb_addrs_overlap(base, size, rgnbase, rgnsize))
  338. break;
  339. }
  340. return (i < rgn->cnt) ? i : -1;
  341. }
  342. phys_addr_t lmb_alloc(struct lmb *lmb, phys_size_t size, ulong align)
  343. {
  344. return lmb_alloc_base(lmb, size, align, LMB_ALLOC_ANYWHERE);
  345. }
  346. phys_addr_t lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  347. {
  348. phys_addr_t alloc;
  349. alloc = __lmb_alloc_base(lmb, size, align, max_addr);
  350. if (alloc == 0)
  351. printf("ERROR: Failed to allocate 0x%lx bytes below 0x%lx.\n",
  352. (ulong)size, (ulong)max_addr);
  353. return alloc;
  354. }
  355. static phys_addr_t lmb_align_down(phys_addr_t addr, phys_size_t size)
  356. {
  357. return addr & ~(size - 1);
  358. }
  359. phys_addr_t __lmb_alloc_base(struct lmb *lmb, phys_size_t size, ulong align, phys_addr_t max_addr)
  360. {
  361. long i, rgn;
  362. phys_addr_t base = 0;
  363. phys_addr_t res_base;
  364. for (i = lmb->memory.cnt - 1; i >= 0; i--) {
  365. phys_addr_t lmbbase = lmb->memory.region[i].base;
  366. phys_size_t lmbsize = lmb->memory.region[i].size;
  367. if (lmbsize < size)
  368. continue;
  369. if (max_addr == LMB_ALLOC_ANYWHERE)
  370. base = lmb_align_down(lmbbase + lmbsize - size, align);
  371. else if (lmbbase < max_addr) {
  372. base = lmbbase + lmbsize;
  373. if (base < lmbbase)
  374. base = -1;
  375. base = min(base, max_addr);
  376. base = lmb_align_down(base - size, align);
  377. } else
  378. continue;
  379. while (base && lmbbase <= base) {
  380. rgn = lmb_overlaps_region(&lmb->reserved, base, size);
  381. if (rgn < 0) {
  382. /* This area isn't reserved, take it */
  383. if (lmb_add_region(&lmb->reserved, base,
  384. size) < 0)
  385. return 0;
  386. return base;
  387. }
  388. res_base = lmb->reserved.region[rgn].base;
  389. if (res_base < size)
  390. break;
  391. base = lmb_align_down(res_base - size, align);
  392. }
  393. }
  394. return 0;
  395. }
  396. /*
  397. * Try to allocate a specific address range: must be in defined memory but not
  398. * reserved
  399. */
  400. phys_addr_t lmb_alloc_addr(struct lmb *lmb, phys_addr_t base, phys_size_t size)
  401. {
  402. long rgn;
  403. /* Check if the requested address is in one of the memory regions */
  404. rgn = lmb_overlaps_region(&lmb->memory, base, size);
  405. if (rgn >= 0) {
  406. /*
  407. * Check if the requested end address is in the same memory
  408. * region we found.
  409. */
  410. if (lmb_addrs_overlap(lmb->memory.region[rgn].base,
  411. lmb->memory.region[rgn].size,
  412. base + size - 1, 1)) {
  413. /* ok, reserve the memory */
  414. if (lmb_reserve(lmb, base, size) >= 0)
  415. return base;
  416. }
  417. }
  418. return 0;
  419. }
  420. /* Return number of bytes from a given address that are free */
  421. phys_size_t lmb_get_free_size(struct lmb *lmb, phys_addr_t addr)
  422. {
  423. int i;
  424. long rgn;
  425. /* check if the requested address is in the memory regions */
  426. rgn = lmb_overlaps_region(&lmb->memory, addr, 1);
  427. if (rgn >= 0) {
  428. for (i = 0; i < lmb->reserved.cnt; i++) {
  429. if (addr < lmb->reserved.region[i].base) {
  430. /* first reserved range > requested address */
  431. return lmb->reserved.region[i].base - addr;
  432. }
  433. if (lmb->reserved.region[i].base +
  434. lmb->reserved.region[i].size > addr) {
  435. /* requested addr is in this reserved range */
  436. return 0;
  437. }
  438. }
  439. /* if we come here: no reserved ranges above requested addr */
  440. return lmb->memory.region[lmb->memory.cnt - 1].base +
  441. lmb->memory.region[lmb->memory.cnt - 1].size - addr;
  442. }
  443. return 0;
  444. }
  445. int lmb_is_reserved_flags(struct lmb *lmb, phys_addr_t addr, int flags)
  446. {
  447. int i;
  448. for (i = 0; i < lmb->reserved.cnt; i++) {
  449. phys_addr_t upper = lmb->reserved.region[i].base +
  450. lmb->reserved.region[i].size - 1;
  451. if ((addr >= lmb->reserved.region[i].base) && (addr <= upper))
  452. return (lmb->reserved.region[i].flags & flags) == flags;
  453. }
  454. return 0;
  455. }
  456. int lmb_is_reserved(struct lmb *lmb, phys_addr_t addr)
  457. {
  458. return lmb_is_reserved_flags(lmb, addr, LMB_NONE);
  459. }
  460. __weak void board_lmb_reserve(struct lmb *lmb)
  461. {
  462. /* please define platform specific board_lmb_reserve() */
  463. }
  464. __weak void arch_lmb_reserve(struct lmb *lmb)
  465. {
  466. /* please define platform specific arch_lmb_reserve() */
  467. }