LzmaDec.c 27 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015
  1. /* LzmaDec.c -- LZMA Decoder
  2. 2009-09-20 : Igor Pavlov : Public domain */
  3. #include <config.h>
  4. #include <common.h>
  5. #include <watchdog.h>
  6. #include "LzmaDec.h"
  7. #include <linux/string.h>
  8. #define kNumTopBits 24
  9. #define kTopValue ((UInt32)1 << kNumTopBits)
  10. #define kNumBitModelTotalBits 11
  11. #define kBitModelTotal (1 << kNumBitModelTotalBits)
  12. #define kNumMoveBits 5
  13. #define RC_INIT_SIZE 5
  14. #define NORMALIZE if (range < kTopValue) { range <<= 8; code = (code << 8) | (*buf++); }
  15. #define IF_BIT_0(p) ttt = *(p); NORMALIZE; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
  16. #define UPDATE_0(p) range = bound; *(p) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
  17. #define UPDATE_1(p) range -= bound; code -= bound; *(p) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits));
  18. #define GET_BIT2(p, i, A0, A1) IF_BIT_0(p) \
  19. { UPDATE_0(p); i = (i + i); A0; } else \
  20. { UPDATE_1(p); i = (i + i) + 1; A1; }
  21. #define GET_BIT(p, i) GET_BIT2(p, i, ; , ;)
  22. #define TREE_GET_BIT(probs, i) { GET_BIT((probs + i), i); }
  23. #define TREE_DECODE(probs, limit, i) \
  24. { i = 1; do { TREE_GET_BIT(probs, i); } while (i < limit); i -= limit; }
  25. /* #define _LZMA_SIZE_OPT */
  26. #ifdef _LZMA_SIZE_OPT
  27. #define TREE_6_DECODE(probs, i) TREE_DECODE(probs, (1 << 6), i)
  28. #else
  29. #define TREE_6_DECODE(probs, i) \
  30. { i = 1; \
  31. TREE_GET_BIT(probs, i); \
  32. TREE_GET_BIT(probs, i); \
  33. TREE_GET_BIT(probs, i); \
  34. TREE_GET_BIT(probs, i); \
  35. TREE_GET_BIT(probs, i); \
  36. TREE_GET_BIT(probs, i); \
  37. i -= 0x40; }
  38. #endif
  39. #define NORMALIZE_CHECK if (range < kTopValue) { if (buf >= bufLimit) return DUMMY_ERROR; range <<= 8; code = (code << 8) | (*buf++); }
  40. #define IF_BIT_0_CHECK(p) ttt = *(p); NORMALIZE_CHECK; bound = (range >> kNumBitModelTotalBits) * ttt; if (code < bound)
  41. #define UPDATE_0_CHECK range = bound;
  42. #define UPDATE_1_CHECK range -= bound; code -= bound;
  43. #define GET_BIT2_CHECK(p, i, A0, A1) IF_BIT_0_CHECK(p) \
  44. { UPDATE_0_CHECK; i = (i + i); A0; } else \
  45. { UPDATE_1_CHECK; i = (i + i) + 1; A1; }
  46. #define GET_BIT_CHECK(p, i) GET_BIT2_CHECK(p, i, ; , ;)
  47. #define TREE_DECODE_CHECK(probs, limit, i) \
  48. { i = 1; do { GET_BIT_CHECK(probs + i, i) } while (i < limit); i -= limit; }
  49. #define kNumPosBitsMax 4
  50. #define kNumPosStatesMax (1 << kNumPosBitsMax)
  51. #define kLenNumLowBits 3
  52. #define kLenNumLowSymbols (1 << kLenNumLowBits)
  53. #define kLenNumMidBits 3
  54. #define kLenNumMidSymbols (1 << kLenNumMidBits)
  55. #define kLenNumHighBits 8
  56. #define kLenNumHighSymbols (1 << kLenNumHighBits)
  57. #define LenChoice 0
  58. #define LenChoice2 (LenChoice + 1)
  59. #define LenLow (LenChoice2 + 1)
  60. #define LenMid (LenLow + (kNumPosStatesMax << kLenNumLowBits))
  61. #define LenHigh (LenMid + (kNumPosStatesMax << kLenNumMidBits))
  62. #define kNumLenProbs (LenHigh + kLenNumHighSymbols)
  63. #define kNumStates 12
  64. #define kNumLitStates 7
  65. #define kStartPosModelIndex 4
  66. #define kEndPosModelIndex 14
  67. #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
  68. #define kNumPosSlotBits 6
  69. #define kNumLenToPosStates 4
  70. #define kNumAlignBits 4
  71. #define kAlignTableSize (1 << kNumAlignBits)
  72. #define kMatchMinLen 2
  73. #define kMatchSpecLenStart (kMatchMinLen + kLenNumLowSymbols + kLenNumMidSymbols + kLenNumHighSymbols)
  74. #define IsMatch 0
  75. #define IsRep (IsMatch + (kNumStates << kNumPosBitsMax))
  76. #define IsRepG0 (IsRep + kNumStates)
  77. #define IsRepG1 (IsRepG0 + kNumStates)
  78. #define IsRepG2 (IsRepG1 + kNumStates)
  79. #define IsRep0Long (IsRepG2 + kNumStates)
  80. #define PosSlot (IsRep0Long + (kNumStates << kNumPosBitsMax))
  81. #define SpecPos (PosSlot + (kNumLenToPosStates << kNumPosSlotBits))
  82. #define Align (SpecPos + kNumFullDistances - kEndPosModelIndex)
  83. #define LenCoder (Align + kAlignTableSize)
  84. #define RepLenCoder (LenCoder + kNumLenProbs)
  85. #define Literal (RepLenCoder + kNumLenProbs)
  86. #define LZMA_BASE_SIZE 1846
  87. #define LZMA_LIT_SIZE 768
  88. #define LzmaProps_GetNumProbs(p) ((UInt32)LZMA_BASE_SIZE + (LZMA_LIT_SIZE << ((p)->lc + (p)->lp)))
  89. #if Literal != LZMA_BASE_SIZE
  90. StopCompilingDueBUG
  91. #endif
  92. #define LZMA_DIC_MIN (1 << 12)
  93. /* First LZMA-symbol is always decoded.
  94. And it decodes new LZMA-symbols while (buf < bufLimit), but "buf" is without last normalization
  95. Out:
  96. Result:
  97. SZ_OK - OK
  98. SZ_ERROR_DATA - Error
  99. p->remainLen:
  100. < kMatchSpecLenStart : normal remain
  101. = kMatchSpecLenStart : finished
  102. = kMatchSpecLenStart + 1 : Flush marker
  103. = kMatchSpecLenStart + 2 : State Init Marker
  104. */
  105. static int MY_FAST_CALL LzmaDec_DecodeReal(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  106. {
  107. CLzmaProb *probs = p->probs;
  108. unsigned state = p->state;
  109. UInt32 rep0 = p->reps[0], rep1 = p->reps[1], rep2 = p->reps[2], rep3 = p->reps[3];
  110. unsigned pbMask = ((unsigned)1 << (p->prop.pb)) - 1;
  111. unsigned lpMask = ((unsigned)1 << (p->prop.lp)) - 1;
  112. unsigned lc = p->prop.lc;
  113. Byte *dic = p->dic;
  114. SizeT dicBufSize = p->dicBufSize;
  115. SizeT dicPos = p->dicPos;
  116. UInt32 processedPos = p->processedPos;
  117. UInt32 checkDicSize = p->checkDicSize;
  118. unsigned len = 0;
  119. const Byte *buf = p->buf;
  120. UInt32 range = p->range;
  121. UInt32 code = p->code;
  122. unsigned int loop = 0;
  123. do
  124. {
  125. CLzmaProb *prob;
  126. UInt32 bound;
  127. unsigned ttt;
  128. unsigned posState = processedPos & pbMask;
  129. if (!(loop++ & 1023))
  130. schedule();
  131. prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
  132. IF_BIT_0(prob)
  133. {
  134. unsigned symbol;
  135. UPDATE_0(prob);
  136. prob = probs + Literal;
  137. if (checkDicSize != 0 || processedPos != 0)
  138. prob += (LZMA_LIT_SIZE * (((processedPos & lpMask) << lc) +
  139. (dic[(dicPos == 0 ? dicBufSize : dicPos) - 1] >> (8 - lc))));
  140. if (state < kNumLitStates)
  141. {
  142. state -= (state < 4) ? state : 3;
  143. symbol = 1;
  144. do { GET_BIT(prob + symbol, symbol) } while (symbol < 0x100);
  145. }
  146. else
  147. {
  148. unsigned matchByte = p->dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
  149. unsigned offs = 0x100;
  150. state -= (state < 10) ? 3 : 6;
  151. symbol = 1;
  152. do
  153. {
  154. unsigned bit;
  155. CLzmaProb *probLit;
  156. matchByte <<= 1;
  157. bit = (matchByte & offs);
  158. probLit = prob + offs + bit + symbol;
  159. GET_BIT2(probLit, symbol, offs &= ~bit, offs &= bit)
  160. }
  161. while (symbol < 0x100);
  162. }
  163. dic[dicPos++] = (Byte)symbol;
  164. processedPos++;
  165. continue;
  166. }
  167. else
  168. {
  169. UPDATE_1(prob);
  170. prob = probs + IsRep + state;
  171. IF_BIT_0(prob)
  172. {
  173. UPDATE_0(prob);
  174. state += kNumStates;
  175. prob = probs + LenCoder;
  176. }
  177. else
  178. {
  179. UPDATE_1(prob);
  180. if (checkDicSize == 0 && processedPos == 0)
  181. return SZ_ERROR_DATA;
  182. prob = probs + IsRepG0 + state;
  183. IF_BIT_0(prob)
  184. {
  185. UPDATE_0(prob);
  186. prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
  187. IF_BIT_0(prob)
  188. {
  189. UPDATE_0(prob);
  190. dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
  191. dicPos++;
  192. processedPos++;
  193. state = state < kNumLitStates ? 9 : 11;
  194. continue;
  195. }
  196. UPDATE_1(prob);
  197. }
  198. else
  199. {
  200. UInt32 distance;
  201. UPDATE_1(prob);
  202. prob = probs + IsRepG1 + state;
  203. IF_BIT_0(prob)
  204. {
  205. UPDATE_0(prob);
  206. distance = rep1;
  207. }
  208. else
  209. {
  210. UPDATE_1(prob);
  211. prob = probs + IsRepG2 + state;
  212. IF_BIT_0(prob)
  213. {
  214. UPDATE_0(prob);
  215. distance = rep2;
  216. }
  217. else
  218. {
  219. UPDATE_1(prob);
  220. distance = rep3;
  221. rep3 = rep2;
  222. }
  223. rep2 = rep1;
  224. }
  225. rep1 = rep0;
  226. rep0 = distance;
  227. }
  228. state = state < kNumLitStates ? 8 : 11;
  229. prob = probs + RepLenCoder;
  230. }
  231. {
  232. unsigned limit, offset;
  233. CLzmaProb *probLen = prob + LenChoice;
  234. IF_BIT_0(probLen)
  235. {
  236. UPDATE_0(probLen);
  237. probLen = prob + LenLow + (posState << kLenNumLowBits);
  238. offset = 0;
  239. limit = (1 << kLenNumLowBits);
  240. }
  241. else
  242. {
  243. UPDATE_1(probLen);
  244. probLen = prob + LenChoice2;
  245. IF_BIT_0(probLen)
  246. {
  247. UPDATE_0(probLen);
  248. probLen = prob + LenMid + (posState << kLenNumMidBits);
  249. offset = kLenNumLowSymbols;
  250. limit = (1 << kLenNumMidBits);
  251. }
  252. else
  253. {
  254. UPDATE_1(probLen);
  255. probLen = prob + LenHigh;
  256. offset = kLenNumLowSymbols + kLenNumMidSymbols;
  257. limit = (1 << kLenNumHighBits);
  258. }
  259. }
  260. TREE_DECODE(probLen, limit, len);
  261. len += offset;
  262. }
  263. if (state >= kNumStates)
  264. {
  265. UInt32 distance;
  266. prob = probs + PosSlot +
  267. ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) << kNumPosSlotBits);
  268. TREE_6_DECODE(prob, distance);
  269. if (distance >= kStartPosModelIndex)
  270. {
  271. unsigned posSlot = (unsigned)distance;
  272. int numDirectBits = (int)(((distance >> 1) - 1));
  273. distance = (2 | (distance & 1));
  274. if (posSlot < kEndPosModelIndex)
  275. {
  276. distance <<= numDirectBits;
  277. prob = probs + SpecPos + distance - posSlot - 1;
  278. {
  279. UInt32 mask = 1;
  280. unsigned i = 1;
  281. do
  282. {
  283. GET_BIT2(prob + i, i, ; , distance |= mask);
  284. mask <<= 1;
  285. }
  286. while (--numDirectBits != 0);
  287. }
  288. }
  289. else
  290. {
  291. numDirectBits -= kNumAlignBits;
  292. do
  293. {
  294. NORMALIZE
  295. range >>= 1;
  296. {
  297. UInt32 t;
  298. code -= range;
  299. t = (0 - ((UInt32)code >> 31)); /* (UInt32)((Int32)code >> 31) */
  300. distance = (distance << 1) + (t + 1);
  301. code += range & t;
  302. }
  303. /*
  304. distance <<= 1;
  305. if (code >= range)
  306. {
  307. code -= range;
  308. distance |= 1;
  309. }
  310. */
  311. }
  312. while (--numDirectBits != 0);
  313. prob = probs + Align;
  314. distance <<= kNumAlignBits;
  315. {
  316. unsigned i = 1;
  317. GET_BIT2(prob + i, i, ; , distance |= 1);
  318. GET_BIT2(prob + i, i, ; , distance |= 2);
  319. GET_BIT2(prob + i, i, ; , distance |= 4);
  320. GET_BIT2(prob + i, i, ; , distance |= 8);
  321. }
  322. if (distance == (UInt32)0xFFFFFFFF)
  323. {
  324. len += kMatchSpecLenStart;
  325. state -= kNumStates;
  326. break;
  327. }
  328. }
  329. }
  330. rep3 = rep2;
  331. rep2 = rep1;
  332. rep1 = rep0;
  333. rep0 = distance + 1;
  334. if (checkDicSize == 0)
  335. {
  336. if (distance >= processedPos)
  337. return SZ_ERROR_DATA;
  338. }
  339. else if (distance >= checkDicSize)
  340. return SZ_ERROR_DATA;
  341. state = (state < kNumStates + kNumLitStates) ? kNumLitStates : kNumLitStates + 3;
  342. }
  343. len += kMatchMinLen;
  344. if (limit == dicPos)
  345. return SZ_ERROR_DATA;
  346. {
  347. SizeT rem = limit - dicPos;
  348. unsigned curLen = ((rem < len) ? (unsigned)rem : len);
  349. SizeT pos = (dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0);
  350. processedPos += curLen;
  351. len -= curLen;
  352. if (pos + curLen <= dicBufSize)
  353. {
  354. Byte *dest = dic + dicPos;
  355. ptrdiff_t src = (ptrdiff_t)pos - (ptrdiff_t)dicPos;
  356. const Byte *lim = dest + curLen;
  357. dicPos += curLen;
  358. do
  359. *(dest) = (Byte)*(dest + src);
  360. while (++dest != lim);
  361. }
  362. else
  363. {
  364. do
  365. {
  366. dic[dicPos++] = dic[pos];
  367. if (++pos == dicBufSize)
  368. pos = 0;
  369. }
  370. while (--curLen != 0);
  371. }
  372. }
  373. }
  374. }
  375. while (dicPos < limit && buf < bufLimit);
  376. schedule();
  377. NORMALIZE;
  378. p->buf = buf;
  379. p->range = range;
  380. p->code = code;
  381. p->remainLen = len;
  382. p->dicPos = dicPos;
  383. p->processedPos = processedPos;
  384. p->reps[0] = rep0;
  385. p->reps[1] = rep1;
  386. p->reps[2] = rep2;
  387. p->reps[3] = rep3;
  388. p->state = state;
  389. return SZ_OK;
  390. }
  391. static void MY_FAST_CALL LzmaDec_WriteRem(CLzmaDec *p, SizeT limit)
  392. {
  393. if (p->remainLen != 0 && p->remainLen < kMatchSpecLenStart)
  394. {
  395. Byte *dic = p->dic;
  396. SizeT dicPos = p->dicPos;
  397. SizeT dicBufSize = p->dicBufSize;
  398. unsigned len = p->remainLen;
  399. UInt32 rep0 = p->reps[0];
  400. if (limit - dicPos < len)
  401. len = (unsigned)(limit - dicPos);
  402. if (p->checkDicSize == 0 && p->prop.dicSize - p->processedPos <= len)
  403. p->checkDicSize = p->prop.dicSize;
  404. p->processedPos += len;
  405. p->remainLen -= len;
  406. while (len-- != 0)
  407. {
  408. dic[dicPos] = dic[(dicPos - rep0) + ((dicPos < rep0) ? dicBufSize : 0)];
  409. dicPos++;
  410. }
  411. p->dicPos = dicPos;
  412. }
  413. }
  414. static int MY_FAST_CALL LzmaDec_DecodeReal2(CLzmaDec *p, SizeT limit, const Byte *bufLimit)
  415. {
  416. do
  417. {
  418. SizeT limit2 = limit;
  419. if (p->checkDicSize == 0)
  420. {
  421. UInt32 rem = p->prop.dicSize - p->processedPos;
  422. if (limit - p->dicPos > rem)
  423. limit2 = p->dicPos + rem;
  424. }
  425. RINOK(LzmaDec_DecodeReal(p, limit2, bufLimit));
  426. if (p->processedPos >= p->prop.dicSize)
  427. p->checkDicSize = p->prop.dicSize;
  428. LzmaDec_WriteRem(p, limit);
  429. }
  430. while (p->dicPos < limit && p->buf < bufLimit && p->remainLen < kMatchSpecLenStart);
  431. if (p->remainLen > kMatchSpecLenStart)
  432. {
  433. p->remainLen = kMatchSpecLenStart;
  434. }
  435. return 0;
  436. }
  437. typedef enum
  438. {
  439. DUMMY_ERROR, /* unexpected end of input stream */
  440. DUMMY_LIT,
  441. DUMMY_MATCH,
  442. DUMMY_REP
  443. } ELzmaDummy;
  444. static ELzmaDummy LzmaDec_TryDummy(const CLzmaDec *p, const Byte *buf, SizeT inSize)
  445. {
  446. UInt32 range = p->range;
  447. UInt32 code = p->code;
  448. const Byte *bufLimit = buf + inSize;
  449. CLzmaProb *probs = p->probs;
  450. unsigned state = p->state;
  451. ELzmaDummy res;
  452. {
  453. CLzmaProb *prob;
  454. UInt32 bound;
  455. unsigned ttt;
  456. unsigned posState = (p->processedPos) & ((1 << p->prop.pb) - 1);
  457. prob = probs + IsMatch + (state << kNumPosBitsMax) + posState;
  458. IF_BIT_0_CHECK(prob)
  459. {
  460. UPDATE_0_CHECK
  461. /* if (bufLimit - buf >= 7) return DUMMY_LIT; */
  462. prob = probs + Literal;
  463. if (p->checkDicSize != 0 || p->processedPos != 0)
  464. prob += (LZMA_LIT_SIZE *
  465. ((((p->processedPos) & ((1 << (p->prop.lp)) - 1)) << p->prop.lc) +
  466. (p->dic[(p->dicPos == 0 ? p->dicBufSize : p->dicPos) - 1] >> (8 - p->prop.lc))));
  467. if (state < kNumLitStates)
  468. {
  469. unsigned symbol = 1;
  470. do { GET_BIT_CHECK(prob + symbol, symbol) } while (symbol < 0x100);
  471. }
  472. else
  473. {
  474. unsigned matchByte = p->dic[p->dicPos - p->reps[0] +
  475. ((p->dicPos < p->reps[0]) ? p->dicBufSize : 0)];
  476. unsigned offs = 0x100;
  477. unsigned symbol = 1;
  478. do
  479. {
  480. unsigned bit;
  481. CLzmaProb *probLit;
  482. matchByte <<= 1;
  483. bit = (matchByte & offs);
  484. probLit = prob + offs + bit + symbol;
  485. GET_BIT2_CHECK(probLit, symbol, offs &= ~bit, offs &= bit)
  486. }
  487. while (symbol < 0x100);
  488. }
  489. res = DUMMY_LIT;
  490. }
  491. else
  492. {
  493. unsigned len;
  494. UPDATE_1_CHECK;
  495. prob = probs + IsRep + state;
  496. IF_BIT_0_CHECK(prob)
  497. {
  498. UPDATE_0_CHECK;
  499. state = 0;
  500. prob = probs + LenCoder;
  501. res = DUMMY_MATCH;
  502. }
  503. else
  504. {
  505. UPDATE_1_CHECK;
  506. res = DUMMY_REP;
  507. prob = probs + IsRepG0 + state;
  508. IF_BIT_0_CHECK(prob)
  509. {
  510. UPDATE_0_CHECK;
  511. prob = probs + IsRep0Long + (state << kNumPosBitsMax) + posState;
  512. IF_BIT_0_CHECK(prob)
  513. {
  514. UPDATE_0_CHECK;
  515. NORMALIZE_CHECK;
  516. return DUMMY_REP;
  517. }
  518. else
  519. {
  520. UPDATE_1_CHECK;
  521. }
  522. }
  523. else
  524. {
  525. UPDATE_1_CHECK;
  526. prob = probs + IsRepG1 + state;
  527. IF_BIT_0_CHECK(prob)
  528. {
  529. UPDATE_0_CHECK;
  530. }
  531. else
  532. {
  533. UPDATE_1_CHECK;
  534. prob = probs + IsRepG2 + state;
  535. IF_BIT_0_CHECK(prob)
  536. {
  537. UPDATE_0_CHECK;
  538. }
  539. else
  540. {
  541. UPDATE_1_CHECK;
  542. }
  543. }
  544. }
  545. state = kNumStates;
  546. prob = probs + RepLenCoder;
  547. }
  548. {
  549. unsigned limit, offset;
  550. CLzmaProb *probLen = prob + LenChoice;
  551. IF_BIT_0_CHECK(probLen)
  552. {
  553. UPDATE_0_CHECK;
  554. probLen = prob + LenLow + (posState << kLenNumLowBits);
  555. offset = 0;
  556. limit = 1 << kLenNumLowBits;
  557. }
  558. else
  559. {
  560. UPDATE_1_CHECK;
  561. probLen = prob + LenChoice2;
  562. IF_BIT_0_CHECK(probLen)
  563. {
  564. UPDATE_0_CHECK;
  565. probLen = prob + LenMid + (posState << kLenNumMidBits);
  566. offset = kLenNumLowSymbols;
  567. limit = 1 << kLenNumMidBits;
  568. }
  569. else
  570. {
  571. UPDATE_1_CHECK;
  572. probLen = prob + LenHigh;
  573. offset = kLenNumLowSymbols + kLenNumMidSymbols;
  574. limit = 1 << kLenNumHighBits;
  575. }
  576. }
  577. TREE_DECODE_CHECK(probLen, limit, len);
  578. len += offset;
  579. }
  580. if (state < 4)
  581. {
  582. unsigned posSlot;
  583. prob = probs + PosSlot +
  584. ((len < kNumLenToPosStates ? len : kNumLenToPosStates - 1) <<
  585. kNumPosSlotBits);
  586. TREE_DECODE_CHECK(prob, 1 << kNumPosSlotBits, posSlot);
  587. if (posSlot >= kStartPosModelIndex)
  588. {
  589. int numDirectBits = ((posSlot >> 1) - 1);
  590. /* if (bufLimit - buf >= 8) return DUMMY_MATCH; */
  591. if (posSlot < kEndPosModelIndex)
  592. {
  593. prob = probs + SpecPos + ((2 | (posSlot & 1)) << numDirectBits) - posSlot - 1;
  594. }
  595. else
  596. {
  597. numDirectBits -= kNumAlignBits;
  598. do
  599. {
  600. NORMALIZE_CHECK
  601. range >>= 1;
  602. code -= range & (((code - range) >> 31) - 1);
  603. /* if (code >= range) code -= range; */
  604. }
  605. while (--numDirectBits != 0);
  606. prob = probs + Align;
  607. numDirectBits = kNumAlignBits;
  608. }
  609. {
  610. unsigned i = 1;
  611. do
  612. {
  613. GET_BIT_CHECK(prob + i, i);
  614. }
  615. while (--numDirectBits != 0);
  616. }
  617. }
  618. }
  619. }
  620. }
  621. NORMALIZE_CHECK;
  622. return res;
  623. }
  624. static void LzmaDec_InitRc(CLzmaDec *p, const Byte *data)
  625. {
  626. p->code = ((UInt32)data[1] << 24) | ((UInt32)data[2] << 16) | ((UInt32)data[3] << 8) | ((UInt32)data[4]);
  627. p->range = 0xFFFFFFFF;
  628. p->needFlush = 0;
  629. }
  630. void LzmaDec_InitDicAndState(CLzmaDec *p, Bool initDic, Bool initState)
  631. {
  632. p->needFlush = 1;
  633. p->remainLen = 0;
  634. p->tempBufSize = 0;
  635. if (initDic)
  636. {
  637. p->processedPos = 0;
  638. p->checkDicSize = 0;
  639. p->needInitState = 1;
  640. }
  641. if (initState)
  642. p->needInitState = 1;
  643. }
  644. void LzmaDec_Init(CLzmaDec *p)
  645. {
  646. p->dicPos = 0;
  647. LzmaDec_InitDicAndState(p, True, True);
  648. }
  649. static void LzmaDec_InitStateReal(CLzmaDec *p)
  650. {
  651. UInt32 numProbs = Literal + ((UInt32)LZMA_LIT_SIZE << (p->prop.lc + p->prop.lp));
  652. UInt32 i;
  653. CLzmaProb *probs = p->probs;
  654. for (i = 0; i < numProbs; i++)
  655. probs[i] = kBitModelTotal >> 1;
  656. p->reps[0] = p->reps[1] = p->reps[2] = p->reps[3] = 1;
  657. p->state = 0;
  658. p->needInitState = 0;
  659. }
  660. SRes LzmaDec_DecodeToDic(CLzmaDec *p, SizeT dicLimit, const Byte *src, SizeT *srcLen,
  661. ELzmaFinishMode finishMode, ELzmaStatus *status)
  662. {
  663. SizeT inSize = *srcLen;
  664. (*srcLen) = 0;
  665. LzmaDec_WriteRem(p, dicLimit);
  666. *status = LZMA_STATUS_NOT_SPECIFIED;
  667. while (p->remainLen != kMatchSpecLenStart)
  668. {
  669. int checkEndMarkNow;
  670. if (p->needFlush != 0)
  671. {
  672. for (; inSize > 0 && p->tempBufSize < RC_INIT_SIZE; (*srcLen)++, inSize--)
  673. p->tempBuf[p->tempBufSize++] = *src++;
  674. if (p->tempBufSize < RC_INIT_SIZE)
  675. {
  676. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  677. return SZ_OK;
  678. }
  679. if (p->tempBuf[0] != 0)
  680. return SZ_ERROR_DATA;
  681. LzmaDec_InitRc(p, p->tempBuf);
  682. p->tempBufSize = 0;
  683. }
  684. checkEndMarkNow = 0;
  685. if (p->dicPos >= dicLimit)
  686. {
  687. if (p->remainLen == 0 && p->code == 0)
  688. {
  689. *status = LZMA_STATUS_MAYBE_FINISHED_WITHOUT_MARK;
  690. return SZ_OK;
  691. }
  692. if (finishMode == LZMA_FINISH_ANY)
  693. {
  694. *status = LZMA_STATUS_NOT_FINISHED;
  695. return SZ_OK;
  696. }
  697. if (p->remainLen != 0)
  698. {
  699. *status = LZMA_STATUS_NOT_FINISHED;
  700. return SZ_ERROR_DATA;
  701. }
  702. checkEndMarkNow = 1;
  703. }
  704. if (p->needInitState)
  705. LzmaDec_InitStateReal(p);
  706. if (p->tempBufSize == 0)
  707. {
  708. SizeT processed;
  709. const Byte *bufLimit;
  710. if (inSize < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  711. {
  712. int dummyRes = LzmaDec_TryDummy(p, src, inSize);
  713. if (dummyRes == DUMMY_ERROR)
  714. {
  715. memcpy(p->tempBuf, src, inSize);
  716. p->tempBufSize = (unsigned)inSize;
  717. (*srcLen) += inSize;
  718. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  719. return SZ_OK;
  720. }
  721. if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
  722. {
  723. *status = LZMA_STATUS_NOT_FINISHED;
  724. return SZ_ERROR_DATA;
  725. }
  726. bufLimit = src;
  727. }
  728. else
  729. bufLimit = src + inSize - LZMA_REQUIRED_INPUT_MAX;
  730. p->buf = src;
  731. if (LzmaDec_DecodeReal2(p, dicLimit, bufLimit) != 0)
  732. return SZ_ERROR_DATA;
  733. processed = (SizeT)(p->buf - src);
  734. (*srcLen) += processed;
  735. src += processed;
  736. inSize -= processed;
  737. }
  738. else
  739. {
  740. unsigned rem = p->tempBufSize, lookAhead = 0;
  741. while (rem < LZMA_REQUIRED_INPUT_MAX && lookAhead < inSize)
  742. p->tempBuf[rem++] = src[lookAhead++];
  743. p->tempBufSize = rem;
  744. if (rem < LZMA_REQUIRED_INPUT_MAX || checkEndMarkNow)
  745. {
  746. int dummyRes = LzmaDec_TryDummy(p, p->tempBuf, rem);
  747. if (dummyRes == DUMMY_ERROR)
  748. {
  749. (*srcLen) += lookAhead;
  750. *status = LZMA_STATUS_NEEDS_MORE_INPUT;
  751. return SZ_OK;
  752. }
  753. if (checkEndMarkNow && dummyRes != DUMMY_MATCH)
  754. {
  755. *status = LZMA_STATUS_NOT_FINISHED;
  756. return SZ_ERROR_DATA;
  757. }
  758. }
  759. p->buf = p->tempBuf;
  760. if (LzmaDec_DecodeReal2(p, dicLimit, p->buf) != 0)
  761. return SZ_ERROR_DATA;
  762. lookAhead -= (rem - (unsigned)(p->buf - p->tempBuf));
  763. (*srcLen) += lookAhead;
  764. src += lookAhead;
  765. inSize -= lookAhead;
  766. p->tempBufSize = 0;
  767. }
  768. }
  769. if (p->code == 0)
  770. *status = LZMA_STATUS_FINISHED_WITH_MARK;
  771. return (p->code == 0) ? SZ_OK : SZ_ERROR_DATA;
  772. }
  773. SRes LzmaDec_DecodeToBuf(CLzmaDec *p, Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen, ELzmaFinishMode finishMode, ELzmaStatus *status)
  774. {
  775. SizeT outSize = *destLen;
  776. SizeT inSize = *srcLen;
  777. *srcLen = *destLen = 0;
  778. for (;;)
  779. {
  780. SizeT inSizeCur = inSize, outSizeCur, dicPos;
  781. ELzmaFinishMode curFinishMode;
  782. SRes res;
  783. if (p->dicPos == p->dicBufSize)
  784. p->dicPos = 0;
  785. dicPos = p->dicPos;
  786. if (outSize > p->dicBufSize - dicPos)
  787. {
  788. outSizeCur = p->dicBufSize;
  789. curFinishMode = LZMA_FINISH_ANY;
  790. }
  791. else
  792. {
  793. outSizeCur = dicPos + outSize;
  794. curFinishMode = finishMode;
  795. }
  796. res = LzmaDec_DecodeToDic(p, outSizeCur, src, &inSizeCur, curFinishMode, status);
  797. src += inSizeCur;
  798. inSize -= inSizeCur;
  799. *srcLen += inSizeCur;
  800. outSizeCur = p->dicPos - dicPos;
  801. memcpy(dest, p->dic + dicPos, outSizeCur);
  802. dest += outSizeCur;
  803. outSize -= outSizeCur;
  804. *destLen += outSizeCur;
  805. if (res != 0)
  806. return res;
  807. if (outSizeCur == 0 || outSize == 0)
  808. return SZ_OK;
  809. }
  810. }
  811. void LzmaDec_FreeProbs(CLzmaDec *p, ISzAlloc *alloc)
  812. {
  813. alloc->Free(alloc, p->probs);
  814. p->probs = 0;
  815. }
  816. static void LzmaDec_FreeDict(CLzmaDec *p, ISzAlloc *alloc)
  817. {
  818. alloc->Free(alloc, p->dic);
  819. p->dic = 0;
  820. }
  821. void LzmaDec_Free(CLzmaDec *p, ISzAlloc *alloc)
  822. {
  823. LzmaDec_FreeProbs(p, alloc);
  824. LzmaDec_FreeDict(p, alloc);
  825. }
  826. SRes LzmaProps_Decode(CLzmaProps *p, const Byte *data, unsigned size)
  827. {
  828. UInt32 dicSize;
  829. Byte d;
  830. if (size < LZMA_PROPS_SIZE)
  831. return SZ_ERROR_UNSUPPORTED;
  832. else
  833. dicSize = data[1] | ((UInt32)data[2] << 8) | ((UInt32)data[3] << 16) | ((UInt32)data[4] << 24);
  834. if (dicSize < LZMA_DIC_MIN)
  835. dicSize = LZMA_DIC_MIN;
  836. p->dicSize = dicSize;
  837. d = data[0];
  838. if (d >= (9 * 5 * 5))
  839. return SZ_ERROR_UNSUPPORTED;
  840. p->lc = d % 9;
  841. d /= 9;
  842. p->pb = d / 5;
  843. p->lp = d % 5;
  844. return SZ_OK;
  845. }
  846. static SRes LzmaDec_AllocateProbs2(CLzmaDec *p, const CLzmaProps *propNew, ISzAlloc *alloc)
  847. {
  848. UInt32 numProbs = LzmaProps_GetNumProbs(propNew);
  849. if (p->probs == 0 || numProbs != p->numProbs)
  850. {
  851. LzmaDec_FreeProbs(p, alloc);
  852. p->probs = (CLzmaProb *)alloc->Alloc(alloc, numProbs * sizeof(CLzmaProb));
  853. p->numProbs = numProbs;
  854. if (p->probs == 0)
  855. return SZ_ERROR_MEM;
  856. }
  857. return SZ_OK;
  858. }
  859. SRes LzmaDec_AllocateProbs(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
  860. {
  861. CLzmaProps propNew;
  862. RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  863. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
  864. p->prop = propNew;
  865. return SZ_OK;
  866. }
  867. SRes LzmaDec_Allocate(CLzmaDec *p, const Byte *props, unsigned propsSize, ISzAlloc *alloc)
  868. {
  869. CLzmaProps propNew;
  870. SizeT dicBufSize;
  871. RINOK(LzmaProps_Decode(&propNew, props, propsSize));
  872. RINOK(LzmaDec_AllocateProbs2(p, &propNew, alloc));
  873. dicBufSize = propNew.dicSize;
  874. if (p->dic == 0 || dicBufSize != p->dicBufSize)
  875. {
  876. LzmaDec_FreeDict(p, alloc);
  877. p->dic = (Byte *)alloc->Alloc(alloc, dicBufSize);
  878. if (p->dic == 0)
  879. {
  880. LzmaDec_FreeProbs(p, alloc);
  881. return SZ_ERROR_MEM;
  882. }
  883. }
  884. p->dicBufSize = dicBufSize;
  885. p->prop = propNew;
  886. return SZ_OK;
  887. }
  888. SRes LzmaDecode(Byte *dest, SizeT *destLen, const Byte *src, SizeT *srcLen,
  889. const Byte *propData, unsigned propSize, ELzmaFinishMode finishMode,
  890. ELzmaStatus *status, ISzAlloc *alloc)
  891. {
  892. CLzmaDec p;
  893. SRes res;
  894. SizeT inSize = *srcLen;
  895. SizeT outSize = *destLen;
  896. *srcLen = *destLen = 0;
  897. if (inSize < RC_INIT_SIZE)
  898. return SZ_ERROR_INPUT_EOF;
  899. LzmaDec_Construct(&p);
  900. res = LzmaDec_AllocateProbs(&p, propData, propSize, alloc);
  901. if (res != 0)
  902. return res;
  903. p.dic = dest;
  904. p.dicBufSize = outSize;
  905. LzmaDec_Init(&p);
  906. *srcLen = inSize;
  907. res = LzmaDec_DecodeToDic(&p, outSize, src, srcLen, finishMode, status);
  908. if (res == SZ_OK && *status == LZMA_STATUS_NEEDS_MORE_INPUT)
  909. res = SZ_ERROR_INPUT_EOF;
  910. (*destLen) = p.dicPos;
  911. LzmaDec_FreeProbs(&p, alloc);
  912. return res;
  913. }