tpm_api.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright 2019 Google LLC
  4. */
  5. #include <common.h>
  6. #include <dm.h>
  7. #include <log.h>
  8. #include <tpm_api.h>
  9. #include <tpm-v1.h>
  10. #include <tpm-v2.h>
  11. #include <tpm_api.h>
  12. u32 tpm_startup(struct udevice *dev, enum tpm_startup_type mode)
  13. {
  14. if (tpm_is_v1(dev)) {
  15. return tpm1_startup(dev, mode);
  16. } else if (tpm_is_v2(dev)) {
  17. enum tpm2_startup_types type;
  18. switch (mode) {
  19. case TPM_ST_CLEAR:
  20. type = TPM2_SU_CLEAR;
  21. break;
  22. case TPM_ST_STATE:
  23. type = TPM2_SU_STATE;
  24. break;
  25. default:
  26. case TPM_ST_DEACTIVATED:
  27. return -EINVAL;
  28. }
  29. return tpm2_startup(dev, type);
  30. } else {
  31. return -ENOSYS;
  32. }
  33. }
  34. u32 tpm_auto_start(struct udevice *dev)
  35. {
  36. u32 rc;
  37. /*
  38. * the tpm_init() will return -EBUSY if the init has already happened
  39. * The selftest and startup code can run multiple times with no side
  40. * effects
  41. */
  42. rc = tpm_init(dev);
  43. if (rc && rc != -EBUSY)
  44. return rc;
  45. if (tpm_is_v1(dev))
  46. return tpm1_auto_start(dev);
  47. else if (tpm_is_v2(dev))
  48. return tpm2_auto_start(dev);
  49. else
  50. return -ENOSYS;
  51. }
  52. u32 tpm_resume(struct udevice *dev)
  53. {
  54. if (tpm_is_v1(dev))
  55. return tpm1_startup(dev, TPM_ST_STATE);
  56. else if (tpm_is_v2(dev))
  57. return tpm2_startup(dev, TPM2_SU_STATE);
  58. else
  59. return -ENOSYS;
  60. }
  61. u32 tpm_self_test_full(struct udevice *dev)
  62. {
  63. if (tpm_is_v1(dev))
  64. return tpm1_self_test_full(dev);
  65. else if (tpm_is_v2(dev))
  66. return tpm2_self_test(dev, TPMI_YES);
  67. else
  68. return -ENOSYS;
  69. }
  70. u32 tpm_continue_self_test(struct udevice *dev)
  71. {
  72. if (tpm_is_v1(dev))
  73. return tpm1_continue_self_test(dev);
  74. else if (tpm_is_v2(dev))
  75. return tpm2_self_test(dev, TPMI_NO);
  76. else
  77. return -ENOSYS;
  78. }
  79. u32 tpm_clear_and_reenable(struct udevice *dev)
  80. {
  81. u32 ret;
  82. log_info("TPM: Clear and re-enable\n");
  83. ret = tpm_force_clear(dev);
  84. if (ret != TPM_SUCCESS) {
  85. log_err("Can't initiate a force clear\n");
  86. return ret;
  87. }
  88. if (tpm_is_v1(dev)) {
  89. ret = tpm1_physical_enable(dev);
  90. if (ret != TPM_SUCCESS) {
  91. log_err("TPM: Can't set enabled state\n");
  92. return ret;
  93. }
  94. ret = tpm1_physical_set_deactivated(dev, 0);
  95. if (ret != TPM_SUCCESS) {
  96. log_err("TPM: Can't set deactivated state\n");
  97. return ret;
  98. }
  99. }
  100. return TPM_SUCCESS;
  101. }
  102. u32 tpm_nv_enable_locking(struct udevice *dev)
  103. {
  104. if (tpm_is_v1(dev))
  105. return tpm1_nv_define_space(dev, TPM_NV_INDEX_LOCK, 0, 0);
  106. else if (tpm_is_v2(dev))
  107. return -ENOSYS;
  108. else
  109. return -ENOSYS;
  110. }
  111. u32 tpm_nv_read_value(struct udevice *dev, u32 index, void *data, u32 count)
  112. {
  113. if (tpm_is_v1(dev))
  114. return tpm1_nv_read_value(dev, index, data, count);
  115. else if (tpm_is_v2(dev))
  116. return tpm2_nv_read_value(dev, index, data, count);
  117. else
  118. return -ENOSYS;
  119. }
  120. u32 tpm_nv_write_value(struct udevice *dev, u32 index, const void *data,
  121. u32 count)
  122. {
  123. if (tpm_is_v1(dev))
  124. return tpm1_nv_write_value(dev, index, data, count);
  125. else if (tpm_is_v2(dev))
  126. return tpm2_nv_write_value(dev, index, data, count);
  127. else
  128. return -ENOSYS;
  129. }
  130. u32 tpm_set_global_lock(struct udevice *dev)
  131. {
  132. return tpm_nv_write_value(dev, TPM_NV_INDEX_0, NULL, 0);
  133. }
  134. u32 tpm_write_lock(struct udevice *dev, u32 index)
  135. {
  136. if (tpm_is_v1(dev))
  137. return -ENOSYS;
  138. else if (tpm_is_v2(dev))
  139. return tpm2_write_lock(dev, index);
  140. else
  141. return -ENOSYS;
  142. }
  143. u32 tpm_pcr_extend(struct udevice *dev, u32 index, const void *in_digest,
  144. uint size, void *out_digest, const char *name)
  145. {
  146. if (tpm_is_v1(dev)) {
  147. return tpm1_extend(dev, index, in_digest, out_digest);
  148. } else if (tpm_is_v2(dev)) {
  149. return tpm2_pcr_extend(dev, index, TPM2_ALG_SHA256, in_digest,
  150. TPM2_DIGEST_LEN);
  151. /* @name is ignored as we do not support the TPM log here */
  152. } else {
  153. return -ENOSYS;
  154. }
  155. }
  156. u32 tpm_pcr_read(struct udevice *dev, u32 index, void *data, size_t count)
  157. {
  158. if (tpm_is_v1(dev))
  159. return tpm1_pcr_read(dev, index, data, count);
  160. else if (tpm_is_v2(dev))
  161. return -ENOSYS;
  162. else
  163. return -ENOSYS;
  164. }
  165. u32 tpm_tsc_physical_presence(struct udevice *dev, u16 presence)
  166. {
  167. if (tpm_is_v1(dev))
  168. return tpm1_tsc_physical_presence(dev, presence);
  169. /*
  170. * Nothing to do on TPM2 for this; use platform hierarchy availability
  171. * instead.
  172. */
  173. else if (tpm_is_v2(dev))
  174. return 0;
  175. else
  176. return -ENOSYS;
  177. }
  178. u32 tpm_finalise_physical_presence(struct udevice *dev)
  179. {
  180. if (tpm_is_v1(dev))
  181. return tpm1_finalise_physical_presence(dev);
  182. /* Nothing needs to be done with tpm2 */
  183. else if (tpm_is_v2(dev))
  184. return 0;
  185. else
  186. return -ENOSYS;
  187. }
  188. u32 tpm_read_pubek(struct udevice *dev, void *data, size_t count)
  189. {
  190. if (tpm_is_v1(dev))
  191. return tpm1_read_pubek(dev, data, count);
  192. else if (tpm_is_v2(dev))
  193. return -ENOSYS; /* not implemented yet */
  194. else
  195. return -ENOSYS;
  196. }
  197. u32 tpm_force_clear(struct udevice *dev)
  198. {
  199. if (tpm_is_v1(dev))
  200. return tpm1_force_clear(dev);
  201. else if (tpm_is_v2(dev))
  202. return tpm2_clear(dev, TPM2_RH_PLATFORM, NULL, 0);
  203. else
  204. return -ENOSYS;
  205. }
  206. u32 tpm_physical_enable(struct udevice *dev)
  207. {
  208. if (tpm_is_v1(dev))
  209. return tpm1_physical_enable(dev);
  210. /* Nothing needs to be done with tpm2 */
  211. else if (tpm_is_v2(dev))
  212. return 0;
  213. else
  214. return -ENOSYS;
  215. }
  216. u32 tpm_physical_disable(struct udevice *dev)
  217. {
  218. if (tpm_is_v1(dev))
  219. return tpm1_physical_disable(dev);
  220. /* Nothing needs to be done with tpm2 */
  221. else if (tpm_is_v2(dev))
  222. return 0;
  223. else
  224. return -ENOSYS;
  225. }
  226. u32 tpm_physical_set_deactivated(struct udevice *dev, u8 state)
  227. {
  228. if (tpm_is_v1(dev))
  229. return tpm1_physical_set_deactivated(dev, state);
  230. /* Nothing needs to be done with tpm2 */
  231. else if (tpm_is_v2(dev))
  232. return 0;
  233. else
  234. return -ENOSYS;
  235. }
  236. u32 tpm_get_capability(struct udevice *dev, u32 cap_area, u32 sub_cap,
  237. void *cap, size_t count)
  238. {
  239. if (tpm_is_v1(dev))
  240. return tpm1_get_capability(dev, cap_area, sub_cap, cap, count);
  241. else if (tpm_is_v2(dev))
  242. return tpm2_get_capability(dev, cap_area, sub_cap, cap, count);
  243. else
  244. return -ENOSYS;
  245. }
  246. u32 tpm_get_permissions(struct udevice *dev, u32 index, u32 *perm)
  247. {
  248. if (tpm_is_v1(dev))
  249. return tpm1_get_permissions(dev, index, perm);
  250. else if (tpm_is_v2(dev))
  251. return -ENOSYS; /* not implemented yet */
  252. else
  253. return -ENOSYS;
  254. }
  255. u32 tpm_get_random(struct udevice *dev, void *data, u32 count)
  256. {
  257. if (tpm_is_v1(dev))
  258. return tpm1_get_random(dev, data, count);
  259. else if (tpm_is_v2(dev))
  260. return tpm2_get_random(dev, data, count);
  261. return -ENOSYS;
  262. }