test-fdt.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Copyright (c) 2013 Google, Inc
  4. */
  5. #include <common.h>
  6. #include <dm.h>
  7. #include <errno.h>
  8. #include <fdtdec.h>
  9. #include <log.h>
  10. #include <malloc.h>
  11. #include <asm/global_data.h>
  12. #include <asm/io.h>
  13. #include <dm/test.h>
  14. #include <dm/read.h>
  15. #include <dm/root.h>
  16. #include <dm/device-internal.h>
  17. #include <dm/devres.h>
  18. #include <dm/uclass-internal.h>
  19. #include <dm/util.h>
  20. #include <dm/of_access.h>
  21. #include <linux/ioport.h>
  22. #include <test/test.h>
  23. #include <test/ut.h>
  24. DECLARE_GLOBAL_DATA_PTR;
  25. struct dm_testprobe_pdata {
  26. int probe_err;
  27. };
  28. static int testprobe_drv_probe(struct udevice *dev)
  29. {
  30. struct dm_testprobe_pdata *pdata = dev_get_plat(dev);
  31. return pdata->probe_err;
  32. }
  33. static const struct udevice_id testprobe_ids[] = {
  34. { .compatible = "denx,u-boot-probe-test" },
  35. { }
  36. };
  37. U_BOOT_DRIVER(testprobe_drv) = {
  38. .name = "testprobe_drv",
  39. .of_match = testprobe_ids,
  40. .id = UCLASS_TEST_PROBE,
  41. .probe = testprobe_drv_probe,
  42. .plat_auto = sizeof(struct dm_testprobe_pdata),
  43. };
  44. UCLASS_DRIVER(testprobe) = {
  45. .name = "testprobe",
  46. .id = UCLASS_TEST_PROBE,
  47. .flags = DM_UC_FLAG_SEQ_ALIAS,
  48. };
  49. struct dm_testdevres_pdata {
  50. void *ptr;
  51. };
  52. struct dm_testdevres_priv {
  53. void *ptr;
  54. void *ptr_ofdata;
  55. };
  56. static int testdevres_drv_bind(struct udevice *dev)
  57. {
  58. struct dm_testdevres_pdata *pdata = dev_get_plat(dev);
  59. pdata->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE, 0);
  60. return 0;
  61. }
  62. static int testdevres_drv_of_to_plat(struct udevice *dev)
  63. {
  64. struct dm_testdevres_priv *priv = dev_get_priv(dev);
  65. priv->ptr_ofdata = devm_kmalloc(dev, TEST_DEVRES_SIZE3, 0);
  66. return 0;
  67. }
  68. static int testdevres_drv_probe(struct udevice *dev)
  69. {
  70. struct dm_testdevres_priv *priv = dev_get_priv(dev);
  71. priv->ptr = devm_kmalloc(dev, TEST_DEVRES_SIZE2, 0);
  72. return 0;
  73. }
  74. static const struct udevice_id testdevres_ids[] = {
  75. { .compatible = "denx,u-boot-devres-test" },
  76. { }
  77. };
  78. U_BOOT_DRIVER(testdevres_drv) = {
  79. .name = "testdevres_drv",
  80. .of_match = testdevres_ids,
  81. .id = UCLASS_TEST_DEVRES,
  82. .bind = testdevres_drv_bind,
  83. .of_to_plat = testdevres_drv_of_to_plat,
  84. .probe = testdevres_drv_probe,
  85. .plat_auto = sizeof(struct dm_testdevres_pdata),
  86. .priv_auto = sizeof(struct dm_testdevres_priv),
  87. };
  88. UCLASS_DRIVER(testdevres) = {
  89. .name = "testdevres",
  90. .id = UCLASS_TEST_DEVRES,
  91. .flags = DM_UC_FLAG_SEQ_ALIAS,
  92. };
  93. int dm_check_devices(struct unit_test_state *uts, int num_devices)
  94. {
  95. struct udevice *dev;
  96. int ret;
  97. int i;
  98. /*
  99. * Now check that the ping adds are what we expect. This is using the
  100. * ping-add property in each node.
  101. */
  102. for (i = 0; i < num_devices; i++) {
  103. uint32_t base;
  104. ret = uclass_get_device(UCLASS_TEST_FDT, i, &dev);
  105. ut_assert(!ret);
  106. /*
  107. * Get the 'ping-expect' property, which tells us what the
  108. * ping add should be. We don't use the plat because we
  109. * want to test the code that sets that up
  110. * (testfdt_drv_probe()).
  111. */
  112. base = fdtdec_get_addr(gd->fdt_blob, dev_of_offset(dev),
  113. "ping-expect");
  114. debug("dev=%d, base=%d: %s\n", i, base,
  115. fdt_get_name(gd->fdt_blob, dev_of_offset(dev), NULL));
  116. ut_assert(!dm_check_operations(uts, dev, base,
  117. dev_get_priv(dev)));
  118. }
  119. return 0;
  120. }
  121. /* Test that FDT-based binding works correctly */
  122. static int dm_test_fdt(struct unit_test_state *uts)
  123. {
  124. const int num_devices = 9;
  125. struct udevice *dev;
  126. struct uclass *uc;
  127. int ret;
  128. int i;
  129. ret = dm_extended_scan(false);
  130. ut_assert(!ret);
  131. ret = uclass_get(UCLASS_TEST_FDT, &uc);
  132. ut_assert(!ret);
  133. /* These are num_devices compatible root-level device tree nodes */
  134. ut_asserteq(num_devices, list_count_items(&uc->dev_head));
  135. /* Each should have platform data but no private data */
  136. for (i = 0; i < num_devices; i++) {
  137. ret = uclass_find_device(UCLASS_TEST_FDT, i, &dev);
  138. ut_assert(!ret);
  139. ut_assert(!dev_get_priv(dev));
  140. ut_assert(dev_get_plat(dev));
  141. }
  142. ut_assertok(dm_check_devices(uts, num_devices));
  143. return 0;
  144. }
  145. DM_TEST(dm_test_fdt, 0);
  146. static int dm_test_alias_highest_id(struct unit_test_state *uts)
  147. {
  148. int ret;
  149. ret = dev_read_alias_highest_id("ethernet");
  150. ut_asserteq(8, ret);
  151. ret = dev_read_alias_highest_id("gpio");
  152. ut_asserteq(3, ret);
  153. ret = dev_read_alias_highest_id("pci");
  154. ut_asserteq(2, ret);
  155. ret = dev_read_alias_highest_id("i2c");
  156. ut_asserteq(0, ret);
  157. ret = dev_read_alias_highest_id("deadbeef");
  158. ut_asserteq(-1, ret);
  159. return 0;
  160. }
  161. DM_TEST(dm_test_alias_highest_id, 0);
  162. static int dm_test_fdt_pre_reloc(struct unit_test_state *uts)
  163. {
  164. struct uclass *uc;
  165. int ret;
  166. ret = dm_scan_fdt(true);
  167. ut_assert(!ret);
  168. ret = uclass_get(UCLASS_TEST_FDT, &uc);
  169. ut_assert(!ret);
  170. /*
  171. * These are 2 pre-reloc devices:
  172. * one with "bootph-all" property (a-test node), and the other
  173. * one whose driver marked with DM_FLAG_PRE_RELOC flag (h-test node).
  174. */
  175. ut_asserteq(2, list_count_items(&uc->dev_head));
  176. return 0;
  177. }
  178. DM_TEST(dm_test_fdt_pre_reloc, 0);
  179. /* Test that sequence numbers are allocated properly */
  180. static int dm_test_fdt_uclass_seq(struct unit_test_state *uts)
  181. {
  182. struct udevice *dev;
  183. /* A few basic santiy tests */
  184. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
  185. ut_asserteq_str("b-test", dev->name);
  186. ut_asserteq(3, dev_seq(dev));
  187. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 8, &dev));
  188. ut_asserteq_str("a-test", dev->name);
  189. ut_asserteq(8, dev_seq(dev));
  190. /*
  191. * This device has no alias so gets the next value after all available
  192. * aliases. The last alias is testfdt12
  193. */
  194. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_FDT, 13, &dev));
  195. ut_asserteq_str("d-test", dev->name);
  196. ut_asserteq(13, dev_seq(dev));
  197. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9,
  198. &dev));
  199. ut_asserteq_ptr(NULL, dev);
  200. /* Test aliases */
  201. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 6, &dev));
  202. ut_asserteq_str("e-test", dev->name);
  203. ut_asserteq(6, dev_seq(dev));
  204. /*
  205. * Note that c-test nodes are not probed since it is not a top-level
  206. * node
  207. */
  208. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 3, &dev));
  209. ut_asserteq_str("b-test", dev->name);
  210. ut_asserteq(3, dev_seq(dev));
  211. /*
  212. * d-test wants sequence number 3 also, but it can't have it because
  213. * b-test gets it first.
  214. */
  215. ut_assertok(uclass_get_device(UCLASS_TEST_FDT, 2, &dev));
  216. ut_asserteq_str("d-test", dev->name);
  217. ut_asserteq(13, dev_seq(dev));
  218. /* g-test gets the next value after f-test */
  219. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 15, &dev));
  220. ut_asserteq_str("g-test", dev->name);
  221. ut_asserteq(15, dev_seq(dev));
  222. /* And we should still have holes in our sequence numbers */
  223. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 0,
  224. &dev));
  225. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 1,
  226. &dev));
  227. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 2,
  228. &dev));
  229. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 4,
  230. &dev));
  231. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 7,
  232. &dev));
  233. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 9,
  234. &dev));
  235. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 10,
  236. &dev));
  237. ut_asserteq(-ENODEV, uclass_find_device_by_seq(UCLASS_TEST_FDT, 11,
  238. &dev));
  239. return 0;
  240. }
  241. DM_TEST(dm_test_fdt_uclass_seq, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  242. /* More tests for sequence numbers */
  243. static int dm_test_fdt_uclass_seq_manual(struct unit_test_state *uts)
  244. {
  245. struct udevice *dev;
  246. /*
  247. * Since DM_UC_FLAG_NO_AUTO_SEQ is set for this uclass, only testfdtm1
  248. * should get a sequence number assigned
  249. */
  250. ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 0, &dev));
  251. ut_asserteq_str("testfdtm0", dev->name);
  252. ut_asserteq(-1, dev_seq(dev));
  253. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT_MANUAL, 1, &dev));
  254. ut_asserteq_str("testfdtm1", dev->name);
  255. ut_asserteq(1, dev_seq(dev));
  256. ut_assertok(uclass_get_device(UCLASS_TEST_FDT_MANUAL, 2, &dev));
  257. ut_asserteq_str("testfdtm2", dev->name);
  258. ut_asserteq(-1, dev_seq(dev));
  259. return 0;
  260. }
  261. DM_TEST(dm_test_fdt_uclass_seq_manual, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  262. static int dm_test_fdt_uclass_seq_more(struct unit_test_state *uts)
  263. {
  264. struct udevice *dev;
  265. ofnode node;
  266. /* Check creating a device with an alias */
  267. node = ofnode_path("/some-bus/c-test@1");
  268. ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test),
  269. "c-test@1", NULL, node, &dev));
  270. ut_asserteq(12, dev_seq(dev));
  271. ut_assertok(uclass_get_device_by_seq(UCLASS_TEST_FDT, 12, &dev));
  272. ut_asserteq_str("c-test@1", dev->name);
  273. /*
  274. * Now bind a device without an alias. It should not get the next
  275. * sequence number after all aliases, and existing bound devices. The
  276. * last alias is 12, so we have:
  277. *
  278. * 13 d-test
  279. * 14 f-test
  280. * 15 g-test
  281. * 16 h-test
  282. * 17 another-test
  283. * 18 chosen-test
  284. *
  285. * So next available is 19
  286. */
  287. ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test),
  288. "fred", NULL, ofnode_null(), &dev));
  289. ut_asserteq(19, dev_seq(dev));
  290. ut_assertok(device_bind(dm_root(), DM_DRIVER_GET(denx_u_boot_fdt_test),
  291. "fred2", NULL, ofnode_null(), &dev));
  292. ut_asserteq(20, dev_seq(dev));
  293. return 0;
  294. }
  295. DM_TEST(dm_test_fdt_uclass_seq_more, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  296. /* Test that we can find a device by device tree offset */
  297. static int dm_test_fdt_offset(struct unit_test_state *uts)
  298. {
  299. const void *blob = gd->fdt_blob;
  300. struct udevice *dev;
  301. int node;
  302. node = fdt_path_offset(blob, "/e-test");
  303. ut_assert(node > 0);
  304. ut_assertok(uclass_get_device_by_of_offset(UCLASS_TEST_FDT, node,
  305. &dev));
  306. ut_asserteq_str("e-test", dev->name);
  307. /* This node should not be bound */
  308. node = fdt_path_offset(blob, "/junk");
  309. ut_assert(node > 0);
  310. ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
  311. node, &dev));
  312. /* This is not a top level node so should not be probed */
  313. node = fdt_path_offset(blob, "/some-bus/c-test@5");
  314. ut_assert(node > 0);
  315. ut_asserteq(-ENODEV, uclass_get_device_by_of_offset(UCLASS_TEST_FDT,
  316. node, &dev));
  317. return 0;
  318. }
  319. DM_TEST(dm_test_fdt_offset,
  320. UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
  321. /**
  322. * Test various error conditions with uclass_first_device(),
  323. * uclass_next_device(), and uclass_probe_all()
  324. */
  325. static int dm_test_first_next_device_probeall(struct unit_test_state *uts)
  326. {
  327. struct dm_testprobe_pdata *pdata;
  328. struct udevice *dev, *parent = NULL;
  329. int count;
  330. int ret;
  331. /* There should be 4 devices */
  332. for (uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0;
  333. dev;
  334. uclass_next_device(&dev)) {
  335. count++;
  336. parent = dev_get_parent(dev);
  337. }
  338. ut_asserteq(4, count);
  339. /* Remove them and try again, with an error on the second one */
  340. ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 1, &dev));
  341. pdata = dev_get_plat(dev);
  342. pdata->probe_err = -ENOMEM;
  343. device_remove(parent, DM_REMOVE_NORMAL);
  344. for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev),
  345. count = 0;
  346. dev;
  347. ret = uclass_next_device_check(&dev)) {
  348. if (!ret)
  349. count++;
  350. else
  351. ut_asserteq(-ENOMEM, ret);
  352. parent = dev_get_parent(dev);
  353. }
  354. ut_asserteq(3, count);
  355. /* Now an error on the first one */
  356. ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 0, &dev));
  357. pdata = dev_get_plat(dev);
  358. pdata->probe_err = -ENOENT;
  359. device_remove(parent, DM_REMOVE_NORMAL);
  360. for (uclass_first_device(UCLASS_TEST_PROBE, &dev), count = 0;
  361. dev;
  362. uclass_next_device(&dev)) {
  363. count++;
  364. parent = dev_get_parent(dev);
  365. }
  366. ut_asserteq(2, count);
  367. /* Now that broken devices are set up test probe_all */
  368. device_remove(parent, DM_REMOVE_NORMAL);
  369. /* There are broken devices so an error should be returned */
  370. ut_assert(uclass_probe_all(UCLASS_TEST_PROBE) < 0);
  371. /* but non-error device should be probed nonetheless */
  372. ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 2, &dev));
  373. ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
  374. ut_assertok(uclass_get_device(UCLASS_TEST_PROBE, 3, &dev));
  375. ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
  376. return 0;
  377. }
  378. DM_TEST(dm_test_first_next_device_probeall,
  379. UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  380. /* Test iteration through devices in a uclass */
  381. static int dm_test_uclass_foreach(struct unit_test_state *uts)
  382. {
  383. struct udevice *dev;
  384. struct uclass *uc;
  385. int count;
  386. count = 0;
  387. uclass_id_foreach_dev(UCLASS_TEST_FDT, dev, uc)
  388. count++;
  389. ut_asserteq(9, count);
  390. count = 0;
  391. uclass_foreach_dev(dev, uc)
  392. count++;
  393. ut_asserteq(9, count);
  394. return 0;
  395. }
  396. DM_TEST(dm_test_uclass_foreach, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  397. /**
  398. * check_devices() - Check return values and pointers
  399. *
  400. * This runs through a full sequence of uclass_first_device_check()...
  401. * uclass_next_device_check() checking that the return values and devices
  402. * are correct.
  403. *
  404. * @uts: Test state
  405. * @devlist: List of expected devices
  406. * @mask: Indicates which devices should return an error. Device n should
  407. * return error (-NOENT - n) if bit n is set, or no error (i.e. 0) if
  408. * bit n is clear.
  409. */
  410. static int check_devices(struct unit_test_state *uts,
  411. struct udevice *devlist[], int mask)
  412. {
  413. int expected_ret;
  414. struct udevice *dev;
  415. int i;
  416. expected_ret = (mask & 1) ? -ENOENT : 0;
  417. mask >>= 1;
  418. ut_asserteq(expected_ret,
  419. uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
  420. for (i = 0; i < 4; i++) {
  421. ut_asserteq_ptr(devlist[i], dev);
  422. expected_ret = (mask & 1) ? -ENOENT - (i + 1) : 0;
  423. mask >>= 1;
  424. ut_asserteq(expected_ret, uclass_next_device_check(&dev));
  425. }
  426. ut_asserteq_ptr(NULL, dev);
  427. return 0;
  428. }
  429. /* Test uclass_first_device_check() and uclass_next_device_check() */
  430. static int dm_test_first_next_ok_device(struct unit_test_state *uts)
  431. {
  432. struct dm_testprobe_pdata *pdata;
  433. struct udevice *dev, *parent = NULL, *devlist[4];
  434. int count;
  435. int ret;
  436. /* There should be 4 devices */
  437. count = 0;
  438. for (ret = uclass_first_device_check(UCLASS_TEST_PROBE, &dev);
  439. dev;
  440. ret = uclass_next_device_check(&dev)) {
  441. ut_assertok(ret);
  442. devlist[count++] = dev;
  443. parent = dev_get_parent(dev);
  444. }
  445. ut_asserteq(4, count);
  446. ut_assertok(uclass_first_device_check(UCLASS_TEST_PROBE, &dev));
  447. ut_assertok(check_devices(uts, devlist, 0));
  448. /* Remove them and try again, with an error on the second one */
  449. pdata = dev_get_plat(devlist[1]);
  450. pdata->probe_err = -ENOENT - 1;
  451. device_remove(parent, DM_REMOVE_NORMAL);
  452. ut_assertok(check_devices(uts, devlist, 1 << 1));
  453. /* Now an error on the first one */
  454. pdata = dev_get_plat(devlist[0]);
  455. pdata->probe_err = -ENOENT - 0;
  456. device_remove(parent, DM_REMOVE_NORMAL);
  457. ut_assertok(check_devices(uts, devlist, 3 << 0));
  458. /* Now errors on all */
  459. pdata = dev_get_plat(devlist[2]);
  460. pdata->probe_err = -ENOENT - 2;
  461. pdata = dev_get_plat(devlist[3]);
  462. pdata->probe_err = -ENOENT - 3;
  463. device_remove(parent, DM_REMOVE_NORMAL);
  464. ut_assertok(check_devices(uts, devlist, 0xf << 0));
  465. return 0;
  466. }
  467. DM_TEST(dm_test_first_next_ok_device, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  468. static const struct udevice_id fdt_dummy_ids[] = {
  469. { .compatible = "denx,u-boot-fdt-dummy", },
  470. { }
  471. };
  472. UCLASS_DRIVER(fdt_dummy) = {
  473. .name = "fdt-dummy",
  474. .id = UCLASS_TEST_DUMMY,
  475. .flags = DM_UC_FLAG_SEQ_ALIAS,
  476. };
  477. U_BOOT_DRIVER(fdt_dummy_drv) = {
  478. .name = "fdt_dummy_drv",
  479. .of_match = fdt_dummy_ids,
  480. .id = UCLASS_TEST_DUMMY,
  481. };
  482. static int dm_test_fdt_translation(struct unit_test_state *uts)
  483. {
  484. struct udevice *dev;
  485. fdt32_t dma_addr[2];
  486. /* Some simple translations */
  487. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
  488. ut_asserteq_str("dev@0,0", dev->name);
  489. ut_asserteq(0x8000, dev_read_addr(dev));
  490. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev));
  491. ut_asserteq_str("dev@1,100", dev->name);
  492. ut_asserteq(0x9000, dev_read_addr(dev));
  493. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 2, &dev));
  494. ut_asserteq_str("dev@2,200", dev->name);
  495. ut_asserteq(0xA000, dev_read_addr(dev));
  496. /* No translation for buses with #size-cells == 0 */
  497. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 3, &dev));
  498. ut_asserteq_str("dev@42", dev->name);
  499. ut_asserteq(0x42, dev_read_addr(dev));
  500. /* dma address translation */
  501. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
  502. dma_addr[0] = cpu_to_be32(0);
  503. dma_addr[1] = cpu_to_be32(0);
  504. ut_asserteq(0x10000000, dev_translate_dma_address(dev, dma_addr));
  505. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 1, &dev));
  506. dma_addr[0] = cpu_to_be32(1);
  507. dma_addr[1] = cpu_to_be32(0x100);
  508. ut_asserteq(0x20000000, dev_translate_dma_address(dev, dma_addr));
  509. return 0;
  510. }
  511. DM_TEST(dm_test_fdt_translation, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  512. static int dm_test_fdt_get_addr_ptr_flat(struct unit_test_state *uts)
  513. {
  514. struct udevice *gpio, *dev;
  515. void *ptr;
  516. void *paddr;
  517. /* Test for missing reg property */
  518. ut_assertok(uclass_first_device_err(UCLASS_GPIO, &gpio));
  519. ut_assertnull(devfdt_get_addr_ptr(gpio));
  520. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
  521. ptr = devfdt_get_addr_ptr(dev);
  522. paddr = map_sysmem(0x8000, 0);
  523. ut_asserteq_ptr(paddr, ptr);
  524. return 0;
  525. }
  526. DM_TEST(dm_test_fdt_get_addr_ptr_flat,
  527. UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
  528. static int dm_test_fdt_remap_addr_flat(struct unit_test_state *uts)
  529. {
  530. struct udevice *dev;
  531. fdt_addr_t addr;
  532. void *paddr;
  533. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
  534. addr = devfdt_get_addr(dev);
  535. ut_asserteq(0x8000, addr);
  536. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  537. ut_assertnonnull(paddr);
  538. ut_asserteq_ptr(paddr, devfdt_remap_addr(dev));
  539. return 0;
  540. }
  541. DM_TEST(dm_test_fdt_remap_addr_flat,
  542. UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
  543. static int dm_test_fdt_remap_addr_index_flat(struct unit_test_state *uts)
  544. {
  545. struct udevice *dev;
  546. fdt_addr_t addr;
  547. fdt_size_t size;
  548. void *paddr;
  549. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
  550. addr = devfdt_get_addr_size_index(dev, 0, &size);
  551. ut_asserteq(0x8000, addr);
  552. ut_asserteq(0x1000, size);
  553. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  554. ut_assertnonnull(paddr);
  555. ut_asserteq_ptr(paddr, devfdt_remap_addr_index(dev, 0));
  556. return 0;
  557. }
  558. DM_TEST(dm_test_fdt_remap_addr_index_flat,
  559. UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
  560. static int dm_test_fdt_remap_addr_name_flat(struct unit_test_state *uts)
  561. {
  562. struct udevice *dev;
  563. fdt_addr_t addr;
  564. fdt_size_t size;
  565. void *paddr;
  566. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
  567. addr = devfdt_get_addr_size_name(dev, "sandbox-dummy-0", &size);
  568. ut_asserteq(0x8000, addr);
  569. ut_asserteq(0x1000, size);
  570. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  571. ut_assertnonnull(paddr);
  572. ut_asserteq_ptr(paddr, devfdt_remap_addr_name(dev, "sandbox-dummy-0"));
  573. return 0;
  574. }
  575. DM_TEST(dm_test_fdt_remap_addr_name_flat,
  576. UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT | UT_TESTF_FLAT_TREE);
  577. static int dm_test_fdt_remap_addr_live(struct unit_test_state *uts)
  578. {
  579. struct udevice *dev;
  580. fdt_addr_t addr;
  581. void *paddr;
  582. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
  583. addr = dev_read_addr(dev);
  584. ut_asserteq(0x8000, addr);
  585. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  586. ut_assertnonnull(paddr);
  587. ut_asserteq_ptr(paddr, dev_remap_addr(dev));
  588. return 0;
  589. }
  590. DM_TEST(dm_test_fdt_remap_addr_live,
  591. UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  592. static int dm_test_fdt_remap_addr_index_live(struct unit_test_state *uts)
  593. {
  594. struct udevice *dev;
  595. fdt_addr_t addr;
  596. fdt_size_t size;
  597. void *paddr;
  598. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
  599. addr = dev_read_addr_size_index(dev, 0, &size);
  600. ut_asserteq(0x8000, addr);
  601. ut_asserteq(0x1000, size);
  602. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  603. ut_assertnonnull(paddr);
  604. ut_asserteq_ptr(paddr, dev_remap_addr_index(dev, 0));
  605. return 0;
  606. }
  607. DM_TEST(dm_test_fdt_remap_addr_index_live,
  608. UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  609. static int dm_test_fdt_remap_addr_name_live(struct unit_test_state *uts)
  610. {
  611. struct udevice *dev;
  612. fdt_addr_t addr;
  613. fdt_size_t size;
  614. void *paddr;
  615. ut_assertok(uclass_find_device_by_seq(UCLASS_TEST_DUMMY, 0, &dev));
  616. addr = dev_read_addr_size_name(dev, "sandbox-dummy-0", &size);
  617. ut_asserteq(0x8000, addr);
  618. ut_asserteq(0x1000, size);
  619. paddr = map_physmem(addr, 0, MAP_NOCACHE);
  620. ut_assertnonnull(paddr);
  621. ut_asserteq_ptr(paddr, dev_remap_addr_name(dev, "sandbox-dummy-0"));
  622. return 0;
  623. }
  624. DM_TEST(dm_test_fdt_remap_addr_name_live,
  625. UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  626. static int dm_test_fdt_disable_enable_by_path(struct unit_test_state *uts)
  627. {
  628. ofnode node;
  629. if (!of_live_active()) {
  630. printf("Live tree not active; ignore test\n");
  631. return 0;
  632. }
  633. node = ofnode_path("/usb@2");
  634. /* Test enabling devices */
  635. ut_assert(!of_device_is_available(ofnode_to_np(node)));
  636. dev_enable_by_path("/usb@2");
  637. ut_assert(of_device_is_available(ofnode_to_np(node)));
  638. /* Test disabling devices */
  639. ut_assert(of_device_is_available(ofnode_to_np(node)));
  640. dev_disable_by_path("/usb@2");
  641. ut_assert(!of_device_is_available(ofnode_to_np(node)));
  642. return 0;
  643. }
  644. DM_TEST(dm_test_fdt_disable_enable_by_path, UT_TESTF_SCAN_PDATA |
  645. UT_TESTF_SCAN_FDT);
  646. /* Test a few uclass phandle functions */
  647. static int dm_test_fdt_phandle(struct unit_test_state *uts)
  648. {
  649. struct udevice *back, *dev, *dev2;
  650. ut_assertok(uclass_find_first_device(UCLASS_PANEL_BACKLIGHT, &back));
  651. ut_assertnonnull(back);
  652. ut_asserteq(-ENOENT, uclass_find_device_by_phandle(UCLASS_REGULATOR,
  653. back, "missing", &dev));
  654. ut_assertok(uclass_find_device_by_phandle(UCLASS_REGULATOR, back,
  655. "power-supply", &dev));
  656. ut_assertnonnull(dev);
  657. ut_asserteq(0, device_active(dev));
  658. ut_asserteq_str("ldo1", dev->name);
  659. ut_assertok(uclass_get_device_by_phandle(UCLASS_REGULATOR, back,
  660. "power-supply", &dev2));
  661. ut_asserteq_ptr(dev, dev2);
  662. return 0;
  663. }
  664. DM_TEST(dm_test_fdt_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  665. /* Test device_find_first_child_by_uclass() */
  666. static int dm_test_first_child(struct unit_test_state *uts)
  667. {
  668. struct udevice *i2c, *dev, *dev2;
  669. ut_assertok(uclass_first_device_err(UCLASS_I2C, &i2c));
  670. ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_RTC, &dev));
  671. ut_asserteq_str("rtc@43", dev->name);
  672. ut_assertok(device_find_child_by_name(i2c, "rtc@43", &dev2));
  673. ut_asserteq_ptr(dev, dev2);
  674. ut_assertok(device_find_child_by_name(i2c, "rtc@61", &dev2));
  675. ut_asserteq_str("rtc@61", dev2->name);
  676. ut_assertok(device_find_first_child_by_uclass(i2c, UCLASS_I2C_EEPROM,
  677. &dev));
  678. ut_asserteq_str("eeprom@2c", dev->name);
  679. ut_assertok(device_find_child_by_name(i2c, "eeprom@2c", &dev2));
  680. ut_asserteq_ptr(dev, dev2);
  681. ut_asserteq(-ENODEV, device_find_first_child_by_uclass(i2c,
  682. UCLASS_VIDEO, &dev));
  683. ut_asserteq(-ENODEV, device_find_child_by_name(i2c, "missing", &dev));
  684. return 0;
  685. }
  686. DM_TEST(dm_test_first_child, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  687. /* Test integer functions in dm_read_...() */
  688. static int dm_test_read_int(struct unit_test_state *uts)
  689. {
  690. struct udevice *dev;
  691. u8 val8;
  692. u16 val16;
  693. u32 val32;
  694. s32 sval;
  695. uint val;
  696. u64 val64;
  697. ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
  698. ut_asserteq_str("a-test", dev->name);
  699. ut_assertok(dev_read_u8(dev, "int8-value", &val8));
  700. ut_asserteq(0x12, val8);
  701. ut_asserteq(-EINVAL, dev_read_u8(dev, "missing", &val8));
  702. ut_asserteq(6, dev_read_u8_default(dev, "missing", 6));
  703. ut_asserteq(0x12, dev_read_u8_default(dev, "int8-value", 6));
  704. ut_assertok(dev_read_u16(dev, "int16-value", &val16));
  705. ut_asserteq(0x1234, val16);
  706. ut_asserteq(-EINVAL, dev_read_u16(dev, "missing", &val16));
  707. ut_asserteq(6, dev_read_u16_default(dev, "missing", 6));
  708. ut_asserteq(0x1234, dev_read_u16_default(dev, "int16-value", 6));
  709. ut_assertok(dev_read_u32(dev, "int-value", &val32));
  710. ut_asserteq(1234, val32);
  711. ut_asserteq(-EINVAL, dev_read_u32(dev, "missing", &val32));
  712. ut_asserteq(6, dev_read_u32_default(dev, "missing", 6));
  713. ut_asserteq(1234, dev_read_u32_default(dev, "int-value", 6));
  714. ut_asserteq(1234, val32);
  715. ut_asserteq(-EINVAL, dev_read_s32(dev, "missing", &sval));
  716. ut_asserteq(6, dev_read_s32_default(dev, "missing", 6));
  717. ut_asserteq(-1234, dev_read_s32_default(dev, "uint-value", 6));
  718. ut_assertok(dev_read_s32(dev, "uint-value", &sval));
  719. ut_asserteq(-1234, sval);
  720. val = 0;
  721. ut_asserteq(-EINVAL, dev_read_u32u(dev, "missing", &val));
  722. ut_assertok(dev_read_u32u(dev, "uint-value", &val));
  723. ut_asserteq(-1234, val);
  724. ut_assertok(dev_read_u64(dev, "int64-value", &val64));
  725. ut_asserteq_64(0x1111222233334444, val64);
  726. ut_asserteq_64(-EINVAL, dev_read_u64(dev, "missing", &val64));
  727. ut_asserteq_64(6, dev_read_u64_default(dev, "missing", 6));
  728. ut_asserteq_64(0x1111222233334444,
  729. dev_read_u64_default(dev, "int64-value", 6));
  730. return 0;
  731. }
  732. DM_TEST(dm_test_read_int, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  733. static int dm_test_read_int_index(struct unit_test_state *uts)
  734. {
  735. struct udevice *dev;
  736. u32 val32;
  737. ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
  738. ut_asserteq_str("a-test", dev->name);
  739. ut_asserteq(-EINVAL, dev_read_u32_index(dev, "missing", 0, &val32));
  740. ut_asserteq(19, dev_read_u32_index_default(dev, "missing", 0, 19));
  741. ut_assertok(dev_read_u32_index(dev, "int-array", 0, &val32));
  742. ut_asserteq(5678, val32);
  743. ut_assertok(dev_read_u32_index(dev, "int-array", 1, &val32));
  744. ut_asserteq(9123, val32);
  745. ut_assertok(dev_read_u32_index(dev, "int-array", 2, &val32));
  746. ut_asserteq(4567, val32);
  747. ut_asserteq(-EOVERFLOW, dev_read_u32_index(dev, "int-array", 3,
  748. &val32));
  749. ut_asserteq(5678, dev_read_u32_index_default(dev, "int-array", 0, 2));
  750. ut_asserteq(9123, dev_read_u32_index_default(dev, "int-array", 1, 2));
  751. ut_asserteq(4567, dev_read_u32_index_default(dev, "int-array", 2, 2));
  752. ut_asserteq(2, dev_read_u32_index_default(dev, "int-array", 3, 2));
  753. return 0;
  754. }
  755. DM_TEST(dm_test_read_int_index, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  756. static int dm_test_read_phandle(struct unit_test_state *uts)
  757. {
  758. struct udevice *dev;
  759. struct ofnode_phandle_args args;
  760. int ret;
  761. const char prop[] = "test-gpios";
  762. const char cell[] = "#gpio-cells";
  763. const char prop2[] = "phandle-value";
  764. ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
  765. ut_asserteq_str("a-test", dev->name);
  766. /* Test dev_count_phandle_with_args with cell name */
  767. ret = dev_count_phandle_with_args(dev, "missing", cell, 0);
  768. ut_asserteq(-ENOENT, ret);
  769. ret = dev_count_phandle_with_args(dev, prop, "#invalid", 0);
  770. ut_asserteq(-EINVAL, ret);
  771. ut_asserteq(5, dev_count_phandle_with_args(dev, prop, cell, 0));
  772. /* Test dev_read_phandle_with_args with cell name */
  773. ret = dev_read_phandle_with_args(dev, "missing", cell, 0, 0, &args);
  774. ut_asserteq(-ENOENT, ret);
  775. ret = dev_read_phandle_with_args(dev, prop, "#invalid", 0, 0, &args);
  776. ut_asserteq(-EINVAL, ret);
  777. ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 0, &args));
  778. ut_asserteq(1, args.args_count);
  779. ut_asserteq(1, args.args[0]);
  780. ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 1, &args));
  781. ut_asserteq(1, args.args_count);
  782. ut_asserteq(4, args.args[0]);
  783. ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 2, &args));
  784. ut_asserteq(5, args.args_count);
  785. ut_asserteq(5, args.args[0]);
  786. ut_asserteq(1, args.args[4]);
  787. ret = dev_read_phandle_with_args(dev, prop, cell, 0, 3, &args);
  788. ut_asserteq(-ENOENT, ret);
  789. ut_assertok(dev_read_phandle_with_args(dev, prop, cell, 0, 4, &args));
  790. ut_asserteq(1, args.args_count);
  791. ut_asserteq(12, args.args[0]);
  792. ret = dev_read_phandle_with_args(dev, prop, cell, 0, 5, &args);
  793. ut_asserteq(-ENOENT, ret);
  794. /* Test dev_count_phandle_with_args with cell count */
  795. ret = dev_count_phandle_with_args(dev, "missing", NULL, 2);
  796. ut_asserteq(-ENOENT, ret);
  797. ut_asserteq(3, dev_count_phandle_with_args(dev, prop2, NULL, 1));
  798. /* Test dev_read_phandle_with_args with cell count */
  799. ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 0, &args));
  800. ut_asserteq(1, ofnode_valid(args.node));
  801. ut_asserteq(1, args.args_count);
  802. ut_asserteq(10, args.args[0]);
  803. ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 1, &args);
  804. ut_asserteq(-EINVAL, ret);
  805. ut_assertok(dev_read_phandle_with_args(dev, prop2, NULL, 1, 2, &args));
  806. ut_asserteq(1, ofnode_valid(args.node));
  807. ut_asserteq(1, args.args_count);
  808. ut_asserteq(30, args.args[0]);
  809. ret = dev_read_phandle_with_args(dev, prop2, NULL, 1, 3, &args);
  810. ut_asserteq(-ENOENT, ret);
  811. return 0;
  812. }
  813. DM_TEST(dm_test_read_phandle, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  814. /* Test iteration through devices by drvdata */
  815. static int dm_test_uclass_drvdata(struct unit_test_state *uts)
  816. {
  817. struct udevice *dev;
  818. ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT,
  819. DM_TEST_TYPE_FIRST, &dev));
  820. ut_asserteq_str("a-test", dev->name);
  821. ut_assertok(uclass_first_device_drvdata(UCLASS_TEST_FDT,
  822. DM_TEST_TYPE_SECOND, &dev));
  823. ut_asserteq_str("d-test", dev->name);
  824. ut_asserteq(-ENODEV, uclass_first_device_drvdata(UCLASS_TEST_FDT,
  825. DM_TEST_TYPE_COUNT,
  826. &dev));
  827. return 0;
  828. }
  829. DM_TEST(dm_test_uclass_drvdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  830. /* Test device_first_child_ofdata_err(), etc. */
  831. static int dm_test_child_ofdata(struct unit_test_state *uts)
  832. {
  833. struct udevice *bus, *dev;
  834. int count;
  835. ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus));
  836. count = 0;
  837. device_foreach_child_of_to_plat(dev, bus) {
  838. ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID);
  839. ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
  840. count++;
  841. }
  842. ut_asserteq(3, count);
  843. return 0;
  844. }
  845. DM_TEST(dm_test_child_ofdata, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  846. /* Test device_first_child_err(), etc. */
  847. static int dm_test_first_child_probe(struct unit_test_state *uts)
  848. {
  849. struct udevice *bus, *dev;
  850. int count;
  851. ut_assertok(uclass_first_device_err(UCLASS_TEST_BUS, &bus));
  852. count = 0;
  853. device_foreach_child_probe(dev, bus) {
  854. ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID);
  855. ut_assert(dev_get_flags(dev) & DM_FLAG_ACTIVATED);
  856. count++;
  857. }
  858. ut_asserteq(3, count);
  859. return 0;
  860. }
  861. DM_TEST(dm_test_first_child_probe, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  862. /* Test that ofdata is read for parents before children */
  863. static int dm_test_ofdata_order(struct unit_test_state *uts)
  864. {
  865. struct udevice *bus, *dev;
  866. ut_assertok(uclass_find_first_device(UCLASS_I2C, &bus));
  867. ut_assertnonnull(bus);
  868. ut_assert(!(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID));
  869. ut_assertok(device_find_first_child(bus, &dev));
  870. ut_assertnonnull(dev);
  871. ut_assert(!(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID));
  872. /* read the child's ofdata which should cause the parent's to be read */
  873. ut_assertok(device_of_to_plat(dev));
  874. ut_assert(dev_get_flags(dev) & DM_FLAG_PLATDATA_VALID);
  875. ut_assert(dev_get_flags(bus) & DM_FLAG_PLATDATA_VALID);
  876. ut_assert(!(dev_get_flags(dev) & DM_FLAG_ACTIVATED));
  877. ut_assert(!(dev_get_flags(bus) & DM_FLAG_ACTIVATED));
  878. return 0;
  879. }
  880. DM_TEST(dm_test_ofdata_order, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  881. /* Test dev_decode_display_timing() */
  882. static int dm_test_decode_display_timing(struct unit_test_state *uts)
  883. {
  884. struct udevice *dev;
  885. struct display_timing timing;
  886. ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
  887. ut_asserteq_str("a-test", dev->name);
  888. ut_assertok(dev_decode_display_timing(dev, 0, &timing));
  889. ut_assert(timing.hactive.typ == 240);
  890. ut_assert(timing.hback_porch.typ == 7);
  891. ut_assert(timing.hfront_porch.typ == 6);
  892. ut_assert(timing.hsync_len.typ == 1);
  893. ut_assert(timing.vactive.typ == 320);
  894. ut_assert(timing.vback_porch.typ == 5);
  895. ut_assert(timing.vfront_porch.typ == 8);
  896. ut_assert(timing.vsync_len.typ == 2);
  897. ut_assert(timing.pixelclock.typ == 6500000);
  898. ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH);
  899. ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW));
  900. ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH));
  901. ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_LOW);
  902. ut_assert(timing.flags & DISPLAY_FLAGS_DE_HIGH);
  903. ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW));
  904. ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE);
  905. ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE));
  906. ut_assert(timing.flags & DISPLAY_FLAGS_INTERLACED);
  907. ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLESCAN);
  908. ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLECLK);
  909. ut_assertok(dev_decode_display_timing(dev, 1, &timing));
  910. ut_assert(timing.hactive.typ == 480);
  911. ut_assert(timing.hback_porch.typ == 59);
  912. ut_assert(timing.hfront_porch.typ == 10);
  913. ut_assert(timing.hsync_len.typ == 12);
  914. ut_assert(timing.vactive.typ == 800);
  915. ut_assert(timing.vback_porch.typ == 15);
  916. ut_assert(timing.vfront_porch.typ == 17);
  917. ut_assert(timing.vsync_len.typ == 16);
  918. ut_assert(timing.pixelclock.typ == 9000000);
  919. ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH));
  920. ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_LOW);
  921. ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH);
  922. ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW));
  923. ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH));
  924. ut_assert(timing.flags & DISPLAY_FLAGS_DE_LOW);
  925. ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE));
  926. ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE);
  927. ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED));
  928. ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN));
  929. ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK));
  930. ut_assertok(dev_decode_display_timing(dev, 2, &timing));
  931. ut_assert(timing.hactive.typ == 800);
  932. ut_assert(timing.hback_porch.typ == 89);
  933. ut_assert(timing.hfront_porch.typ == 164);
  934. ut_assert(timing.hsync_len.typ == 11);
  935. ut_assert(timing.vactive.typ == 480);
  936. ut_assert(timing.vback_porch.typ == 23);
  937. ut_assert(timing.vfront_porch.typ == 10);
  938. ut_assert(timing.vsync_len.typ == 13);
  939. ut_assert(timing.pixelclock.typ == 33500000);
  940. ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH));
  941. ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW));
  942. ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH));
  943. ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_LOW));
  944. ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_HIGH));
  945. ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW));
  946. ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE));
  947. ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE));
  948. ut_assert(!(timing.flags & DISPLAY_FLAGS_INTERLACED));
  949. ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLESCAN));
  950. ut_assert(!(timing.flags & DISPLAY_FLAGS_DOUBLECLK));
  951. ut_assert(dev_decode_display_timing(dev, 3, &timing));
  952. return 0;
  953. }
  954. DM_TEST(dm_test_decode_display_timing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  955. /* Test dev_decode_panel_timing() */
  956. static int dm_test_decode_panel_timing(struct unit_test_state *uts)
  957. {
  958. struct udevice *dev;
  959. struct display_timing timing;
  960. ut_assertok(uclass_first_device_err(UCLASS_TEST_FDT, &dev));
  961. ut_asserteq_str("a-test", dev->name);
  962. ut_assertok(dev_decode_panel_timing(dev, &timing));
  963. ut_assert(timing.hactive.typ == 240);
  964. ut_assert(timing.hback_porch.typ == 7);
  965. ut_assert(timing.hfront_porch.typ == 6);
  966. ut_assert(timing.hsync_len.typ == 1);
  967. ut_assert(timing.vactive.typ == 320);
  968. ut_assert(timing.vback_porch.typ == 5);
  969. ut_assert(timing.vfront_porch.typ == 8);
  970. ut_assert(timing.vsync_len.typ == 2);
  971. ut_assert(timing.pixelclock.typ == 6500000);
  972. ut_assert(timing.flags & DISPLAY_FLAGS_HSYNC_HIGH);
  973. ut_assert(!(timing.flags & DISPLAY_FLAGS_HSYNC_LOW));
  974. ut_assert(!(timing.flags & DISPLAY_FLAGS_VSYNC_HIGH));
  975. ut_assert(timing.flags & DISPLAY_FLAGS_VSYNC_LOW);
  976. ut_assert(timing.flags & DISPLAY_FLAGS_DE_HIGH);
  977. ut_assert(!(timing.flags & DISPLAY_FLAGS_DE_LOW));
  978. ut_assert(timing.flags & DISPLAY_FLAGS_PIXDATA_POSEDGE);
  979. ut_assert(!(timing.flags & DISPLAY_FLAGS_PIXDATA_NEGEDGE));
  980. ut_assert(timing.flags & DISPLAY_FLAGS_INTERLACED);
  981. ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLESCAN);
  982. ut_assert(timing.flags & DISPLAY_FLAGS_DOUBLECLK);
  983. return 0;
  984. }
  985. DM_TEST(dm_test_decode_panel_timing, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);
  986. /* Test read_resourcee() */
  987. static int dm_test_read_resource(struct unit_test_state *uts)
  988. {
  989. struct udevice *dev;
  990. struct resource res;
  991. /* test resource without translation */
  992. ut_assertok(uclass_find_device_by_name(UCLASS_SIMPLE_BUS, "syscon@2", &dev));
  993. ut_assertok(dev_read_resource(dev, 0, &res));
  994. ut_asserteq(0x40, res.start);
  995. ut_asserteq(0x44, res.end);
  996. ut_assertok(dev_read_resource(dev, 1, &res));
  997. ut_asserteq(0x48, res.start);
  998. ut_asserteq(0x4d, res.end);
  999. /* test resource with translation */
  1000. ut_assertok(uclass_find_device_by_name(UCLASS_TEST_DUMMY, "dev@1,100", &dev));
  1001. ut_assertok(dev_read_resource(dev, 0, &res));
  1002. ut_asserteq(0x9000, res.start);
  1003. ut_asserteq(0x9fff, res.end);
  1004. /* test named resource */
  1005. ut_assertok(uclass_find_device_by_name(UCLASS_TEST_DUMMY, "dev@0,0", &dev));
  1006. ut_assertok(dev_read_resource_byname(dev, "sandbox-dummy-0", &res));
  1007. ut_asserteq(0x8000, res.start);
  1008. ut_asserteq(0x8fff, res.end);
  1009. return 0;
  1010. }
  1011. DM_TEST(dm_test_read_resource, UT_TESTF_SCAN_PDATA | UT_TESTF_SCAN_FDT);