| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546 |
- .. SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
- ====================
- BPF LLVM Relocations
- ====================
- This document describes LLVM BPF backend relocation types.
- Relocation Record
- =================
- LLVM BPF backend records each relocation with the following 16-byte
- ELF structure::
- typedef struct
- {
- Elf64_Addr r_offset; // Offset from the beginning of section.
- Elf64_Xword r_info; // Relocation type and symbol index.
- } Elf64_Rel;
- For example, for the following code::
- int g1 __attribute__((section("sec")));
- int g2 __attribute__((section("sec")));
- static volatile int l1 __attribute__((section("sec")));
- static volatile int l2 __attribute__((section("sec")));
- int test() {
- return g1 + g2 + l1 + l2;
- }
- Compiled with ``clang --target=bpf -O2 -c test.c``, the following is
- the code with ``llvm-objdump -dr test.o``::
- 0: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
- 0000000000000000: R_BPF_64_64 g1
- 2: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
- 3: 18 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r2 = 0 ll
- 0000000000000018: R_BPF_64_64 g2
- 5: 61 20 00 00 00 00 00 00 r0 = *(u32 *)(r2 + 0)
- 6: 0f 10 00 00 00 00 00 00 r0 += r1
- 7: 18 01 00 00 08 00 00 00 00 00 00 00 00 00 00 00 r1 = 8 ll
- 0000000000000038: R_BPF_64_64 sec
- 9: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
- 10: 0f 10 00 00 00 00 00 00 r0 += r1
- 11: 18 01 00 00 0c 00 00 00 00 00 00 00 00 00 00 00 r1 = 12 ll
- 0000000000000058: R_BPF_64_64 sec
- 13: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
- 14: 0f 10 00 00 00 00 00 00 r0 += r1
- 15: 95 00 00 00 00 00 00 00 exit
- There are four relocations in the above for four ``LD_imm64`` instructions.
- The following ``llvm-readelf -r test.o`` shows the binary values of the four
- relocations::
- Relocation section '.rel.text' at offset 0x190 contains 4 entries:
- Offset Info Type Symbol's Value Symbol's Name
- 0000000000000000 0000000600000001 R_BPF_64_64 0000000000000000 g1
- 0000000000000018 0000000700000001 R_BPF_64_64 0000000000000004 g2
- 0000000000000038 0000000400000001 R_BPF_64_64 0000000000000000 sec
- 0000000000000058 0000000400000001 R_BPF_64_64 0000000000000000 sec
- Each relocation is represented by ``Offset`` (8 bytes) and ``Info`` (8 bytes).
- For example, the first relocation corresponds to the first instruction
- (Offset 0x0) and the corresponding ``Info`` indicates the relocation type
- of ``R_BPF_64_64`` (type 1) and the entry in the symbol table (entry 6).
- The following is the symbol table with ``llvm-readelf -s test.o``::
- Symbol table '.symtab' contains 8 entries:
- Num: Value Size Type Bind Vis Ndx Name
- 0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
- 1: 0000000000000000 0 FILE LOCAL DEFAULT ABS test.c
- 2: 0000000000000008 4 OBJECT LOCAL DEFAULT 4 l1
- 3: 000000000000000c 4 OBJECT LOCAL DEFAULT 4 l2
- 4: 0000000000000000 0 SECTION LOCAL DEFAULT 4 sec
- 5: 0000000000000000 128 FUNC GLOBAL DEFAULT 2 test
- 6: 0000000000000000 4 OBJECT GLOBAL DEFAULT 4 g1
- 7: 0000000000000004 4 OBJECT GLOBAL DEFAULT 4 g2
- The 6th entry is global variable ``g1`` with value 0.
- Similarly, the second relocation is at ``.text`` offset ``0x18``, instruction 3,
- has a type of ``R_BPF_64_64`` and refers to entry 7 in the symbol table.
- The second relocation resolves to global variable ``g2`` which has a symbol
- value 4. The symbol value represents the offset from the start of ``.data``
- section where the initial value of the global variable ``g2`` is stored.
- The third and fourth relocations refer to static variables ``l1``
- and ``l2``. From the ``.rel.text`` section above, it is not clear
- to which symbols they really refer as they both refer to
- symbol table entry 4, symbol ``sec``, which has ``STT_SECTION`` type
- and represents a section. So for a static variable or function,
- the section offset is written to the original insn
- buffer, which is called ``A`` (addend). Looking at
- above insn ``7`` and ``11``, they have section offset ``8`` and ``12``.
- From symbol table, we can find that they correspond to entries ``2``
- and ``3`` for ``l1`` and ``l2``.
- In general, the ``A`` is 0 for global variables and functions,
- and is the section offset or some computation result based on
- section offset for static variables/functions. The non-section-offset
- case refers to function calls. See below for more details.
- Different Relocation Types
- ==========================
- Six relocation types are supported. The following is an overview and
- ``S`` represents the value of the symbol in the symbol table::
- Enum ELF Reloc Type Description BitSize Offset Calculation
- 0 R_BPF_NONE None
- 1 R_BPF_64_64 ld_imm64 insn 32 r_offset + 4 S + A
- 2 R_BPF_64_ABS64 normal data 64 r_offset S + A
- 3 R_BPF_64_ABS32 normal data 32 r_offset S + A
- 4 R_BPF_64_NODYLD32 .BTF[.ext] data 32 r_offset S + A
- 10 R_BPF_64_32 call insn 32 r_offset + 4 (S + A) / 8 - 1
- For example, ``R_BPF_64_64`` relocation type is used for ``ld_imm64`` instruction.
- The actual to-be-relocated data (0 or section offset)
- is stored at ``r_offset + 4`` and the read/write
- data bitsize is 32 (4 bytes). The relocation can be resolved with
- the symbol value plus implicit addend. Note that the ``BitSize`` is 32 which
- means the section offset must be less than or equal to ``UINT32_MAX`` and this
- is enforced by LLVM BPF backend.
- In another case, ``R_BPF_64_ABS64`` relocation type is used for normal 64-bit data.
- The actual to-be-relocated data is stored at ``r_offset`` and the read/write data
- bitsize is 64 (8 bytes). The relocation can be resolved with
- the symbol value plus implicit addend.
- Both ``R_BPF_64_ABS32`` and ``R_BPF_64_NODYLD32`` types are for 32-bit data.
- But ``R_BPF_64_NODYLD32`` specifically refers to relocations in ``.BTF`` and
- ``.BTF.ext`` sections. For cases like bcc where llvm ``ExecutionEngine RuntimeDyld``
- is involved, ``R_BPF_64_NODYLD32`` types of relocations should not be resolved
- to actual function/variable address. Otherwise, ``.BTF`` and ``.BTF.ext``
- become unusable by bcc and kernel.
- Type ``R_BPF_64_32`` is used for call instruction. The call target section
- offset is stored at ``r_offset + 4`` (32bit) and calculated as
- ``(S + A) / 8 - 1``.
- Examples
- ========
- Types ``R_BPF_64_64`` and ``R_BPF_64_32`` are used to resolve ``ld_imm64``
- and ``call`` instructions. For example::
- __attribute__((noinline)) __attribute__((section("sec1")))
- int gfunc(int a, int b) {
- return a * b;
- }
- static __attribute__((noinline)) __attribute__((section("sec1")))
- int lfunc(int a, int b) {
- return a + b;
- }
- int global __attribute__((section("sec2")));
- int test(int a, int b) {
- return gfunc(a, b) + lfunc(a, b) + global;
- }
- Compiled with ``clang --target=bpf -O2 -c test.c``, we will have
- following code with `llvm-objdump -dr test.o``::
- Disassembly of section .text:
- 0000000000000000 <test>:
- 0: bf 26 00 00 00 00 00 00 r6 = r2
- 1: bf 17 00 00 00 00 00 00 r7 = r1
- 2: 85 10 00 00 ff ff ff ff call -1
- 0000000000000010: R_BPF_64_32 gfunc
- 3: bf 08 00 00 00 00 00 00 r8 = r0
- 4: bf 71 00 00 00 00 00 00 r1 = r7
- 5: bf 62 00 00 00 00 00 00 r2 = r6
- 6: 85 10 00 00 02 00 00 00 call 2
- 0000000000000030: R_BPF_64_32 sec1
- 7: 0f 80 00 00 00 00 00 00 r0 += r8
- 8: 18 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 r1 = 0 ll
- 0000000000000040: R_BPF_64_64 global
- 10: 61 11 00 00 00 00 00 00 r1 = *(u32 *)(r1 + 0)
- 11: 0f 10 00 00 00 00 00 00 r0 += r1
- 12: 95 00 00 00 00 00 00 00 exit
- Disassembly of section sec1:
- 0000000000000000 <gfunc>:
- 0: bf 20 00 00 00 00 00 00 r0 = r2
- 1: 2f 10 00 00 00 00 00 00 r0 *= r1
- 2: 95 00 00 00 00 00 00 00 exit
- 0000000000000018 <lfunc>:
- 3: bf 20 00 00 00 00 00 00 r0 = r2
- 4: 0f 10 00 00 00 00 00 00 r0 += r1
- 5: 95 00 00 00 00 00 00 00 exit
- The first relocation corresponds to ``gfunc(a, b)`` where ``gfunc`` has a value of 0,
- so the ``call`` instruction offset is ``(0 + 0)/8 - 1 = -1``.
- The second relocation corresponds to ``lfunc(a, b)`` where ``lfunc`` has a section
- offset ``0x18``, so the ``call`` instruction offset is ``(0 + 0x18)/8 - 1 = 2``.
- The third relocation corresponds to ld_imm64 of ``global``, which has a section
- offset ``0``.
- The following is an example to show how R_BPF_64_ABS64 could be generated::
- int global() { return 0; }
- struct t { void *g; } gbl = { global };
- Compiled with ``clang --target=bpf -O2 -g -c test.c``, we will see a
- relocation below in ``.data`` section with command
- ``llvm-readelf -r test.o``::
- Relocation section '.rel.data' at offset 0x458 contains 1 entries:
- Offset Info Type Symbol's Value Symbol's Name
- 0000000000000000 0000000700000002 R_BPF_64_ABS64 0000000000000000 global
- The relocation says the first 8-byte of ``.data`` section should be
- filled with address of ``global`` variable.
- With ``llvm-readelf`` output, we can see that dwarf sections have a bunch of
- ``R_BPF_64_ABS32`` and ``R_BPF_64_ABS64`` relocations::
- Relocation section '.rel.debug_info' at offset 0x468 contains 13 entries:
- Offset Info Type Symbol's Value Symbol's Name
- 0000000000000006 0000000300000003 R_BPF_64_ABS32 0000000000000000 .debug_abbrev
- 000000000000000c 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
- 0000000000000012 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
- 0000000000000016 0000000600000003 R_BPF_64_ABS32 0000000000000000 .debug_line
- 000000000000001a 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
- 000000000000001e 0000000200000002 R_BPF_64_ABS64 0000000000000000 .text
- 000000000000002b 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
- 0000000000000037 0000000800000002 R_BPF_64_ABS64 0000000000000000 gbl
- 0000000000000040 0000000400000003 R_BPF_64_ABS32 0000000000000000 .debug_str
- ......
- The .BTF/.BTF.ext sections has R_BPF_64_NODYLD32 relocations::
- Relocation section '.rel.BTF' at offset 0x538 contains 1 entries:
- Offset Info Type Symbol's Value Symbol's Name
- 0000000000000084 0000000800000004 R_BPF_64_NODYLD32 0000000000000000 gbl
- Relocation section '.rel.BTF.ext' at offset 0x548 contains 2 entries:
- Offset Info Type Symbol's Value Symbol's Name
- 000000000000002c 0000000200000004 R_BPF_64_NODYLD32 0000000000000000 .text
- 0000000000000040 0000000200000004 R_BPF_64_NODYLD32 0000000000000000 .text
- .. _btf-co-re-relocations:
- =================
- CO-RE Relocations
- =================
- From object file point of view CO-RE mechanism is implemented as a set
- of CO-RE specific relocation records. These relocation records are not
- related to ELF relocations and are encoded in .BTF.ext section.
- See :ref:`Documentation/bpf/btf.rst <BTF_Ext_Section>` for more
- information on .BTF.ext structure.
- CO-RE relocations are applied to BPF instructions to update immediate
- or offset fields of the instruction at load time with information
- relevant for target kernel.
- Field to patch is selected basing on the instruction class:
- * For BPF_ALU, BPF_ALU64, BPF_LD `immediate` field is patched;
- * For BPF_LDX, BPF_STX, BPF_ST `offset` field is patched;
- * BPF_JMP, BPF_JMP32 instructions **should not** be patched.
- Relocation kinds
- ================
- There are several kinds of CO-RE relocations that could be split in
- three groups:
- * Field-based - patch instruction with field related information, e.g.
- change offset field of the BPF_LDX instruction to reflect offset
- of a specific structure field in the target kernel.
- * Type-based - patch instruction with type related information, e.g.
- change immediate field of the BPF_ALU move instruction to 0 or 1 to
- reflect if specific type is present in the target kernel.
- * Enum-based - patch instruction with enum related information, e.g.
- change immediate field of the BPF_LD_IMM64 instruction to reflect
- value of a specific enum literal in the target kernel.
- The complete list of relocation kinds is represented by the following enum:
- .. code-block:: c
- enum bpf_core_relo_kind {
- BPF_CORE_FIELD_BYTE_OFFSET = 0, /* field byte offset */
- BPF_CORE_FIELD_BYTE_SIZE = 1, /* field size in bytes */
- BPF_CORE_FIELD_EXISTS = 2, /* field existence in target kernel */
- BPF_CORE_FIELD_SIGNED = 3, /* field signedness (0 - unsigned, 1 - signed) */
- BPF_CORE_FIELD_LSHIFT_U64 = 4, /* bitfield-specific left bitshift */
- BPF_CORE_FIELD_RSHIFT_U64 = 5, /* bitfield-specific right bitshift */
- BPF_CORE_TYPE_ID_LOCAL = 6, /* type ID in local BPF object */
- BPF_CORE_TYPE_ID_TARGET = 7, /* type ID in target kernel */
- BPF_CORE_TYPE_EXISTS = 8, /* type existence in target kernel */
- BPF_CORE_TYPE_SIZE = 9, /* type size in bytes */
- BPF_CORE_ENUMVAL_EXISTS = 10, /* enum value existence in target kernel */
- BPF_CORE_ENUMVAL_VALUE = 11, /* enum value integer value */
- BPF_CORE_TYPE_MATCHES = 12, /* type match in target kernel */
- };
- Notes:
- * ``BPF_CORE_FIELD_LSHIFT_U64`` and ``BPF_CORE_FIELD_RSHIFT_U64`` are
- supposed to be used to read bitfield values using the following
- algorithm:
- .. code-block:: c
- // To read bitfield ``f`` from ``struct s``
- is_signed = relo(s->f, BPF_CORE_FIELD_SIGNED)
- off = relo(s->f, BPF_CORE_FIELD_BYTE_OFFSET)
- sz = relo(s->f, BPF_CORE_FIELD_BYTE_SIZE)
- l = relo(s->f, BPF_CORE_FIELD_LSHIFT_U64)
- r = relo(s->f, BPF_CORE_FIELD_RSHIFT_U64)
- // define ``v`` as signed or unsigned integer of size ``sz``
- v = *({s|u}<sz> *)((void *)s + off)
- v <<= l
- v >>= r
- * The ``BPF_CORE_TYPE_MATCHES`` queries matching relation, defined as
- follows:
- * for integers: types match if size and signedness match;
- * for arrays & pointers: target types are recursively matched;
- * for structs & unions:
- * local members need to exist in target with the same name;
- * for each member we recursively check match unless it is already behind a
- pointer, in which case we only check matching names and compatible kind;
- * for enums:
- * local variants have to have a match in target by symbolic name (but not
- numeric value);
- * size has to match (but enum may match enum64 and vice versa);
- * for function pointers:
- * number and position of arguments in local type has to match target;
- * for each argument and the return value we recursively check match.
- CO-RE Relocation Record
- =======================
- Relocation record is encoded as the following structure:
- .. code-block:: c
- struct bpf_core_relo {
- __u32 insn_off;
- __u32 type_id;
- __u32 access_str_off;
- enum bpf_core_relo_kind kind;
- };
- * ``insn_off`` - instruction offset (in bytes) within a code section
- associated with this relocation;
- * ``type_id`` - BTF type ID of the "root" (containing) entity of a
- relocatable type or field;
- * ``access_str_off`` - offset into corresponding .BTF string section.
- String interpretation depends on specific relocation kind:
- * for field-based relocations, string encodes an accessed field using
- a sequence of field and array indices, separated by colon (:). It's
- conceptually very close to LLVM's `getelementptr <GEP_>`_ instruction's
- arguments for identifying offset to a field. For example, consider the
- following C code:
- .. code-block:: c
- struct sample {
- int a;
- int b;
- struct { int c[10]; };
- } __attribute__((preserve_access_index));
- struct sample *s;
- * Access to ``s[0].a`` would be encoded as ``0:0``:
- * ``0``: first element of ``s`` (as if ``s`` is an array);
- * ``0``: index of field ``a`` in ``struct sample``.
- * Access to ``s->a`` would be encoded as ``0:0`` as well.
- * Access to ``s->b`` would be encoded as ``0:1``:
- * ``0``: first element of ``s``;
- * ``1``: index of field ``b`` in ``struct sample``.
- * Access to ``s[1].c[5]`` would be encoded as ``1:2:0:5``:
- * ``1``: second element of ``s``;
- * ``2``: index of anonymous structure field in ``struct sample``;
- * ``0``: index of field ``c`` in anonymous structure;
- * ``5``: access to array element #5.
- * for type-based relocations, string is expected to be just "0";
- * for enum value-based relocations, string contains an index of enum
- value within its enum type;
- * ``kind`` - one of ``enum bpf_core_relo_kind``.
- .. _GEP: https://llvm.org/docs/LangRef.html#getelementptr-instruction
- .. _btf_co_re_relocation_examples:
- CO-RE Relocation Examples
- =========================
- For the following C code:
- .. code-block:: c
- struct foo {
- int a;
- int b;
- unsigned c:15;
- } __attribute__((preserve_access_index));
- enum bar { U, V };
- With the following BTF definitions:
- .. code-block::
- ...
- [2] STRUCT 'foo' size=8 vlen=2
- 'a' type_id=3 bits_offset=0
- 'b' type_id=3 bits_offset=32
- 'c' type_id=4 bits_offset=64 bitfield_size=15
- [3] INT 'int' size=4 bits_offset=0 nr_bits=32 encoding=SIGNED
- [4] INT 'unsigned int' size=4 bits_offset=0 nr_bits=32 encoding=(none)
- ...
- [16] ENUM 'bar' encoding=UNSIGNED size=4 vlen=2
- 'U' val=0
- 'V' val=1
- Field offset relocations are generated automatically when
- ``__attribute__((preserve_access_index))`` is used, for example:
- .. code-block:: c
- void alpha(struct foo *s, volatile unsigned long *g) {
- *g = s->a;
- s->a = 1;
- }
- 00 <alpha>:
- 0: r3 = *(s32 *)(r1 + 0x0)
- 00: CO-RE <byte_off> [2] struct foo::a (0:0)
- 1: *(u64 *)(r2 + 0x0) = r3
- 2: *(u32 *)(r1 + 0x0) = 0x1
- 10: CO-RE <byte_off> [2] struct foo::a (0:0)
- 3: exit
- All relocation kinds could be requested via built-in functions.
- E.g. field-based relocations:
- .. code-block:: c
- void bravo(struct foo *s, volatile unsigned long *g) {
- *g = __builtin_preserve_field_info(s->b, 0 /* field byte offset */);
- *g = __builtin_preserve_field_info(s->b, 1 /* field byte size */);
- *g = __builtin_preserve_field_info(s->b, 2 /* field existence */);
- *g = __builtin_preserve_field_info(s->b, 3 /* field signedness */);
- *g = __builtin_preserve_field_info(s->c, 4 /* bitfield left shift */);
- *g = __builtin_preserve_field_info(s->c, 5 /* bitfield right shift */);
- }
- 20 <bravo>:
- 4: r1 = 0x4
- 20: CO-RE <byte_off> [2] struct foo::b (0:1)
- 5: *(u64 *)(r2 + 0x0) = r1
- 6: r1 = 0x4
- 30: CO-RE <byte_sz> [2] struct foo::b (0:1)
- 7: *(u64 *)(r2 + 0x0) = r1
- 8: r1 = 0x1
- 40: CO-RE <field_exists> [2] struct foo::b (0:1)
- 9: *(u64 *)(r2 + 0x0) = r1
- 10: r1 = 0x1
- 50: CO-RE <signed> [2] struct foo::b (0:1)
- 11: *(u64 *)(r2 + 0x0) = r1
- 12: r1 = 0x31
- 60: CO-RE <lshift_u64> [2] struct foo::c (0:2)
- 13: *(u64 *)(r2 + 0x0) = r1
- 14: r1 = 0x31
- 70: CO-RE <rshift_u64> [2] struct foo::c (0:2)
- 15: *(u64 *)(r2 + 0x0) = r1
- 16: exit
- Type-based relocations:
- .. code-block:: c
- void charlie(struct foo *s, volatile unsigned long *g) {
- *g = __builtin_preserve_type_info(*s, 0 /* type existence */);
- *g = __builtin_preserve_type_info(*s, 1 /* type size */);
- *g = __builtin_preserve_type_info(*s, 2 /* type matches */);
- *g = __builtin_btf_type_id(*s, 0 /* type id in this object file */);
- *g = __builtin_btf_type_id(*s, 1 /* type id in target kernel */);
- }
- 88 <charlie>:
- 17: r1 = 0x1
- 88: CO-RE <type_exists> [2] struct foo
- 18: *(u64 *)(r2 + 0x0) = r1
- 19: r1 = 0xc
- 98: CO-RE <type_size> [2] struct foo
- 20: *(u64 *)(r2 + 0x0) = r1
- 21: r1 = 0x1
- a8: CO-RE <type_matches> [2] struct foo
- 22: *(u64 *)(r2 + 0x0) = r1
- 23: r1 = 0x2 ll
- b8: CO-RE <local_type_id> [2] struct foo
- 25: *(u64 *)(r2 + 0x0) = r1
- 26: r1 = 0x2 ll
- d0: CO-RE <target_type_id> [2] struct foo
- 28: *(u64 *)(r2 + 0x0) = r1
- 29: exit
- Enum-based relocations:
- .. code-block:: c
- void delta(struct foo *s, volatile unsigned long *g) {
- *g = __builtin_preserve_enum_value(*(enum bar *)U, 0 /* enum literal existence */);
- *g = __builtin_preserve_enum_value(*(enum bar *)V, 1 /* enum literal value */);
- }
- f0 <delta>:
- 30: r1 = 0x1 ll
- f0: CO-RE <enumval_exists> [16] enum bar::U = 0
- 32: *(u64 *)(r2 + 0x0) = r1
- 33: r1 = 0x1 ll
- 108: CO-RE <enumval_value> [16] enum bar::V = 1
- 35: *(u64 *)(r2 + 0x0) = r1
- 36: exit
|