| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259 |
- .. SPDX-License-Identifier: GPL-2.0-only
- .. Copyright (C) 2022 Red Hat, Inc.
- .. Copyright (C) 2022-2023 Isovalent, Inc.
- ===============================================
- BPF_MAP_TYPE_HASH, with PERCPU and LRU Variants
- ===============================================
- .. note::
- - ``BPF_MAP_TYPE_HASH`` was introduced in kernel version 3.19
- - ``BPF_MAP_TYPE_PERCPU_HASH`` was introduced in version 4.6
- - Both ``BPF_MAP_TYPE_LRU_HASH`` and ``BPF_MAP_TYPE_LRU_PERCPU_HASH``
- were introduced in version 4.10
- ``BPF_MAP_TYPE_HASH`` and ``BPF_MAP_TYPE_PERCPU_HASH`` provide general
- purpose hash map storage. Both the key and the value can be structs,
- allowing for composite keys and values.
- The kernel is responsible for allocating and freeing key/value pairs, up
- to the max_entries limit that you specify. Hash maps use pre-allocation
- of hash table elements by default. The ``BPF_F_NO_PREALLOC`` flag can be
- used to disable pre-allocation when it is too memory expensive.
- ``BPF_MAP_TYPE_PERCPU_HASH`` provides a separate value slot per
- CPU. The per-cpu values are stored internally in an array.
- The ``BPF_MAP_TYPE_LRU_HASH`` and ``BPF_MAP_TYPE_LRU_PERCPU_HASH``
- variants add LRU semantics to their respective hash tables. An LRU hash
- will automatically evict the least recently used entries when the hash
- table reaches capacity. An LRU hash maintains an internal LRU list that
- is used to select elements for eviction. This internal LRU list is
- shared across CPUs but it is possible to request a per CPU LRU list with
- the ``BPF_F_NO_COMMON_LRU`` flag when calling ``bpf_map_create``. The
- following table outlines the properties of LRU maps depending on the a
- map type and the flags used to create the map.
- ======================== ========================= ================================
- Flag ``BPF_MAP_TYPE_LRU_HASH`` ``BPF_MAP_TYPE_LRU_PERCPU_HASH``
- ======================== ========================= ================================
- **BPF_F_NO_COMMON_LRU** Per-CPU LRU, global map Per-CPU LRU, per-cpu map
- **!BPF_F_NO_COMMON_LRU** Global LRU, global map Global LRU, per-cpu map
- ======================== ========================= ================================
- Usage
- =====
- Kernel BPF
- ----------
- bpf_map_update_elem()
- ~~~~~~~~~~~~~~~~~~~~~
- .. code-block:: c
- long bpf_map_update_elem(struct bpf_map *map, const void *key, const void *value, u64 flags)
- Hash entries can be added or updated using the ``bpf_map_update_elem()``
- helper. This helper replaces existing elements atomically. The ``flags``
- parameter can be used to control the update behaviour:
- - ``BPF_ANY`` will create a new element or update an existing element
- - ``BPF_NOEXIST`` will create a new element only if one did not already
- exist
- - ``BPF_EXIST`` will update an existing element
- ``bpf_map_update_elem()`` returns 0 on success, or negative error in
- case of failure.
- bpf_map_lookup_elem()
- ~~~~~~~~~~~~~~~~~~~~~
- .. code-block:: c
- void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)
- Hash entries can be retrieved using the ``bpf_map_lookup_elem()``
- helper. This helper returns a pointer to the value associated with
- ``key``, or ``NULL`` if no entry was found.
- bpf_map_delete_elem()
- ~~~~~~~~~~~~~~~~~~~~~
- .. code-block:: c
- long bpf_map_delete_elem(struct bpf_map *map, const void *key)
- Hash entries can be deleted using the ``bpf_map_delete_elem()``
- helper. This helper will return 0 on success, or negative error in case
- of failure.
- Per CPU Hashes
- --------------
- For ``BPF_MAP_TYPE_PERCPU_HASH`` and ``BPF_MAP_TYPE_LRU_PERCPU_HASH``
- the ``bpf_map_update_elem()`` and ``bpf_map_lookup_elem()`` helpers
- automatically access the hash slot for the current CPU.
- bpf_map_lookup_percpu_elem()
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- .. code-block:: c
- void *bpf_map_lookup_percpu_elem(struct bpf_map *map, const void *key, u32 cpu)
- The ``bpf_map_lookup_percpu_elem()`` helper can be used to lookup the
- value in the hash slot for a specific CPU. Returns value associated with
- ``key`` on ``cpu`` , or ``NULL`` if no entry was found or ``cpu`` is
- invalid.
- Concurrency
- -----------
- Values stored in ``BPF_MAP_TYPE_HASH`` can be accessed concurrently by
- programs running on different CPUs. Since Kernel version 5.1, the BPF
- infrastructure provides ``struct bpf_spin_lock`` to synchronise access.
- See ``tools/testing/selftests/bpf/progs/test_spin_lock.c``.
- Userspace
- ---------
- bpf_map_get_next_key()
- ~~~~~~~~~~~~~~~~~~~~~~
- .. code-block:: c
- int bpf_map_get_next_key(int fd, const void *cur_key, void *next_key)
- In userspace, it is possible to iterate through the keys of a hash using
- libbpf's ``bpf_map_get_next_key()`` function. The first key can be fetched by
- calling ``bpf_map_get_next_key()`` with ``cur_key`` set to
- ``NULL``. Subsequent calls will fetch the next key that follows the
- current key. ``bpf_map_get_next_key()`` returns 0 on success, -ENOENT if
- cur_key is the last key in the hash, or negative error in case of
- failure.
- Note that if ``cur_key`` gets deleted then ``bpf_map_get_next_key()``
- will instead return the *first* key in the hash table which is
- undesirable. It is recommended to use batched lookup if there is going
- to be key deletion intermixed with ``bpf_map_get_next_key()``.
- Examples
- ========
- Please see the ``tools/testing/selftests/bpf`` directory for functional
- examples. The code snippets below demonstrates API usage.
- This example shows how to declare an LRU Hash with a struct key and a
- struct value.
- .. code-block:: c
- #include <linux/bpf.h>
- #include <bpf/bpf_helpers.h>
- struct key {
- __u32 srcip;
- };
- struct value {
- __u64 packets;
- __u64 bytes;
- };
- struct {
- __uint(type, BPF_MAP_TYPE_LRU_HASH);
- __uint(max_entries, 32);
- __type(key, struct key);
- __type(value, struct value);
- } packet_stats SEC(".maps");
- This example shows how to create or update hash values using atomic
- instructions:
- .. code-block:: c
- static void update_stats(__u32 srcip, int bytes)
- {
- struct key key = {
- .srcip = srcip,
- };
- struct value *value = bpf_map_lookup_elem(&packet_stats, &key);
- if (value) {
- __sync_fetch_and_add(&value->packets, 1);
- __sync_fetch_and_add(&value->bytes, bytes);
- } else {
- struct value newval = { 1, bytes };
- bpf_map_update_elem(&packet_stats, &key, &newval, BPF_NOEXIST);
- }
- }
- Userspace walking the map elements from the map declared above:
- .. code-block:: c
- #include <bpf/libbpf.h>
- #include <bpf/bpf.h>
- static void walk_hash_elements(int map_fd)
- {
- struct key *cur_key = NULL;
- struct key next_key;
- struct value value;
- int err;
- for (;;) {
- err = bpf_map_get_next_key(map_fd, cur_key, &next_key);
- if (err)
- break;
- bpf_map_lookup_elem(map_fd, &next_key, &value);
- // Use key and value here
- cur_key = &next_key;
- }
- }
- Internals
- =========
- This section of the document is targeted at Linux developers and describes
- aspects of the map implementations that are not considered stable ABI. The
- following details are subject to change in future versions of the kernel.
- ``BPF_MAP_TYPE_LRU_HASH`` and variants
- --------------------------------------
- Updating elements in LRU maps may trigger eviction behaviour when the capacity
- of the map is reached. There are various steps that the update algorithm
- attempts in order to enforce the LRU property which have increasing impacts on
- other CPUs involved in the following operation attempts:
- - Attempt to use CPU-local state to batch operations
- - Attempt to fetch free nodes from global lists
- - Attempt to pull any node from a global list and remove it from the hashmap
- - Attempt to pull any node from any CPU's list and remove it from the hashmap
- This algorithm is described visually in the following diagram. See the
- description in commit 3a08c2fd7634 ("bpf: LRU List") for a full explanation of
- the corresponding operations:
- .. kernel-figure:: map_lru_hash_update.dot
- :alt: Diagram outlining the LRU eviction steps taken during map update.
- LRU hash eviction during map update for ``BPF_MAP_TYPE_LRU_HASH`` and
- variants. See the dot file source for kernel function name code references.
- Map updates start from the oval in the top right "begin ``bpf_map_update()``"
- and progress through the graph towards the bottom where the result may be
- either a successful update or a failure with various error codes. The key in
- the top right provides indicators for which locks may be involved in specific
- operations. This is intended as a visual hint for reasoning about how map
- contention may impact update operations, though the map type and flags may
- impact the actual contention on those locks, based on the logic described in
- the table above. For instance, if the map is created with type
- ``BPF_MAP_TYPE_LRU_PERCPU_HASH`` and flags ``BPF_F_NO_COMMON_LRU`` then all map
- properties would be per-cpu.
|