va_layout.c 7.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) 2017 ARM Ltd.
  4. * Author: Marc Zyngier <marc.zyngier@arm.com>
  5. */
  6. #include <linux/kvm_host.h>
  7. #include <linux/random.h>
  8. #include <linux/memblock.h>
  9. #include <asm/alternative.h>
  10. #include <asm/debug-monitors.h>
  11. #include <asm/insn.h>
  12. #include <asm/kvm_mmu.h>
  13. #include <asm/memory.h>
  14. /*
  15. * The LSB of the HYP VA tag
  16. */
  17. static u8 tag_lsb;
  18. /*
  19. * The HYP VA tag value with the region bit
  20. */
  21. static u64 tag_val;
  22. static u64 va_mask;
  23. /*
  24. * Compute HYP VA by using the same computation as kern_hyp_va().
  25. */
  26. static u64 __early_kern_hyp_va(u64 addr)
  27. {
  28. addr &= va_mask;
  29. addr |= tag_val << tag_lsb;
  30. return addr;
  31. }
  32. /*
  33. * Store a hyp VA <-> PA offset into a EL2-owned variable.
  34. */
  35. static void init_hyp_physvirt_offset(void)
  36. {
  37. u64 kern_va, hyp_va;
  38. /* Compute the offset from the hyp VA and PA of a random symbol. */
  39. kern_va = (u64)lm_alias(__hyp_text_start);
  40. hyp_va = __early_kern_hyp_va(kern_va);
  41. hyp_physvirt_offset = (s64)__pa(kern_va) - (s64)hyp_va;
  42. }
  43. /*
  44. * We want to generate a hyp VA with the following format (with V ==
  45. * vabits_actual):
  46. *
  47. * 63 ... V | V-1 | V-2 .. tag_lsb | tag_lsb - 1 .. 0
  48. * ---------------------------------------------------------
  49. * | 0000000 | hyp_va_msb | random tag | kern linear VA |
  50. * |--------- tag_val -----------|----- va_mask ---|
  51. *
  52. * which does not conflict with the idmap regions.
  53. */
  54. __init void kvm_compute_layout(void)
  55. {
  56. phys_addr_t idmap_addr = __pa_symbol(__hyp_idmap_text_start);
  57. u64 hyp_va_msb;
  58. /* Where is my RAM region? */
  59. hyp_va_msb = idmap_addr & BIT(vabits_actual - 1);
  60. hyp_va_msb ^= BIT(vabits_actual - 1);
  61. tag_lsb = fls64((u64)phys_to_virt(memblock_start_of_DRAM()) ^
  62. (u64)(high_memory - 1));
  63. va_mask = GENMASK_ULL(tag_lsb - 1, 0);
  64. tag_val = hyp_va_msb;
  65. if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && tag_lsb != (vabits_actual - 1)) {
  66. /* We have some free bits to insert a random tag. */
  67. tag_val |= get_random_long() & GENMASK_ULL(vabits_actual - 2, tag_lsb);
  68. }
  69. tag_val >>= tag_lsb;
  70. init_hyp_physvirt_offset();
  71. }
  72. /*
  73. * The .hyp.reloc ELF section contains a list of kimg positions that
  74. * contains kimg VAs but will be accessed only in hyp execution context.
  75. * Convert them to hyp VAs. See gen-hyprel.c for more details.
  76. */
  77. __init void kvm_apply_hyp_relocations(void)
  78. {
  79. int32_t *rel;
  80. int32_t *begin = (int32_t *)__hyp_reloc_begin;
  81. int32_t *end = (int32_t *)__hyp_reloc_end;
  82. for (rel = begin; rel < end; ++rel) {
  83. uintptr_t *ptr, kimg_va;
  84. /*
  85. * Each entry contains a 32-bit relative offset from itself
  86. * to a kimg VA position.
  87. */
  88. ptr = (uintptr_t *)lm_alias((char *)rel + *rel);
  89. /* Read the kimg VA value at the relocation address. */
  90. kimg_va = *ptr;
  91. /* Convert to hyp VA and store back to the relocation address. */
  92. *ptr = __early_kern_hyp_va((uintptr_t)lm_alias(kimg_va));
  93. }
  94. }
  95. static u32 compute_instruction(int n, u32 rd, u32 rn)
  96. {
  97. u32 insn = AARCH64_BREAK_FAULT;
  98. switch (n) {
  99. case 0:
  100. insn = aarch64_insn_gen_logical_immediate(AARCH64_INSN_LOGIC_AND,
  101. AARCH64_INSN_VARIANT_64BIT,
  102. rn, rd, va_mask);
  103. break;
  104. case 1:
  105. /* ROR is a variant of EXTR with Rm = Rn */
  106. insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
  107. rn, rn, rd,
  108. tag_lsb);
  109. break;
  110. case 2:
  111. insn = aarch64_insn_gen_add_sub_imm(rd, rn,
  112. tag_val & GENMASK(11, 0),
  113. AARCH64_INSN_VARIANT_64BIT,
  114. AARCH64_INSN_ADSB_ADD);
  115. break;
  116. case 3:
  117. insn = aarch64_insn_gen_add_sub_imm(rd, rn,
  118. tag_val & GENMASK(23, 12),
  119. AARCH64_INSN_VARIANT_64BIT,
  120. AARCH64_INSN_ADSB_ADD);
  121. break;
  122. case 4:
  123. /* ROR is a variant of EXTR with Rm = Rn */
  124. insn = aarch64_insn_gen_extr(AARCH64_INSN_VARIANT_64BIT,
  125. rn, rn, rd, 64 - tag_lsb);
  126. break;
  127. }
  128. return insn;
  129. }
  130. void __init kvm_update_va_mask(struct alt_instr *alt,
  131. __le32 *origptr, __le32 *updptr, int nr_inst)
  132. {
  133. int i;
  134. BUG_ON(nr_inst != 5);
  135. for (i = 0; i < nr_inst; i++) {
  136. u32 rd, rn, insn, oinsn;
  137. /*
  138. * VHE doesn't need any address translation, let's NOP
  139. * everything.
  140. *
  141. * Alternatively, if the tag is zero (because the layout
  142. * dictates it and we don't have any spare bits in the
  143. * address), NOP everything after masking the kernel VA.
  144. */
  145. if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN) || (!tag_val && i > 0)) {
  146. updptr[i] = cpu_to_le32(aarch64_insn_gen_nop());
  147. continue;
  148. }
  149. oinsn = le32_to_cpu(origptr[i]);
  150. rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
  151. rn = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RN, oinsn);
  152. insn = compute_instruction(i, rd, rn);
  153. BUG_ON(insn == AARCH64_BREAK_FAULT);
  154. updptr[i] = cpu_to_le32(insn);
  155. }
  156. }
  157. void kvm_patch_vector_branch(struct alt_instr *alt,
  158. __le32 *origptr, __le32 *updptr, int nr_inst)
  159. {
  160. u64 addr;
  161. u32 insn;
  162. BUG_ON(nr_inst != 4);
  163. if (!cpus_have_cap(ARM64_SPECTRE_V3A) ||
  164. WARN_ON_ONCE(cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN)))
  165. return;
  166. /*
  167. * Compute HYP VA by using the same computation as kern_hyp_va()
  168. */
  169. addr = __early_kern_hyp_va((u64)kvm_ksym_ref(__kvm_hyp_vector));
  170. /* Use PC[10:7] to branch to the same vector in KVM */
  171. addr |= ((u64)origptr & GENMASK_ULL(10, 7));
  172. /*
  173. * Branch over the preamble in order to avoid the initial store on
  174. * the stack (which we already perform in the hardening vectors).
  175. */
  176. addr += KVM_VECTOR_PREAMBLE;
  177. /* movz x0, #(addr & 0xffff) */
  178. insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
  179. (u16)addr,
  180. 0,
  181. AARCH64_INSN_VARIANT_64BIT,
  182. AARCH64_INSN_MOVEWIDE_ZERO);
  183. *updptr++ = cpu_to_le32(insn);
  184. /* movk x0, #((addr >> 16) & 0xffff), lsl #16 */
  185. insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
  186. (u16)(addr >> 16),
  187. 16,
  188. AARCH64_INSN_VARIANT_64BIT,
  189. AARCH64_INSN_MOVEWIDE_KEEP);
  190. *updptr++ = cpu_to_le32(insn);
  191. /* movk x0, #((addr >> 32) & 0xffff), lsl #32 */
  192. insn = aarch64_insn_gen_movewide(AARCH64_INSN_REG_0,
  193. (u16)(addr >> 32),
  194. 32,
  195. AARCH64_INSN_VARIANT_64BIT,
  196. AARCH64_INSN_MOVEWIDE_KEEP);
  197. *updptr++ = cpu_to_le32(insn);
  198. /* br x0 */
  199. insn = aarch64_insn_gen_branch_reg(AARCH64_INSN_REG_0,
  200. AARCH64_INSN_BRANCH_NOLINK);
  201. *updptr++ = cpu_to_le32(insn);
  202. }
  203. static void generate_mov_q(u64 val, __le32 *origptr, __le32 *updptr, int nr_inst)
  204. {
  205. u32 insn, oinsn, rd;
  206. BUG_ON(nr_inst != 4);
  207. /* Compute target register */
  208. oinsn = le32_to_cpu(*origptr);
  209. rd = aarch64_insn_decode_register(AARCH64_INSN_REGTYPE_RD, oinsn);
  210. /* movz rd, #(val & 0xffff) */
  211. insn = aarch64_insn_gen_movewide(rd,
  212. (u16)val,
  213. 0,
  214. AARCH64_INSN_VARIANT_64BIT,
  215. AARCH64_INSN_MOVEWIDE_ZERO);
  216. *updptr++ = cpu_to_le32(insn);
  217. /* movk rd, #((val >> 16) & 0xffff), lsl #16 */
  218. insn = aarch64_insn_gen_movewide(rd,
  219. (u16)(val >> 16),
  220. 16,
  221. AARCH64_INSN_VARIANT_64BIT,
  222. AARCH64_INSN_MOVEWIDE_KEEP);
  223. *updptr++ = cpu_to_le32(insn);
  224. /* movk rd, #((val >> 32) & 0xffff), lsl #32 */
  225. insn = aarch64_insn_gen_movewide(rd,
  226. (u16)(val >> 32),
  227. 32,
  228. AARCH64_INSN_VARIANT_64BIT,
  229. AARCH64_INSN_MOVEWIDE_KEEP);
  230. *updptr++ = cpu_to_le32(insn);
  231. /* movk rd, #((val >> 48) & 0xffff), lsl #48 */
  232. insn = aarch64_insn_gen_movewide(rd,
  233. (u16)(val >> 48),
  234. 48,
  235. AARCH64_INSN_VARIANT_64BIT,
  236. AARCH64_INSN_MOVEWIDE_KEEP);
  237. *updptr++ = cpu_to_le32(insn);
  238. }
  239. void kvm_get_kimage_voffset(struct alt_instr *alt,
  240. __le32 *origptr, __le32 *updptr, int nr_inst)
  241. {
  242. generate_mov_q(kimage_voffset, origptr, updptr, nr_inst);
  243. }
  244. void kvm_compute_final_ctr_el0(struct alt_instr *alt,
  245. __le32 *origptr, __le32 *updptr, int nr_inst)
  246. {
  247. generate_mov_q(read_sanitised_ftr_reg(SYS_CTR_EL0),
  248. origptr, updptr, nr_inst);
  249. }