| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583 |
- // SPDX-License-Identifier: GPL-2.0-only
- /*
- * Based on arch/arm/mm/init.c
- *
- * Copyright (C) 1995-2005 Russell King
- * Copyright (C) 2012 ARM Ltd.
- */
- #include <linux/kernel.h>
- #include <linux/export.h>
- #include <linux/errno.h>
- #include <linux/swap.h>
- #include <linux/init.h>
- #include <linux/cache.h>
- #include <linux/mman.h>
- #include <linux/nodemask.h>
- #include <linux/initrd.h>
- #include <linux/gfp.h>
- #include <linux/math.h>
- #include <linux/memblock.h>
- #include <linux/sort.h>
- #include <linux/of.h>
- #include <linux/of_fdt.h>
- #include <linux/dma-direct.h>
- #include <linux/dma-map-ops.h>
- #include <linux/efi.h>
- #include <linux/swiotlb.h>
- #include <linux/vmalloc.h>
- #include <linux/mm.h>
- #include <linux/kexec.h>
- #include <linux/crash_dump.h>
- #include <linux/hugetlb.h>
- #include <linux/acpi_iort.h>
- #include <linux/kmemleak.h>
- #include <linux/execmem.h>
- #include <asm/boot.h>
- #include <asm/fixmap.h>
- #include <asm/kasan.h>
- #include <asm/kernel-pgtable.h>
- #include <asm/kvm_host.h>
- #include <asm/memory.h>
- #include <asm/numa.h>
- #include <asm/sections.h>
- #include <asm/setup.h>
- #include <linux/sizes.h>
- #include <asm/tlb.h>
- #include <asm/alternative.h>
- #include <asm/xen/swiotlb-xen.h>
- /*
- * We need to be able to catch inadvertent references to memstart_addr
- * that occur (potentially in generic code) before arm64_memblock_init()
- * executes, which assigns it its actual value. So use a default value
- * that cannot be mistaken for a real physical address.
- */
- s64 memstart_addr __ro_after_init = -1;
- EXPORT_SYMBOL(memstart_addr);
- /*
- * If the corresponding config options are enabled, we create both ZONE_DMA
- * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
- * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
- * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
- * otherwise it is empty.
- */
- phys_addr_t __ro_after_init arm64_dma_phys_limit;
- /*
- * To make optimal use of block mappings when laying out the linear
- * mapping, round down the base of physical memory to a size that can
- * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
- * (64k granule), or a multiple that can be mapped using contiguous bits
- * in the page tables: 32 * PMD_SIZE (16k granule)
- */
- #if defined(CONFIG_ARM64_4K_PAGES)
- #define ARM64_MEMSTART_SHIFT PUD_SHIFT
- #elif defined(CONFIG_ARM64_16K_PAGES)
- #define ARM64_MEMSTART_SHIFT CONT_PMD_SHIFT
- #else
- #define ARM64_MEMSTART_SHIFT PMD_SHIFT
- #endif
- /*
- * sparsemem vmemmap imposes an additional requirement on the alignment of
- * memstart_addr, due to the fact that the base of the vmemmap region
- * has a direct correspondence, and needs to appear sufficiently aligned
- * in the virtual address space.
- */
- #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
- #define ARM64_MEMSTART_ALIGN (1UL << SECTION_SIZE_BITS)
- #else
- #define ARM64_MEMSTART_ALIGN (1UL << ARM64_MEMSTART_SHIFT)
- #endif
- static void __init arch_reserve_crashkernel(void)
- {
- unsigned long long low_size = 0;
- unsigned long long crash_base, crash_size;
- char *cmdline = boot_command_line;
- bool high = false;
- int ret;
- if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
- return;
- ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
- &crash_size, &crash_base,
- &low_size, &high);
- if (ret)
- return;
- reserve_crashkernel_generic(cmdline, crash_size, crash_base,
- low_size, high);
- }
- static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
- {
- return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
- }
- static void __init zone_sizes_init(void)
- {
- unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
- phys_addr_t __maybe_unused acpi_zone_dma_limit;
- phys_addr_t __maybe_unused dt_zone_dma_limit;
- phys_addr_t __maybe_unused dma32_phys_limit =
- max_zone_phys(DMA_BIT_MASK(32));
- #ifdef CONFIG_ZONE_DMA
- acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
- dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
- zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
- /*
- * Information we get from firmware (e.g. DT dma-ranges) describe DMA
- * bus constraints. Devices using DMA might have their own limitations.
- * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
- * DMA zone on platforms that have RAM there.
- */
- if (memblock_start_of_DRAM() < U32_MAX)
- zone_dma_limit = min(zone_dma_limit, U32_MAX);
- arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
- max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
- #endif
- #ifdef CONFIG_ZONE_DMA32
- max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
- if (!arm64_dma_phys_limit)
- arm64_dma_phys_limit = dma32_phys_limit;
- #endif
- if (!arm64_dma_phys_limit)
- arm64_dma_phys_limit = PHYS_MASK + 1;
- max_zone_pfns[ZONE_NORMAL] = max_pfn;
- free_area_init(max_zone_pfns);
- }
- int pfn_is_map_memory(unsigned long pfn)
- {
- phys_addr_t addr = PFN_PHYS(pfn);
- /* avoid false positives for bogus PFNs, see comment in pfn_valid() */
- if (PHYS_PFN(addr) != pfn)
- return 0;
- return memblock_is_map_memory(addr);
- }
- EXPORT_SYMBOL(pfn_is_map_memory);
- static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
- /*
- * Limit the memory size that was specified via FDT.
- */
- static int __init early_mem(char *p)
- {
- if (!p)
- return 1;
- memory_limit = memparse(p, &p) & PAGE_MASK;
- pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
- return 0;
- }
- early_param("mem", early_mem);
- void __init arm64_memblock_init(void)
- {
- s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
- /*
- * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
- * be limited in their ability to support a linear map that exceeds 51
- * bits of VA space, depending on the placement of the ID map. Given
- * that the placement of the ID map may be randomized, let's simply
- * limit the kernel's linear map to 51 bits as well if we detect this
- * configuration.
- */
- if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
- is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
- pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
- linear_region_size = min_t(u64, linear_region_size, BIT(51));
- }
- /* Remove memory above our supported physical address size */
- memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
- /*
- * Select a suitable value for the base of physical memory.
- */
- memstart_addr = round_down(memblock_start_of_DRAM(),
- ARM64_MEMSTART_ALIGN);
- if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
- pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
- /*
- * Remove the memory that we will not be able to cover with the
- * linear mapping. Take care not to clip the kernel which may be
- * high in memory.
- */
- memblock_remove(max_t(u64, memstart_addr + linear_region_size,
- __pa_symbol(_end)), ULLONG_MAX);
- if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
- /* ensure that memstart_addr remains sufficiently aligned */
- memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
- ARM64_MEMSTART_ALIGN);
- memblock_remove(0, memstart_addr);
- }
- /*
- * If we are running with a 52-bit kernel VA config on a system that
- * does not support it, we have to place the available physical
- * memory in the 48-bit addressable part of the linear region, i.e.,
- * we have to move it upward. Since memstart_addr represents the
- * physical address of PAGE_OFFSET, we have to *subtract* from it.
- */
- if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
- memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
- /*
- * Apply the memory limit if it was set. Since the kernel may be loaded
- * high up in memory, add back the kernel region that must be accessible
- * via the linear mapping.
- */
- if (memory_limit != PHYS_ADDR_MAX) {
- memblock_mem_limit_remove_map(memory_limit);
- memblock_add(__pa_symbol(_text), (u64)(_end - _text));
- }
- if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
- /*
- * Add back the memory we just removed if it results in the
- * initrd to become inaccessible via the linear mapping.
- * Otherwise, this is a no-op
- */
- u64 base = phys_initrd_start & PAGE_MASK;
- u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
- /*
- * We can only add back the initrd memory if we don't end up
- * with more memory than we can address via the linear mapping.
- * It is up to the bootloader to position the kernel and the
- * initrd reasonably close to each other (i.e., within 32 GB of
- * each other) so that all granule/#levels combinations can
- * always access both.
- */
- if (WARN(base < memblock_start_of_DRAM() ||
- base + size > memblock_start_of_DRAM() +
- linear_region_size,
- "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
- phys_initrd_size = 0;
- } else {
- memblock_add(base, size);
- memblock_clear_nomap(base, size);
- memblock_reserve(base, size);
- }
- }
- if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
- extern u16 memstart_offset_seed;
- /*
- * Use the sanitised version of id_aa64mmfr0_el1 so that linear
- * map randomization can be enabled by shrinking the IPA space.
- */
- u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
- int parange = cpuid_feature_extract_unsigned_field(
- mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
- s64 range = linear_region_size -
- BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
- /*
- * If the size of the linear region exceeds, by a sufficient
- * margin, the size of the region that the physical memory can
- * span, randomize the linear region as well.
- */
- if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
- range /= ARM64_MEMSTART_ALIGN;
- memstart_addr -= ARM64_MEMSTART_ALIGN *
- ((range * memstart_offset_seed) >> 16);
- }
- }
- /*
- * Register the kernel text, kernel data, initrd, and initial
- * pagetables with memblock.
- */
- memblock_reserve(__pa_symbol(_stext), _end - _stext);
- if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
- /* the generic initrd code expects virtual addresses */
- initrd_start = __phys_to_virt(phys_initrd_start);
- initrd_end = initrd_start + phys_initrd_size;
- }
- early_init_fdt_scan_reserved_mem();
- high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
- }
- void __init bootmem_init(void)
- {
- unsigned long min, max;
- min = PFN_UP(memblock_start_of_DRAM());
- max = PFN_DOWN(memblock_end_of_DRAM());
- early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
- max_pfn = max_low_pfn = max;
- min_low_pfn = min;
- arch_numa_init();
- /*
- * must be done after arch_numa_init() which calls numa_init() to
- * initialize node_online_map that gets used in hugetlb_cma_reserve()
- * while allocating required CMA size across online nodes.
- */
- #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
- arm64_hugetlb_cma_reserve();
- #endif
- kvm_hyp_reserve();
- /*
- * sparse_init() tries to allocate memory from memblock, so must be
- * done after the fixed reservations
- */
- sparse_init();
- zone_sizes_init();
- /*
- * Reserve the CMA area after arm64_dma_phys_limit was initialised.
- */
- dma_contiguous_reserve(arm64_dma_phys_limit);
- /*
- * request_standard_resources() depends on crashkernel's memory being
- * reserved, so do it here.
- */
- arch_reserve_crashkernel();
- memblock_dump_all();
- }
- /*
- * mem_init() marks the free areas in the mem_map and tells us how much memory
- * is free. This is done after various parts of the system have claimed their
- * memory after the kernel image.
- */
- void __init mem_init(void)
- {
- bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
- if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
- /*
- * If no bouncing needed for ZONE_DMA, reduce the swiotlb
- * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
- */
- unsigned long size =
- DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
- swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
- swiotlb = true;
- }
- swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
- /* this will put all unused low memory onto the freelists */
- memblock_free_all();
- /*
- * Check boundaries twice: Some fundamental inconsistencies can be
- * detected at build time already.
- */
- #ifdef CONFIG_COMPAT
- BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
- #endif
- /*
- * Selected page table levels should match when derived from
- * scratch using the virtual address range and page size.
- */
- BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
- CONFIG_PGTABLE_LEVELS);
- if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
- extern int sysctl_overcommit_memory;
- /*
- * On a machine this small we won't get anywhere without
- * overcommit, so turn it on by default.
- */
- sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
- }
- }
- void free_initmem(void)
- {
- void *lm_init_begin = lm_alias(__init_begin);
- void *lm_init_end = lm_alias(__init_end);
- WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
- WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
- /* Delete __init region from memblock.reserved. */
- memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
- free_reserved_area(lm_init_begin, lm_init_end,
- POISON_FREE_INITMEM, "unused kernel");
- /*
- * Unmap the __init region but leave the VM area in place. This
- * prevents the region from being reused for kernel modules, which
- * is not supported by kallsyms.
- */
- vunmap_range((u64)__init_begin, (u64)__init_end);
- }
- void dump_mem_limit(void)
- {
- if (memory_limit != PHYS_ADDR_MAX) {
- pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
- } else {
- pr_emerg("Memory Limit: none\n");
- }
- }
- #ifdef CONFIG_EXECMEM
- static u64 module_direct_base __ro_after_init = 0;
- static u64 module_plt_base __ro_after_init = 0;
- /*
- * Choose a random page-aligned base address for a window of 'size' bytes which
- * entirely contains the interval [start, end - 1].
- */
- static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
- {
- u64 max_pgoff, pgoff;
- if ((end - start) >= size)
- return 0;
- max_pgoff = (size - (end - start)) / PAGE_SIZE;
- pgoff = get_random_u32_inclusive(0, max_pgoff);
- return start - pgoff * PAGE_SIZE;
- }
- /*
- * Modules may directly reference data and text anywhere within the kernel
- * image and other modules. References using PREL32 relocations have a +/-2G
- * range, and so we need to ensure that the entire kernel image and all modules
- * fall within a 2G window such that these are always within range.
- *
- * Modules may directly branch to functions and code within the kernel text,
- * and to functions and code within other modules. These branches will use
- * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
- * that the entire kernel text and all module text falls within a 128M window
- * such that these are always within range. With PLTs, we can expand this to a
- * 2G window.
- *
- * We chose the 128M region to surround the entire kernel image (rather than
- * just the text) as using the same bounds for the 128M and 2G regions ensures
- * by construction that we never select a 128M region that is not a subset of
- * the 2G region. For very large and unusual kernel configurations this means
- * we may fall back to PLTs where they could have been avoided, but this keeps
- * the logic significantly simpler.
- */
- static int __init module_init_limits(void)
- {
- u64 kernel_end = (u64)_end;
- u64 kernel_start = (u64)_text;
- u64 kernel_size = kernel_end - kernel_start;
- /*
- * The default modules region is placed immediately below the kernel
- * image, and is large enough to use the full 2G relocation range.
- */
- BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
- BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
- if (!kaslr_enabled()) {
- if (kernel_size < SZ_128M)
- module_direct_base = kernel_end - SZ_128M;
- if (kernel_size < SZ_2G)
- module_plt_base = kernel_end - SZ_2G;
- } else {
- u64 min = kernel_start;
- u64 max = kernel_end;
- if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
- pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
- } else {
- module_direct_base = random_bounding_box(SZ_128M, min, max);
- if (module_direct_base) {
- min = module_direct_base;
- max = module_direct_base + SZ_128M;
- }
- }
- module_plt_base = random_bounding_box(SZ_2G, min, max);
- }
- pr_info("%llu pages in range for non-PLT usage",
- module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
- pr_info("%llu pages in range for PLT usage",
- module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
- return 0;
- }
- static struct execmem_info execmem_info __ro_after_init;
- struct execmem_info __init *execmem_arch_setup(void)
- {
- unsigned long fallback_start = 0, fallback_end = 0;
- unsigned long start = 0, end = 0;
- module_init_limits();
- /*
- * Where possible, prefer to allocate within direct branch range of the
- * kernel such that no PLTs are necessary.
- */
- if (module_direct_base) {
- start = module_direct_base;
- end = module_direct_base + SZ_128M;
- if (module_plt_base) {
- fallback_start = module_plt_base;
- fallback_end = module_plt_base + SZ_2G;
- }
- } else if (module_plt_base) {
- start = module_plt_base;
- end = module_plt_base + SZ_2G;
- }
- execmem_info = (struct execmem_info){
- .ranges = {
- [EXECMEM_DEFAULT] = {
- .start = start,
- .end = end,
- .pgprot = PAGE_KERNEL,
- .alignment = 1,
- .fallback_start = fallback_start,
- .fallback_end = fallback_end,
- },
- [EXECMEM_KPROBES] = {
- .start = VMALLOC_START,
- .end = VMALLOC_END,
- .pgprot = PAGE_KERNEL_ROX,
- .alignment = 1,
- },
- [EXECMEM_BPF] = {
- .start = VMALLOC_START,
- .end = VMALLOC_END,
- .pgprot = PAGE_KERNEL,
- .alignment = 1,
- },
- },
- };
- return &execmem_info;
- }
- #endif /* CONFIG_EXECMEM */
|