init.c 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Based on arch/arm/mm/init.c
  4. *
  5. * Copyright (C) 1995-2005 Russell King
  6. * Copyright (C) 2012 ARM Ltd.
  7. */
  8. #include <linux/kernel.h>
  9. #include <linux/export.h>
  10. #include <linux/errno.h>
  11. #include <linux/swap.h>
  12. #include <linux/init.h>
  13. #include <linux/cache.h>
  14. #include <linux/mman.h>
  15. #include <linux/nodemask.h>
  16. #include <linux/initrd.h>
  17. #include <linux/gfp.h>
  18. #include <linux/math.h>
  19. #include <linux/memblock.h>
  20. #include <linux/sort.h>
  21. #include <linux/of.h>
  22. #include <linux/of_fdt.h>
  23. #include <linux/dma-direct.h>
  24. #include <linux/dma-map-ops.h>
  25. #include <linux/efi.h>
  26. #include <linux/swiotlb.h>
  27. #include <linux/vmalloc.h>
  28. #include <linux/mm.h>
  29. #include <linux/kexec.h>
  30. #include <linux/crash_dump.h>
  31. #include <linux/hugetlb.h>
  32. #include <linux/acpi_iort.h>
  33. #include <linux/kmemleak.h>
  34. #include <linux/execmem.h>
  35. #include <asm/boot.h>
  36. #include <asm/fixmap.h>
  37. #include <asm/kasan.h>
  38. #include <asm/kernel-pgtable.h>
  39. #include <asm/kvm_host.h>
  40. #include <asm/memory.h>
  41. #include <asm/numa.h>
  42. #include <asm/sections.h>
  43. #include <asm/setup.h>
  44. #include <linux/sizes.h>
  45. #include <asm/tlb.h>
  46. #include <asm/alternative.h>
  47. #include <asm/xen/swiotlb-xen.h>
  48. /*
  49. * We need to be able to catch inadvertent references to memstart_addr
  50. * that occur (potentially in generic code) before arm64_memblock_init()
  51. * executes, which assigns it its actual value. So use a default value
  52. * that cannot be mistaken for a real physical address.
  53. */
  54. s64 memstart_addr __ro_after_init = -1;
  55. EXPORT_SYMBOL(memstart_addr);
  56. /*
  57. * If the corresponding config options are enabled, we create both ZONE_DMA
  58. * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
  59. * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
  60. * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
  61. * otherwise it is empty.
  62. */
  63. phys_addr_t __ro_after_init arm64_dma_phys_limit;
  64. /*
  65. * To make optimal use of block mappings when laying out the linear
  66. * mapping, round down the base of physical memory to a size that can
  67. * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE
  68. * (64k granule), or a multiple that can be mapped using contiguous bits
  69. * in the page tables: 32 * PMD_SIZE (16k granule)
  70. */
  71. #if defined(CONFIG_ARM64_4K_PAGES)
  72. #define ARM64_MEMSTART_SHIFT PUD_SHIFT
  73. #elif defined(CONFIG_ARM64_16K_PAGES)
  74. #define ARM64_MEMSTART_SHIFT CONT_PMD_SHIFT
  75. #else
  76. #define ARM64_MEMSTART_SHIFT PMD_SHIFT
  77. #endif
  78. /*
  79. * sparsemem vmemmap imposes an additional requirement on the alignment of
  80. * memstart_addr, due to the fact that the base of the vmemmap region
  81. * has a direct correspondence, and needs to appear sufficiently aligned
  82. * in the virtual address space.
  83. */
  84. #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS
  85. #define ARM64_MEMSTART_ALIGN (1UL << SECTION_SIZE_BITS)
  86. #else
  87. #define ARM64_MEMSTART_ALIGN (1UL << ARM64_MEMSTART_SHIFT)
  88. #endif
  89. static void __init arch_reserve_crashkernel(void)
  90. {
  91. unsigned long long low_size = 0;
  92. unsigned long long crash_base, crash_size;
  93. char *cmdline = boot_command_line;
  94. bool high = false;
  95. int ret;
  96. if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
  97. return;
  98. ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
  99. &crash_size, &crash_base,
  100. &low_size, &high);
  101. if (ret)
  102. return;
  103. reserve_crashkernel_generic(cmdline, crash_size, crash_base,
  104. low_size, high);
  105. }
  106. static phys_addr_t __init max_zone_phys(phys_addr_t zone_limit)
  107. {
  108. return min(zone_limit, memblock_end_of_DRAM() - 1) + 1;
  109. }
  110. static void __init zone_sizes_init(void)
  111. {
  112. unsigned long max_zone_pfns[MAX_NR_ZONES] = {0};
  113. phys_addr_t __maybe_unused acpi_zone_dma_limit;
  114. phys_addr_t __maybe_unused dt_zone_dma_limit;
  115. phys_addr_t __maybe_unused dma32_phys_limit =
  116. max_zone_phys(DMA_BIT_MASK(32));
  117. #ifdef CONFIG_ZONE_DMA
  118. acpi_zone_dma_limit = acpi_iort_dma_get_max_cpu_address();
  119. dt_zone_dma_limit = of_dma_get_max_cpu_address(NULL);
  120. zone_dma_limit = min(dt_zone_dma_limit, acpi_zone_dma_limit);
  121. /*
  122. * Information we get from firmware (e.g. DT dma-ranges) describe DMA
  123. * bus constraints. Devices using DMA might have their own limitations.
  124. * Some of them rely on DMA zone in low 32-bit memory. Keep low RAM
  125. * DMA zone on platforms that have RAM there.
  126. */
  127. if (memblock_start_of_DRAM() < U32_MAX)
  128. zone_dma_limit = min(zone_dma_limit, U32_MAX);
  129. arm64_dma_phys_limit = max_zone_phys(zone_dma_limit);
  130. max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
  131. #endif
  132. #ifdef CONFIG_ZONE_DMA32
  133. max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
  134. if (!arm64_dma_phys_limit)
  135. arm64_dma_phys_limit = dma32_phys_limit;
  136. #endif
  137. if (!arm64_dma_phys_limit)
  138. arm64_dma_phys_limit = PHYS_MASK + 1;
  139. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  140. free_area_init(max_zone_pfns);
  141. }
  142. int pfn_is_map_memory(unsigned long pfn)
  143. {
  144. phys_addr_t addr = PFN_PHYS(pfn);
  145. /* avoid false positives for bogus PFNs, see comment in pfn_valid() */
  146. if (PHYS_PFN(addr) != pfn)
  147. return 0;
  148. return memblock_is_map_memory(addr);
  149. }
  150. EXPORT_SYMBOL(pfn_is_map_memory);
  151. static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
  152. /*
  153. * Limit the memory size that was specified via FDT.
  154. */
  155. static int __init early_mem(char *p)
  156. {
  157. if (!p)
  158. return 1;
  159. memory_limit = memparse(p, &p) & PAGE_MASK;
  160. pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
  161. return 0;
  162. }
  163. early_param("mem", early_mem);
  164. void __init arm64_memblock_init(void)
  165. {
  166. s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
  167. /*
  168. * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
  169. * be limited in their ability to support a linear map that exceeds 51
  170. * bits of VA space, depending on the placement of the ID map. Given
  171. * that the placement of the ID map may be randomized, let's simply
  172. * limit the kernel's linear map to 51 bits as well if we detect this
  173. * configuration.
  174. */
  175. if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
  176. is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
  177. pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
  178. linear_region_size = min_t(u64, linear_region_size, BIT(51));
  179. }
  180. /* Remove memory above our supported physical address size */
  181. memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
  182. /*
  183. * Select a suitable value for the base of physical memory.
  184. */
  185. memstart_addr = round_down(memblock_start_of_DRAM(),
  186. ARM64_MEMSTART_ALIGN);
  187. if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
  188. pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
  189. /*
  190. * Remove the memory that we will not be able to cover with the
  191. * linear mapping. Take care not to clip the kernel which may be
  192. * high in memory.
  193. */
  194. memblock_remove(max_t(u64, memstart_addr + linear_region_size,
  195. __pa_symbol(_end)), ULLONG_MAX);
  196. if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
  197. /* ensure that memstart_addr remains sufficiently aligned */
  198. memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
  199. ARM64_MEMSTART_ALIGN);
  200. memblock_remove(0, memstart_addr);
  201. }
  202. /*
  203. * If we are running with a 52-bit kernel VA config on a system that
  204. * does not support it, we have to place the available physical
  205. * memory in the 48-bit addressable part of the linear region, i.e.,
  206. * we have to move it upward. Since memstart_addr represents the
  207. * physical address of PAGE_OFFSET, we have to *subtract* from it.
  208. */
  209. if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
  210. memstart_addr -= _PAGE_OFFSET(vabits_actual) - _PAGE_OFFSET(52);
  211. /*
  212. * Apply the memory limit if it was set. Since the kernel may be loaded
  213. * high up in memory, add back the kernel region that must be accessible
  214. * via the linear mapping.
  215. */
  216. if (memory_limit != PHYS_ADDR_MAX) {
  217. memblock_mem_limit_remove_map(memory_limit);
  218. memblock_add(__pa_symbol(_text), (u64)(_end - _text));
  219. }
  220. if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
  221. /*
  222. * Add back the memory we just removed if it results in the
  223. * initrd to become inaccessible via the linear mapping.
  224. * Otherwise, this is a no-op
  225. */
  226. u64 base = phys_initrd_start & PAGE_MASK;
  227. u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
  228. /*
  229. * We can only add back the initrd memory if we don't end up
  230. * with more memory than we can address via the linear mapping.
  231. * It is up to the bootloader to position the kernel and the
  232. * initrd reasonably close to each other (i.e., within 32 GB of
  233. * each other) so that all granule/#levels combinations can
  234. * always access both.
  235. */
  236. if (WARN(base < memblock_start_of_DRAM() ||
  237. base + size > memblock_start_of_DRAM() +
  238. linear_region_size,
  239. "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
  240. phys_initrd_size = 0;
  241. } else {
  242. memblock_add(base, size);
  243. memblock_clear_nomap(base, size);
  244. memblock_reserve(base, size);
  245. }
  246. }
  247. if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
  248. extern u16 memstart_offset_seed;
  249. /*
  250. * Use the sanitised version of id_aa64mmfr0_el1 so that linear
  251. * map randomization can be enabled by shrinking the IPA space.
  252. */
  253. u64 mmfr0 = read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
  254. int parange = cpuid_feature_extract_unsigned_field(
  255. mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
  256. s64 range = linear_region_size -
  257. BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
  258. /*
  259. * If the size of the linear region exceeds, by a sufficient
  260. * margin, the size of the region that the physical memory can
  261. * span, randomize the linear region as well.
  262. */
  263. if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
  264. range /= ARM64_MEMSTART_ALIGN;
  265. memstart_addr -= ARM64_MEMSTART_ALIGN *
  266. ((range * memstart_offset_seed) >> 16);
  267. }
  268. }
  269. /*
  270. * Register the kernel text, kernel data, initrd, and initial
  271. * pagetables with memblock.
  272. */
  273. memblock_reserve(__pa_symbol(_stext), _end - _stext);
  274. if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
  275. /* the generic initrd code expects virtual addresses */
  276. initrd_start = __phys_to_virt(phys_initrd_start);
  277. initrd_end = initrd_start + phys_initrd_size;
  278. }
  279. early_init_fdt_scan_reserved_mem();
  280. high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
  281. }
  282. void __init bootmem_init(void)
  283. {
  284. unsigned long min, max;
  285. min = PFN_UP(memblock_start_of_DRAM());
  286. max = PFN_DOWN(memblock_end_of_DRAM());
  287. early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
  288. max_pfn = max_low_pfn = max;
  289. min_low_pfn = min;
  290. arch_numa_init();
  291. /*
  292. * must be done after arch_numa_init() which calls numa_init() to
  293. * initialize node_online_map that gets used in hugetlb_cma_reserve()
  294. * while allocating required CMA size across online nodes.
  295. */
  296. #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
  297. arm64_hugetlb_cma_reserve();
  298. #endif
  299. kvm_hyp_reserve();
  300. /*
  301. * sparse_init() tries to allocate memory from memblock, so must be
  302. * done after the fixed reservations
  303. */
  304. sparse_init();
  305. zone_sizes_init();
  306. /*
  307. * Reserve the CMA area after arm64_dma_phys_limit was initialised.
  308. */
  309. dma_contiguous_reserve(arm64_dma_phys_limit);
  310. /*
  311. * request_standard_resources() depends on crashkernel's memory being
  312. * reserved, so do it here.
  313. */
  314. arch_reserve_crashkernel();
  315. memblock_dump_all();
  316. }
  317. /*
  318. * mem_init() marks the free areas in the mem_map and tells us how much memory
  319. * is free. This is done after various parts of the system have claimed their
  320. * memory after the kernel image.
  321. */
  322. void __init mem_init(void)
  323. {
  324. bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
  325. if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC) && !swiotlb) {
  326. /*
  327. * If no bouncing needed for ZONE_DMA, reduce the swiotlb
  328. * buffer for kmalloc() bouncing to 1MB per 1GB of RAM.
  329. */
  330. unsigned long size =
  331. DIV_ROUND_UP(memblock_phys_mem_size(), 1024);
  332. swiotlb_adjust_size(min(swiotlb_size_or_default(), size));
  333. swiotlb = true;
  334. }
  335. swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
  336. /* this will put all unused low memory onto the freelists */
  337. memblock_free_all();
  338. /*
  339. * Check boundaries twice: Some fundamental inconsistencies can be
  340. * detected at build time already.
  341. */
  342. #ifdef CONFIG_COMPAT
  343. BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
  344. #endif
  345. /*
  346. * Selected page table levels should match when derived from
  347. * scratch using the virtual address range and page size.
  348. */
  349. BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
  350. CONFIG_PGTABLE_LEVELS);
  351. if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
  352. extern int sysctl_overcommit_memory;
  353. /*
  354. * On a machine this small we won't get anywhere without
  355. * overcommit, so turn it on by default.
  356. */
  357. sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
  358. }
  359. }
  360. void free_initmem(void)
  361. {
  362. void *lm_init_begin = lm_alias(__init_begin);
  363. void *lm_init_end = lm_alias(__init_end);
  364. WARN_ON(!IS_ALIGNED((unsigned long)lm_init_begin, PAGE_SIZE));
  365. WARN_ON(!IS_ALIGNED((unsigned long)lm_init_end, PAGE_SIZE));
  366. /* Delete __init region from memblock.reserved. */
  367. memblock_free(lm_init_begin, lm_init_end - lm_init_begin);
  368. free_reserved_area(lm_init_begin, lm_init_end,
  369. POISON_FREE_INITMEM, "unused kernel");
  370. /*
  371. * Unmap the __init region but leave the VM area in place. This
  372. * prevents the region from being reused for kernel modules, which
  373. * is not supported by kallsyms.
  374. */
  375. vunmap_range((u64)__init_begin, (u64)__init_end);
  376. }
  377. void dump_mem_limit(void)
  378. {
  379. if (memory_limit != PHYS_ADDR_MAX) {
  380. pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
  381. } else {
  382. pr_emerg("Memory Limit: none\n");
  383. }
  384. }
  385. #ifdef CONFIG_EXECMEM
  386. static u64 module_direct_base __ro_after_init = 0;
  387. static u64 module_plt_base __ro_after_init = 0;
  388. /*
  389. * Choose a random page-aligned base address for a window of 'size' bytes which
  390. * entirely contains the interval [start, end - 1].
  391. */
  392. static u64 __init random_bounding_box(u64 size, u64 start, u64 end)
  393. {
  394. u64 max_pgoff, pgoff;
  395. if ((end - start) >= size)
  396. return 0;
  397. max_pgoff = (size - (end - start)) / PAGE_SIZE;
  398. pgoff = get_random_u32_inclusive(0, max_pgoff);
  399. return start - pgoff * PAGE_SIZE;
  400. }
  401. /*
  402. * Modules may directly reference data and text anywhere within the kernel
  403. * image and other modules. References using PREL32 relocations have a +/-2G
  404. * range, and so we need to ensure that the entire kernel image and all modules
  405. * fall within a 2G window such that these are always within range.
  406. *
  407. * Modules may directly branch to functions and code within the kernel text,
  408. * and to functions and code within other modules. These branches will use
  409. * CALL26/JUMP26 relocations with a +/-128M range. Without PLTs, we must ensure
  410. * that the entire kernel text and all module text falls within a 128M window
  411. * such that these are always within range. With PLTs, we can expand this to a
  412. * 2G window.
  413. *
  414. * We chose the 128M region to surround the entire kernel image (rather than
  415. * just the text) as using the same bounds for the 128M and 2G regions ensures
  416. * by construction that we never select a 128M region that is not a subset of
  417. * the 2G region. For very large and unusual kernel configurations this means
  418. * we may fall back to PLTs where they could have been avoided, but this keeps
  419. * the logic significantly simpler.
  420. */
  421. static int __init module_init_limits(void)
  422. {
  423. u64 kernel_end = (u64)_end;
  424. u64 kernel_start = (u64)_text;
  425. u64 kernel_size = kernel_end - kernel_start;
  426. /*
  427. * The default modules region is placed immediately below the kernel
  428. * image, and is large enough to use the full 2G relocation range.
  429. */
  430. BUILD_BUG_ON(KIMAGE_VADDR != MODULES_END);
  431. BUILD_BUG_ON(MODULES_VSIZE < SZ_2G);
  432. if (!kaslr_enabled()) {
  433. if (kernel_size < SZ_128M)
  434. module_direct_base = kernel_end - SZ_128M;
  435. if (kernel_size < SZ_2G)
  436. module_plt_base = kernel_end - SZ_2G;
  437. } else {
  438. u64 min = kernel_start;
  439. u64 max = kernel_end;
  440. if (IS_ENABLED(CONFIG_RANDOMIZE_MODULE_REGION_FULL)) {
  441. pr_info("2G module region forced by RANDOMIZE_MODULE_REGION_FULL\n");
  442. } else {
  443. module_direct_base = random_bounding_box(SZ_128M, min, max);
  444. if (module_direct_base) {
  445. min = module_direct_base;
  446. max = module_direct_base + SZ_128M;
  447. }
  448. }
  449. module_plt_base = random_bounding_box(SZ_2G, min, max);
  450. }
  451. pr_info("%llu pages in range for non-PLT usage",
  452. module_direct_base ? (SZ_128M - kernel_size) / PAGE_SIZE : 0);
  453. pr_info("%llu pages in range for PLT usage",
  454. module_plt_base ? (SZ_2G - kernel_size) / PAGE_SIZE : 0);
  455. return 0;
  456. }
  457. static struct execmem_info execmem_info __ro_after_init;
  458. struct execmem_info __init *execmem_arch_setup(void)
  459. {
  460. unsigned long fallback_start = 0, fallback_end = 0;
  461. unsigned long start = 0, end = 0;
  462. module_init_limits();
  463. /*
  464. * Where possible, prefer to allocate within direct branch range of the
  465. * kernel such that no PLTs are necessary.
  466. */
  467. if (module_direct_base) {
  468. start = module_direct_base;
  469. end = module_direct_base + SZ_128M;
  470. if (module_plt_base) {
  471. fallback_start = module_plt_base;
  472. fallback_end = module_plt_base + SZ_2G;
  473. }
  474. } else if (module_plt_base) {
  475. start = module_plt_base;
  476. end = module_plt_base + SZ_2G;
  477. }
  478. execmem_info = (struct execmem_info){
  479. .ranges = {
  480. [EXECMEM_DEFAULT] = {
  481. .start = start,
  482. .end = end,
  483. .pgprot = PAGE_KERNEL,
  484. .alignment = 1,
  485. .fallback_start = fallback_start,
  486. .fallback_end = fallback_end,
  487. },
  488. [EXECMEM_KPROBES] = {
  489. .start = VMALLOC_START,
  490. .end = VMALLOC_END,
  491. .pgprot = PAGE_KERNEL_ROX,
  492. .alignment = 1,
  493. },
  494. [EXECMEM_BPF] = {
  495. .start = VMALLOC_START,
  496. .end = VMALLOC_END,
  497. .pgprot = PAGE_KERNEL,
  498. .alignment = 1,
  499. },
  500. },
  501. };
  502. return &execmem_info;
  503. }
  504. #endif /* CONFIG_EXECMEM */