vcpu.c 44 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2020-2023 Loongson Technology Corporation Limited
  4. */
  5. #include <linux/kvm_host.h>
  6. #include <linux/entry-kvm.h>
  7. #include <asm/fpu.h>
  8. #include <asm/lbt.h>
  9. #include <asm/loongarch.h>
  10. #include <asm/setup.h>
  11. #include <asm/time.h>
  12. #define CREATE_TRACE_POINTS
  13. #include "trace.h"
  14. const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
  15. KVM_GENERIC_VCPU_STATS(),
  16. STATS_DESC_COUNTER(VCPU, int_exits),
  17. STATS_DESC_COUNTER(VCPU, idle_exits),
  18. STATS_DESC_COUNTER(VCPU, cpucfg_exits),
  19. STATS_DESC_COUNTER(VCPU, signal_exits),
  20. STATS_DESC_COUNTER(VCPU, hypercall_exits)
  21. };
  22. const struct kvm_stats_header kvm_vcpu_stats_header = {
  23. .name_size = KVM_STATS_NAME_SIZE,
  24. .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
  25. .id_offset = sizeof(struct kvm_stats_header),
  26. .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
  27. .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
  28. sizeof(kvm_vcpu_stats_desc),
  29. };
  30. static inline void kvm_save_host_pmu(struct kvm_vcpu *vcpu)
  31. {
  32. struct kvm_context *context;
  33. context = this_cpu_ptr(vcpu->kvm->arch.vmcs);
  34. context->perf_cntr[0] = read_csr_perfcntr0();
  35. context->perf_cntr[1] = read_csr_perfcntr1();
  36. context->perf_cntr[2] = read_csr_perfcntr2();
  37. context->perf_cntr[3] = read_csr_perfcntr3();
  38. context->perf_ctrl[0] = write_csr_perfctrl0(0);
  39. context->perf_ctrl[1] = write_csr_perfctrl1(0);
  40. context->perf_ctrl[2] = write_csr_perfctrl2(0);
  41. context->perf_ctrl[3] = write_csr_perfctrl3(0);
  42. }
  43. static inline void kvm_restore_host_pmu(struct kvm_vcpu *vcpu)
  44. {
  45. struct kvm_context *context;
  46. context = this_cpu_ptr(vcpu->kvm->arch.vmcs);
  47. write_csr_perfcntr0(context->perf_cntr[0]);
  48. write_csr_perfcntr1(context->perf_cntr[1]);
  49. write_csr_perfcntr2(context->perf_cntr[2]);
  50. write_csr_perfcntr3(context->perf_cntr[3]);
  51. write_csr_perfctrl0(context->perf_ctrl[0]);
  52. write_csr_perfctrl1(context->perf_ctrl[1]);
  53. write_csr_perfctrl2(context->perf_ctrl[2]);
  54. write_csr_perfctrl3(context->perf_ctrl[3]);
  55. }
  56. static inline void kvm_save_guest_pmu(struct kvm_vcpu *vcpu)
  57. {
  58. struct loongarch_csrs *csr = vcpu->arch.csr;
  59. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PERFCNTR0);
  60. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PERFCNTR1);
  61. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PERFCNTR2);
  62. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PERFCNTR3);
  63. kvm_read_clear_hw_gcsr(csr, LOONGARCH_CSR_PERFCTRL0);
  64. kvm_read_clear_hw_gcsr(csr, LOONGARCH_CSR_PERFCTRL1);
  65. kvm_read_clear_hw_gcsr(csr, LOONGARCH_CSR_PERFCTRL2);
  66. kvm_read_clear_hw_gcsr(csr, LOONGARCH_CSR_PERFCTRL3);
  67. }
  68. static inline void kvm_restore_guest_pmu(struct kvm_vcpu *vcpu)
  69. {
  70. struct loongarch_csrs *csr = vcpu->arch.csr;
  71. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PERFCNTR0);
  72. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PERFCNTR1);
  73. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PERFCNTR2);
  74. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PERFCNTR3);
  75. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PERFCTRL0);
  76. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PERFCTRL1);
  77. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PERFCTRL2);
  78. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PERFCTRL3);
  79. }
  80. static int kvm_own_pmu(struct kvm_vcpu *vcpu)
  81. {
  82. unsigned long val;
  83. if (!kvm_guest_has_pmu(&vcpu->arch))
  84. return -EINVAL;
  85. kvm_save_host_pmu(vcpu);
  86. /* Set PM0-PM(num) to guest */
  87. val = read_csr_gcfg() & ~CSR_GCFG_GPERF;
  88. val |= (kvm_get_pmu_num(&vcpu->arch) + 1) << CSR_GCFG_GPERF_SHIFT;
  89. write_csr_gcfg(val);
  90. kvm_restore_guest_pmu(vcpu);
  91. return 0;
  92. }
  93. static void kvm_lose_pmu(struct kvm_vcpu *vcpu)
  94. {
  95. unsigned long val;
  96. struct loongarch_csrs *csr = vcpu->arch.csr;
  97. if (!(vcpu->arch.aux_inuse & KVM_LARCH_PMU))
  98. return;
  99. kvm_save_guest_pmu(vcpu);
  100. /* Disable pmu access from guest */
  101. write_csr_gcfg(read_csr_gcfg() & ~CSR_GCFG_GPERF);
  102. /*
  103. * Clear KVM_LARCH_PMU if the guest is not using PMU CSRs when
  104. * exiting the guest, so that the next time trap into the guest.
  105. * We don't need to deal with PMU CSRs contexts.
  106. */
  107. val = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_PERFCTRL0);
  108. val |= kvm_read_sw_gcsr(csr, LOONGARCH_CSR_PERFCTRL1);
  109. val |= kvm_read_sw_gcsr(csr, LOONGARCH_CSR_PERFCTRL2);
  110. val |= kvm_read_sw_gcsr(csr, LOONGARCH_CSR_PERFCTRL3);
  111. if (!(val & KVM_PMU_EVENT_ENABLED))
  112. vcpu->arch.aux_inuse &= ~KVM_LARCH_PMU;
  113. kvm_restore_host_pmu(vcpu);
  114. }
  115. static void kvm_restore_pmu(struct kvm_vcpu *vcpu)
  116. {
  117. if ((vcpu->arch.aux_inuse & KVM_LARCH_PMU))
  118. kvm_make_request(KVM_REQ_PMU, vcpu);
  119. }
  120. static void kvm_check_pmu(struct kvm_vcpu *vcpu)
  121. {
  122. if (kvm_check_request(KVM_REQ_PMU, vcpu)) {
  123. kvm_own_pmu(vcpu);
  124. vcpu->arch.aux_inuse |= KVM_LARCH_PMU;
  125. }
  126. }
  127. static void kvm_update_stolen_time(struct kvm_vcpu *vcpu)
  128. {
  129. u32 version;
  130. u64 steal;
  131. gpa_t gpa;
  132. struct kvm_memslots *slots;
  133. struct kvm_steal_time __user *st;
  134. struct gfn_to_hva_cache *ghc;
  135. ghc = &vcpu->arch.st.cache;
  136. gpa = vcpu->arch.st.guest_addr;
  137. if (!(gpa & KVM_STEAL_PHYS_VALID))
  138. return;
  139. gpa &= KVM_STEAL_PHYS_MASK;
  140. slots = kvm_memslots(vcpu->kvm);
  141. if (slots->generation != ghc->generation || gpa != ghc->gpa) {
  142. if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st))) {
  143. ghc->gpa = INVALID_GPA;
  144. return;
  145. }
  146. }
  147. st = (struct kvm_steal_time __user *)ghc->hva;
  148. unsafe_get_user(version, &st->version, out);
  149. if (version & 1)
  150. version += 1; /* first time write, random junk */
  151. version += 1;
  152. unsafe_put_user(version, &st->version, out);
  153. smp_wmb();
  154. unsafe_get_user(steal, &st->steal, out);
  155. steal += current->sched_info.run_delay - vcpu->arch.st.last_steal;
  156. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  157. unsafe_put_user(steal, &st->steal, out);
  158. smp_wmb();
  159. version += 1;
  160. unsafe_put_user(version, &st->version, out);
  161. out:
  162. mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
  163. }
  164. /*
  165. * kvm_check_requests - check and handle pending vCPU requests
  166. *
  167. * Return: RESUME_GUEST if we should enter the guest
  168. * RESUME_HOST if we should exit to userspace
  169. */
  170. static int kvm_check_requests(struct kvm_vcpu *vcpu)
  171. {
  172. if (!kvm_request_pending(vcpu))
  173. return RESUME_GUEST;
  174. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  175. vcpu->arch.vpid = 0; /* Drop vpid for this vCPU */
  176. if (kvm_dirty_ring_check_request(vcpu))
  177. return RESUME_HOST;
  178. if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
  179. kvm_update_stolen_time(vcpu);
  180. return RESUME_GUEST;
  181. }
  182. static void kvm_late_check_requests(struct kvm_vcpu *vcpu)
  183. {
  184. lockdep_assert_irqs_disabled();
  185. if (kvm_check_request(KVM_REQ_TLB_FLUSH_GPA, vcpu))
  186. if (vcpu->arch.flush_gpa != INVALID_GPA) {
  187. kvm_flush_tlb_gpa(vcpu, vcpu->arch.flush_gpa);
  188. vcpu->arch.flush_gpa = INVALID_GPA;
  189. }
  190. }
  191. /*
  192. * Check and handle pending signal and vCPU requests etc
  193. * Run with irq enabled and preempt enabled
  194. *
  195. * Return: RESUME_GUEST if we should enter the guest
  196. * RESUME_HOST if we should exit to userspace
  197. * < 0 if we should exit to userspace, where the return value
  198. * indicates an error
  199. */
  200. static int kvm_enter_guest_check(struct kvm_vcpu *vcpu)
  201. {
  202. int idx, ret;
  203. /*
  204. * Check conditions before entering the guest
  205. */
  206. ret = xfer_to_guest_mode_handle_work(vcpu);
  207. if (ret < 0)
  208. return ret;
  209. idx = srcu_read_lock(&vcpu->kvm->srcu);
  210. ret = kvm_check_requests(vcpu);
  211. srcu_read_unlock(&vcpu->kvm->srcu, idx);
  212. return ret;
  213. }
  214. /*
  215. * Called with irq enabled
  216. *
  217. * Return: RESUME_GUEST if we should enter the guest, and irq disabled
  218. * Others if we should exit to userspace
  219. */
  220. static int kvm_pre_enter_guest(struct kvm_vcpu *vcpu)
  221. {
  222. int ret;
  223. do {
  224. ret = kvm_enter_guest_check(vcpu);
  225. if (ret != RESUME_GUEST)
  226. break;
  227. /*
  228. * Handle vcpu timer, interrupts, check requests and
  229. * check vmid before vcpu enter guest
  230. */
  231. local_irq_disable();
  232. kvm_deliver_intr(vcpu);
  233. kvm_deliver_exception(vcpu);
  234. /* Make sure the vcpu mode has been written */
  235. smp_store_mb(vcpu->mode, IN_GUEST_MODE);
  236. kvm_check_vpid(vcpu);
  237. kvm_check_pmu(vcpu);
  238. /*
  239. * Called after function kvm_check_vpid()
  240. * Since it updates CSR.GSTAT used by kvm_flush_tlb_gpa(),
  241. * and it may also clear KVM_REQ_TLB_FLUSH_GPA pending bit
  242. */
  243. kvm_late_check_requests(vcpu);
  244. vcpu->arch.host_eentry = csr_read64(LOONGARCH_CSR_EENTRY);
  245. /* Clear KVM_LARCH_SWCSR_LATEST as CSR will change when enter guest */
  246. vcpu->arch.aux_inuse &= ~KVM_LARCH_SWCSR_LATEST;
  247. if (kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending()) {
  248. /* make sure the vcpu mode has been written */
  249. smp_store_mb(vcpu->mode, OUTSIDE_GUEST_MODE);
  250. local_irq_enable();
  251. ret = -EAGAIN;
  252. }
  253. } while (ret != RESUME_GUEST);
  254. return ret;
  255. }
  256. /*
  257. * Return 1 for resume guest and "<= 0" for resume host.
  258. */
  259. static int kvm_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
  260. {
  261. int ret = RESUME_GUEST;
  262. unsigned long estat = vcpu->arch.host_estat;
  263. u32 intr = estat & 0x1fff; /* Ignore NMI */
  264. u32 ecode = (estat & CSR_ESTAT_EXC) >> CSR_ESTAT_EXC_SHIFT;
  265. vcpu->mode = OUTSIDE_GUEST_MODE;
  266. /* Set a default exit reason */
  267. run->exit_reason = KVM_EXIT_UNKNOWN;
  268. kvm_lose_pmu(vcpu);
  269. guest_timing_exit_irqoff();
  270. guest_state_exit_irqoff();
  271. local_irq_enable();
  272. trace_kvm_exit(vcpu, ecode);
  273. if (ecode) {
  274. ret = kvm_handle_fault(vcpu, ecode);
  275. } else {
  276. WARN(!intr, "vm exiting with suspicious irq\n");
  277. ++vcpu->stat.int_exits;
  278. }
  279. if (ret == RESUME_GUEST)
  280. ret = kvm_pre_enter_guest(vcpu);
  281. if (ret != RESUME_GUEST) {
  282. local_irq_disable();
  283. return ret;
  284. }
  285. guest_timing_enter_irqoff();
  286. guest_state_enter_irqoff();
  287. trace_kvm_reenter(vcpu);
  288. return RESUME_GUEST;
  289. }
  290. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  291. {
  292. return !!(vcpu->arch.irq_pending) &&
  293. vcpu->arch.mp_state.mp_state == KVM_MP_STATE_RUNNABLE;
  294. }
  295. int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  296. {
  297. return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  298. }
  299. bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
  300. {
  301. return false;
  302. }
  303. vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
  304. {
  305. return VM_FAULT_SIGBUS;
  306. }
  307. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  308. struct kvm_translation *tr)
  309. {
  310. return -EINVAL;
  311. }
  312. int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
  313. {
  314. int ret;
  315. /* Protect from TOD sync and vcpu_load/put() */
  316. preempt_disable();
  317. ret = kvm_pending_timer(vcpu) ||
  318. kvm_read_hw_gcsr(LOONGARCH_CSR_ESTAT) & (1 << INT_TI);
  319. preempt_enable();
  320. return ret;
  321. }
  322. int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
  323. {
  324. int i;
  325. kvm_debug("vCPU Register Dump:\n");
  326. kvm_debug("\tPC = 0x%08lx\n", vcpu->arch.pc);
  327. kvm_debug("\tExceptions: %08lx\n", vcpu->arch.irq_pending);
  328. for (i = 0; i < 32; i += 4) {
  329. kvm_debug("\tGPR%02d: %08lx %08lx %08lx %08lx\n", i,
  330. vcpu->arch.gprs[i], vcpu->arch.gprs[i + 1],
  331. vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
  332. }
  333. kvm_debug("\tCRMD: 0x%08lx, ESTAT: 0x%08lx\n",
  334. kvm_read_hw_gcsr(LOONGARCH_CSR_CRMD),
  335. kvm_read_hw_gcsr(LOONGARCH_CSR_ESTAT));
  336. kvm_debug("\tERA: 0x%08lx\n", kvm_read_hw_gcsr(LOONGARCH_CSR_ERA));
  337. return 0;
  338. }
  339. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  340. struct kvm_mp_state *mp_state)
  341. {
  342. *mp_state = vcpu->arch.mp_state;
  343. return 0;
  344. }
  345. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  346. struct kvm_mp_state *mp_state)
  347. {
  348. int ret = 0;
  349. switch (mp_state->mp_state) {
  350. case KVM_MP_STATE_RUNNABLE:
  351. vcpu->arch.mp_state = *mp_state;
  352. break;
  353. default:
  354. ret = -EINVAL;
  355. }
  356. return ret;
  357. }
  358. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  359. struct kvm_guest_debug *dbg)
  360. {
  361. if (dbg->control & ~KVM_GUESTDBG_VALID_MASK)
  362. return -EINVAL;
  363. if (dbg->control & KVM_GUESTDBG_ENABLE)
  364. vcpu->guest_debug = dbg->control;
  365. else
  366. vcpu->guest_debug = 0;
  367. return 0;
  368. }
  369. static inline int kvm_set_cpuid(struct kvm_vcpu *vcpu, u64 val)
  370. {
  371. int cpuid;
  372. struct kvm_phyid_map *map;
  373. struct loongarch_csrs *csr = vcpu->arch.csr;
  374. if (val >= KVM_MAX_PHYID)
  375. return -EINVAL;
  376. map = vcpu->kvm->arch.phyid_map;
  377. cpuid = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_CPUID);
  378. spin_lock(&vcpu->kvm->arch.phyid_map_lock);
  379. if ((cpuid < KVM_MAX_PHYID) && map->phys_map[cpuid].enabled) {
  380. /* Discard duplicated CPUID set operation */
  381. if (cpuid == val) {
  382. spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
  383. return 0;
  384. }
  385. /*
  386. * CPUID is already set before
  387. * Forbid changing to a different CPUID at runtime
  388. */
  389. spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
  390. return -EINVAL;
  391. }
  392. if (map->phys_map[val].enabled) {
  393. /* Discard duplicated CPUID set operation */
  394. if (vcpu == map->phys_map[val].vcpu) {
  395. spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
  396. return 0;
  397. }
  398. /*
  399. * New CPUID is already set with other vcpu
  400. * Forbid sharing the same CPUID between different vcpus
  401. */
  402. spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
  403. return -EINVAL;
  404. }
  405. kvm_write_sw_gcsr(csr, LOONGARCH_CSR_CPUID, val);
  406. map->phys_map[val].enabled = true;
  407. map->phys_map[val].vcpu = vcpu;
  408. spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
  409. return 0;
  410. }
  411. static inline void kvm_drop_cpuid(struct kvm_vcpu *vcpu)
  412. {
  413. int cpuid;
  414. struct kvm_phyid_map *map;
  415. struct loongarch_csrs *csr = vcpu->arch.csr;
  416. map = vcpu->kvm->arch.phyid_map;
  417. cpuid = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_CPUID);
  418. if (cpuid >= KVM_MAX_PHYID)
  419. return;
  420. spin_lock(&vcpu->kvm->arch.phyid_map_lock);
  421. if (map->phys_map[cpuid].enabled) {
  422. map->phys_map[cpuid].vcpu = NULL;
  423. map->phys_map[cpuid].enabled = false;
  424. kvm_write_sw_gcsr(csr, LOONGARCH_CSR_CPUID, KVM_MAX_PHYID);
  425. }
  426. spin_unlock(&vcpu->kvm->arch.phyid_map_lock);
  427. }
  428. struct kvm_vcpu *kvm_get_vcpu_by_cpuid(struct kvm *kvm, int cpuid)
  429. {
  430. struct kvm_phyid_map *map;
  431. if (cpuid >= KVM_MAX_PHYID)
  432. return NULL;
  433. map = kvm->arch.phyid_map;
  434. if (!map->phys_map[cpuid].enabled)
  435. return NULL;
  436. return map->phys_map[cpuid].vcpu;
  437. }
  438. static int _kvm_getcsr(struct kvm_vcpu *vcpu, unsigned int id, u64 *val)
  439. {
  440. unsigned long gintc;
  441. struct loongarch_csrs *csr = vcpu->arch.csr;
  442. if (get_gcsr_flag(id) & INVALID_GCSR)
  443. return -EINVAL;
  444. if (id == LOONGARCH_CSR_ESTAT) {
  445. preempt_disable();
  446. vcpu_load(vcpu);
  447. /*
  448. * Sync pending interrupts into ESTAT so that interrupt
  449. * remains during VM migration stage
  450. */
  451. kvm_deliver_intr(vcpu);
  452. vcpu->arch.aux_inuse &= ~KVM_LARCH_SWCSR_LATEST;
  453. vcpu_put(vcpu);
  454. preempt_enable();
  455. /* ESTAT IP0~IP7 get from GINTC */
  456. gintc = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_GINTC) & 0xff;
  457. *val = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_ESTAT) | (gintc << 2);
  458. return 0;
  459. }
  460. /*
  461. * Get software CSR state since software state is consistent
  462. * with hardware for synchronous ioctl
  463. */
  464. *val = kvm_read_sw_gcsr(csr, id);
  465. return 0;
  466. }
  467. static int _kvm_setcsr(struct kvm_vcpu *vcpu, unsigned int id, u64 val)
  468. {
  469. int ret = 0, gintc;
  470. struct loongarch_csrs *csr = vcpu->arch.csr;
  471. if (get_gcsr_flag(id) & INVALID_GCSR)
  472. return -EINVAL;
  473. if (id == LOONGARCH_CSR_CPUID)
  474. return kvm_set_cpuid(vcpu, val);
  475. if (id == LOONGARCH_CSR_ESTAT) {
  476. /* ESTAT IP0~IP7 inject through GINTC */
  477. gintc = (val >> 2) & 0xff;
  478. kvm_set_sw_gcsr(csr, LOONGARCH_CSR_GINTC, gintc);
  479. gintc = val & ~(0xffUL << 2);
  480. kvm_set_sw_gcsr(csr, LOONGARCH_CSR_ESTAT, gintc);
  481. return ret;
  482. }
  483. kvm_write_sw_gcsr(csr, id, val);
  484. /*
  485. * After modifying the PMU CSR register value of the vcpu.
  486. * If the PMU CSRs are used, we need to set KVM_REQ_PMU.
  487. */
  488. if (id >= LOONGARCH_CSR_PERFCTRL0 && id <= LOONGARCH_CSR_PERFCNTR3) {
  489. unsigned long val;
  490. val = kvm_read_sw_gcsr(csr, LOONGARCH_CSR_PERFCTRL0) |
  491. kvm_read_sw_gcsr(csr, LOONGARCH_CSR_PERFCTRL1) |
  492. kvm_read_sw_gcsr(csr, LOONGARCH_CSR_PERFCTRL2) |
  493. kvm_read_sw_gcsr(csr, LOONGARCH_CSR_PERFCTRL3);
  494. if (val & KVM_PMU_EVENT_ENABLED)
  495. kvm_make_request(KVM_REQ_PMU, vcpu);
  496. }
  497. return ret;
  498. }
  499. static int _kvm_get_cpucfg_mask(int id, u64 *v)
  500. {
  501. if (id < 0 || id >= KVM_MAX_CPUCFG_REGS)
  502. return -EINVAL;
  503. switch (id) {
  504. case LOONGARCH_CPUCFG0:
  505. *v = GENMASK(31, 0);
  506. return 0;
  507. case LOONGARCH_CPUCFG1:
  508. /* CPUCFG1_MSGINT is not supported by KVM */
  509. *v = GENMASK(25, 0);
  510. return 0;
  511. case LOONGARCH_CPUCFG2:
  512. /* CPUCFG2 features unconditionally supported by KVM */
  513. *v = CPUCFG2_FP | CPUCFG2_FPSP | CPUCFG2_FPDP |
  514. CPUCFG2_FPVERS | CPUCFG2_LLFTP | CPUCFG2_LLFTPREV |
  515. CPUCFG2_LSPW | CPUCFG2_LAM;
  516. /*
  517. * For the ISA extensions listed below, if one is supported
  518. * by the host, then it is also supported by KVM.
  519. */
  520. if (cpu_has_lsx)
  521. *v |= CPUCFG2_LSX;
  522. if (cpu_has_lasx)
  523. *v |= CPUCFG2_LASX;
  524. if (cpu_has_lbt_x86)
  525. *v |= CPUCFG2_X86BT;
  526. if (cpu_has_lbt_arm)
  527. *v |= CPUCFG2_ARMBT;
  528. if (cpu_has_lbt_mips)
  529. *v |= CPUCFG2_MIPSBT;
  530. return 0;
  531. case LOONGARCH_CPUCFG3:
  532. *v = GENMASK(16, 0);
  533. return 0;
  534. case LOONGARCH_CPUCFG4:
  535. case LOONGARCH_CPUCFG5:
  536. *v = GENMASK(31, 0);
  537. return 0;
  538. case LOONGARCH_CPUCFG6:
  539. if (cpu_has_pmp)
  540. *v = GENMASK(14, 0);
  541. else
  542. *v = 0;
  543. return 0;
  544. case LOONGARCH_CPUCFG16:
  545. *v = GENMASK(16, 0);
  546. return 0;
  547. case LOONGARCH_CPUCFG17 ... LOONGARCH_CPUCFG20:
  548. *v = GENMASK(30, 0);
  549. return 0;
  550. default:
  551. /*
  552. * CPUCFG bits should be zero if reserved by HW or not
  553. * supported by KVM.
  554. */
  555. *v = 0;
  556. return 0;
  557. }
  558. }
  559. static int kvm_check_cpucfg(int id, u64 val)
  560. {
  561. int ret;
  562. u64 mask = 0;
  563. ret = _kvm_get_cpucfg_mask(id, &mask);
  564. if (ret)
  565. return ret;
  566. if (val & ~mask)
  567. /* Unsupported features and/or the higher 32 bits should not be set */
  568. return -EINVAL;
  569. switch (id) {
  570. case LOONGARCH_CPUCFG2:
  571. if (!(val & CPUCFG2_LLFTP))
  572. /* Guests must have a constant timer */
  573. return -EINVAL;
  574. if ((val & CPUCFG2_FP) && (!(val & CPUCFG2_FPSP) || !(val & CPUCFG2_FPDP)))
  575. /* Single and double float point must both be set when FP is enabled */
  576. return -EINVAL;
  577. if ((val & CPUCFG2_LSX) && !(val & CPUCFG2_FP))
  578. /* LSX architecturally implies FP but val does not satisfy that */
  579. return -EINVAL;
  580. if ((val & CPUCFG2_LASX) && !(val & CPUCFG2_LSX))
  581. /* LASX architecturally implies LSX and FP but val does not satisfy that */
  582. return -EINVAL;
  583. return 0;
  584. case LOONGARCH_CPUCFG6:
  585. if (val & CPUCFG6_PMP) {
  586. u32 host = read_cpucfg(LOONGARCH_CPUCFG6);
  587. if ((val & CPUCFG6_PMBITS) != (host & CPUCFG6_PMBITS))
  588. return -EINVAL;
  589. if ((val & CPUCFG6_PMNUM) > (host & CPUCFG6_PMNUM))
  590. return -EINVAL;
  591. if ((val & CPUCFG6_UPM) && !(host & CPUCFG6_UPM))
  592. return -EINVAL;
  593. }
  594. return 0;
  595. default:
  596. /*
  597. * Values for the other CPUCFG IDs are not being further validated
  598. * besides the mask check above.
  599. */
  600. return 0;
  601. }
  602. }
  603. static int kvm_get_one_reg(struct kvm_vcpu *vcpu,
  604. const struct kvm_one_reg *reg, u64 *v)
  605. {
  606. int id, ret = 0;
  607. u64 type = reg->id & KVM_REG_LOONGARCH_MASK;
  608. switch (type) {
  609. case KVM_REG_LOONGARCH_CSR:
  610. id = KVM_GET_IOC_CSR_IDX(reg->id);
  611. ret = _kvm_getcsr(vcpu, id, v);
  612. break;
  613. case KVM_REG_LOONGARCH_CPUCFG:
  614. id = KVM_GET_IOC_CPUCFG_IDX(reg->id);
  615. if (id >= 0 && id < KVM_MAX_CPUCFG_REGS)
  616. *v = vcpu->arch.cpucfg[id];
  617. else
  618. ret = -EINVAL;
  619. break;
  620. case KVM_REG_LOONGARCH_LBT:
  621. if (!kvm_guest_has_lbt(&vcpu->arch))
  622. return -ENXIO;
  623. switch (reg->id) {
  624. case KVM_REG_LOONGARCH_LBT_SCR0:
  625. *v = vcpu->arch.lbt.scr0;
  626. break;
  627. case KVM_REG_LOONGARCH_LBT_SCR1:
  628. *v = vcpu->arch.lbt.scr1;
  629. break;
  630. case KVM_REG_LOONGARCH_LBT_SCR2:
  631. *v = vcpu->arch.lbt.scr2;
  632. break;
  633. case KVM_REG_LOONGARCH_LBT_SCR3:
  634. *v = vcpu->arch.lbt.scr3;
  635. break;
  636. case KVM_REG_LOONGARCH_LBT_EFLAGS:
  637. *v = vcpu->arch.lbt.eflags;
  638. break;
  639. case KVM_REG_LOONGARCH_LBT_FTOP:
  640. *v = vcpu->arch.fpu.ftop;
  641. break;
  642. default:
  643. ret = -EINVAL;
  644. break;
  645. }
  646. break;
  647. case KVM_REG_LOONGARCH_KVM:
  648. switch (reg->id) {
  649. case KVM_REG_LOONGARCH_COUNTER:
  650. *v = drdtime() + vcpu->kvm->arch.time_offset;
  651. break;
  652. case KVM_REG_LOONGARCH_DEBUG_INST:
  653. *v = INSN_HVCL | KVM_HCALL_SWDBG;
  654. break;
  655. default:
  656. ret = -EINVAL;
  657. break;
  658. }
  659. break;
  660. default:
  661. ret = -EINVAL;
  662. break;
  663. }
  664. return ret;
  665. }
  666. static int kvm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  667. {
  668. int ret = 0;
  669. u64 v, size = reg->id & KVM_REG_SIZE_MASK;
  670. switch (size) {
  671. case KVM_REG_SIZE_U64:
  672. ret = kvm_get_one_reg(vcpu, reg, &v);
  673. if (ret)
  674. return ret;
  675. ret = put_user(v, (u64 __user *)(long)reg->addr);
  676. break;
  677. default:
  678. ret = -EINVAL;
  679. break;
  680. }
  681. return ret;
  682. }
  683. static int kvm_set_one_reg(struct kvm_vcpu *vcpu,
  684. const struct kvm_one_reg *reg, u64 v)
  685. {
  686. int id, ret = 0;
  687. u64 type = reg->id & KVM_REG_LOONGARCH_MASK;
  688. switch (type) {
  689. case KVM_REG_LOONGARCH_CSR:
  690. id = KVM_GET_IOC_CSR_IDX(reg->id);
  691. ret = _kvm_setcsr(vcpu, id, v);
  692. break;
  693. case KVM_REG_LOONGARCH_CPUCFG:
  694. id = KVM_GET_IOC_CPUCFG_IDX(reg->id);
  695. ret = kvm_check_cpucfg(id, v);
  696. if (ret)
  697. break;
  698. vcpu->arch.cpucfg[id] = (u32)v;
  699. if (id == LOONGARCH_CPUCFG6)
  700. vcpu->arch.max_pmu_csrid =
  701. LOONGARCH_CSR_PERFCTRL0 + 2 * kvm_get_pmu_num(&vcpu->arch) + 1;
  702. break;
  703. case KVM_REG_LOONGARCH_LBT:
  704. if (!kvm_guest_has_lbt(&vcpu->arch))
  705. return -ENXIO;
  706. switch (reg->id) {
  707. case KVM_REG_LOONGARCH_LBT_SCR0:
  708. vcpu->arch.lbt.scr0 = v;
  709. break;
  710. case KVM_REG_LOONGARCH_LBT_SCR1:
  711. vcpu->arch.lbt.scr1 = v;
  712. break;
  713. case KVM_REG_LOONGARCH_LBT_SCR2:
  714. vcpu->arch.lbt.scr2 = v;
  715. break;
  716. case KVM_REG_LOONGARCH_LBT_SCR3:
  717. vcpu->arch.lbt.scr3 = v;
  718. break;
  719. case KVM_REG_LOONGARCH_LBT_EFLAGS:
  720. vcpu->arch.lbt.eflags = v;
  721. break;
  722. case KVM_REG_LOONGARCH_LBT_FTOP:
  723. vcpu->arch.fpu.ftop = v;
  724. break;
  725. default:
  726. ret = -EINVAL;
  727. break;
  728. }
  729. break;
  730. case KVM_REG_LOONGARCH_KVM:
  731. switch (reg->id) {
  732. case KVM_REG_LOONGARCH_COUNTER:
  733. /*
  734. * gftoffset is relative with board, not vcpu
  735. * only set for the first time for smp system
  736. */
  737. if (vcpu->vcpu_id == 0)
  738. vcpu->kvm->arch.time_offset = (signed long)(v - drdtime());
  739. break;
  740. case KVM_REG_LOONGARCH_VCPU_RESET:
  741. vcpu->arch.st.guest_addr = 0;
  742. memset(&vcpu->arch.irq_pending, 0, sizeof(vcpu->arch.irq_pending));
  743. memset(&vcpu->arch.irq_clear, 0, sizeof(vcpu->arch.irq_clear));
  744. break;
  745. default:
  746. ret = -EINVAL;
  747. break;
  748. }
  749. break;
  750. default:
  751. ret = -EINVAL;
  752. break;
  753. }
  754. return ret;
  755. }
  756. static int kvm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
  757. {
  758. int ret = 0;
  759. u64 v, size = reg->id & KVM_REG_SIZE_MASK;
  760. switch (size) {
  761. case KVM_REG_SIZE_U64:
  762. ret = get_user(v, (u64 __user *)(long)reg->addr);
  763. if (ret)
  764. return ret;
  765. break;
  766. default:
  767. return -EINVAL;
  768. }
  769. return kvm_set_one_reg(vcpu, reg, v);
  770. }
  771. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  772. {
  773. return -ENOIOCTLCMD;
  774. }
  775. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
  776. {
  777. return -ENOIOCTLCMD;
  778. }
  779. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  780. {
  781. int i;
  782. for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  783. regs->gpr[i] = vcpu->arch.gprs[i];
  784. regs->pc = vcpu->arch.pc;
  785. return 0;
  786. }
  787. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  788. {
  789. int i;
  790. for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
  791. vcpu->arch.gprs[i] = regs->gpr[i];
  792. vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
  793. vcpu->arch.pc = regs->pc;
  794. return 0;
  795. }
  796. static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
  797. struct kvm_enable_cap *cap)
  798. {
  799. /* FPU is enabled by default, will support LSX/LASX later. */
  800. return -EINVAL;
  801. }
  802. static int kvm_loongarch_cpucfg_has_attr(struct kvm_vcpu *vcpu,
  803. struct kvm_device_attr *attr)
  804. {
  805. switch (attr->attr) {
  806. case LOONGARCH_CPUCFG2:
  807. case LOONGARCH_CPUCFG6:
  808. return 0;
  809. case CPUCFG_KVM_FEATURE:
  810. return 0;
  811. default:
  812. return -ENXIO;
  813. }
  814. return -ENXIO;
  815. }
  816. static int kvm_loongarch_pvtime_has_attr(struct kvm_vcpu *vcpu,
  817. struct kvm_device_attr *attr)
  818. {
  819. if (!kvm_guest_has_pv_feature(vcpu, KVM_FEATURE_STEAL_TIME)
  820. || attr->attr != KVM_LOONGARCH_VCPU_PVTIME_GPA)
  821. return -ENXIO;
  822. return 0;
  823. }
  824. static int kvm_loongarch_vcpu_has_attr(struct kvm_vcpu *vcpu,
  825. struct kvm_device_attr *attr)
  826. {
  827. int ret = -ENXIO;
  828. switch (attr->group) {
  829. case KVM_LOONGARCH_VCPU_CPUCFG:
  830. ret = kvm_loongarch_cpucfg_has_attr(vcpu, attr);
  831. break;
  832. case KVM_LOONGARCH_VCPU_PVTIME_CTRL:
  833. ret = kvm_loongarch_pvtime_has_attr(vcpu, attr);
  834. break;
  835. default:
  836. break;
  837. }
  838. return ret;
  839. }
  840. static int kvm_loongarch_cpucfg_get_attr(struct kvm_vcpu *vcpu,
  841. struct kvm_device_attr *attr)
  842. {
  843. int ret = 0;
  844. uint64_t val;
  845. uint64_t __user *uaddr = (uint64_t __user *)attr->addr;
  846. switch (attr->attr) {
  847. case 0 ... (KVM_MAX_CPUCFG_REGS - 1):
  848. ret = _kvm_get_cpucfg_mask(attr->attr, &val);
  849. if (ret)
  850. return ret;
  851. break;
  852. case CPUCFG_KVM_FEATURE:
  853. val = vcpu->kvm->arch.pv_features & LOONGARCH_PV_FEAT_MASK;
  854. break;
  855. default:
  856. return -ENXIO;
  857. }
  858. put_user(val, uaddr);
  859. return ret;
  860. }
  861. static int kvm_loongarch_pvtime_get_attr(struct kvm_vcpu *vcpu,
  862. struct kvm_device_attr *attr)
  863. {
  864. u64 gpa;
  865. u64 __user *user = (u64 __user *)attr->addr;
  866. if (!kvm_guest_has_pv_feature(vcpu, KVM_FEATURE_STEAL_TIME)
  867. || attr->attr != KVM_LOONGARCH_VCPU_PVTIME_GPA)
  868. return -ENXIO;
  869. gpa = vcpu->arch.st.guest_addr;
  870. if (put_user(gpa, user))
  871. return -EFAULT;
  872. return 0;
  873. }
  874. static int kvm_loongarch_vcpu_get_attr(struct kvm_vcpu *vcpu,
  875. struct kvm_device_attr *attr)
  876. {
  877. int ret = -ENXIO;
  878. switch (attr->group) {
  879. case KVM_LOONGARCH_VCPU_CPUCFG:
  880. ret = kvm_loongarch_cpucfg_get_attr(vcpu, attr);
  881. break;
  882. case KVM_LOONGARCH_VCPU_PVTIME_CTRL:
  883. ret = kvm_loongarch_pvtime_get_attr(vcpu, attr);
  884. break;
  885. default:
  886. break;
  887. }
  888. return ret;
  889. }
  890. static int kvm_loongarch_cpucfg_set_attr(struct kvm_vcpu *vcpu,
  891. struct kvm_device_attr *attr)
  892. {
  893. u64 val, valid;
  894. u64 __user *user = (u64 __user *)attr->addr;
  895. struct kvm *kvm = vcpu->kvm;
  896. switch (attr->attr) {
  897. case CPUCFG_KVM_FEATURE:
  898. if (get_user(val, user))
  899. return -EFAULT;
  900. valid = LOONGARCH_PV_FEAT_MASK;
  901. if (val & ~valid)
  902. return -EINVAL;
  903. /* All vCPUs need set the same PV features */
  904. if ((kvm->arch.pv_features & LOONGARCH_PV_FEAT_UPDATED)
  905. && ((kvm->arch.pv_features & valid) != val))
  906. return -EINVAL;
  907. kvm->arch.pv_features = val | LOONGARCH_PV_FEAT_UPDATED;
  908. return 0;
  909. default:
  910. return -ENXIO;
  911. }
  912. }
  913. static int kvm_loongarch_pvtime_set_attr(struct kvm_vcpu *vcpu,
  914. struct kvm_device_attr *attr)
  915. {
  916. int idx, ret = 0;
  917. u64 gpa, __user *user = (u64 __user *)attr->addr;
  918. struct kvm *kvm = vcpu->kvm;
  919. if (!kvm_guest_has_pv_feature(vcpu, KVM_FEATURE_STEAL_TIME)
  920. || attr->attr != KVM_LOONGARCH_VCPU_PVTIME_GPA)
  921. return -ENXIO;
  922. if (get_user(gpa, user))
  923. return -EFAULT;
  924. if (gpa & ~(KVM_STEAL_PHYS_MASK | KVM_STEAL_PHYS_VALID))
  925. return -EINVAL;
  926. if (!(gpa & KVM_STEAL_PHYS_VALID)) {
  927. vcpu->arch.st.guest_addr = gpa;
  928. return 0;
  929. }
  930. /* Check the address is in a valid memslot */
  931. idx = srcu_read_lock(&kvm->srcu);
  932. if (kvm_is_error_hva(gfn_to_hva(kvm, gpa >> PAGE_SHIFT)))
  933. ret = -EINVAL;
  934. srcu_read_unlock(&kvm->srcu, idx);
  935. if (!ret) {
  936. vcpu->arch.st.guest_addr = gpa;
  937. vcpu->arch.st.last_steal = current->sched_info.run_delay;
  938. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  939. }
  940. return ret;
  941. }
  942. static int kvm_loongarch_vcpu_set_attr(struct kvm_vcpu *vcpu,
  943. struct kvm_device_attr *attr)
  944. {
  945. int ret = -ENXIO;
  946. switch (attr->group) {
  947. case KVM_LOONGARCH_VCPU_CPUCFG:
  948. ret = kvm_loongarch_cpucfg_set_attr(vcpu, attr);
  949. break;
  950. case KVM_LOONGARCH_VCPU_PVTIME_CTRL:
  951. ret = kvm_loongarch_pvtime_set_attr(vcpu, attr);
  952. break;
  953. default:
  954. break;
  955. }
  956. return ret;
  957. }
  958. long kvm_arch_vcpu_ioctl(struct file *filp,
  959. unsigned int ioctl, unsigned long arg)
  960. {
  961. long r;
  962. struct kvm_device_attr attr;
  963. void __user *argp = (void __user *)arg;
  964. struct kvm_vcpu *vcpu = filp->private_data;
  965. /*
  966. * Only software CSR should be modified
  967. *
  968. * If any hardware CSR register is modified, vcpu_load/vcpu_put pair
  969. * should be used. Since CSR registers owns by this vcpu, if switch
  970. * to other vcpus, other vcpus need reload CSR registers.
  971. *
  972. * If software CSR is modified, bit KVM_LARCH_HWCSR_USABLE should
  973. * be clear in vcpu->arch.aux_inuse, and vcpu_load will check
  974. * aux_inuse flag and reload CSR registers form software.
  975. */
  976. switch (ioctl) {
  977. case KVM_SET_ONE_REG:
  978. case KVM_GET_ONE_REG: {
  979. struct kvm_one_reg reg;
  980. r = -EFAULT;
  981. if (copy_from_user(&reg, argp, sizeof(reg)))
  982. break;
  983. if (ioctl == KVM_SET_ONE_REG) {
  984. r = kvm_set_reg(vcpu, &reg);
  985. vcpu->arch.aux_inuse &= ~KVM_LARCH_HWCSR_USABLE;
  986. } else
  987. r = kvm_get_reg(vcpu, &reg);
  988. break;
  989. }
  990. case KVM_ENABLE_CAP: {
  991. struct kvm_enable_cap cap;
  992. r = -EFAULT;
  993. if (copy_from_user(&cap, argp, sizeof(cap)))
  994. break;
  995. r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
  996. break;
  997. }
  998. case KVM_HAS_DEVICE_ATTR: {
  999. r = -EFAULT;
  1000. if (copy_from_user(&attr, argp, sizeof(attr)))
  1001. break;
  1002. r = kvm_loongarch_vcpu_has_attr(vcpu, &attr);
  1003. break;
  1004. }
  1005. case KVM_GET_DEVICE_ATTR: {
  1006. r = -EFAULT;
  1007. if (copy_from_user(&attr, argp, sizeof(attr)))
  1008. break;
  1009. r = kvm_loongarch_vcpu_get_attr(vcpu, &attr);
  1010. break;
  1011. }
  1012. case KVM_SET_DEVICE_ATTR: {
  1013. r = -EFAULT;
  1014. if (copy_from_user(&attr, argp, sizeof(attr)))
  1015. break;
  1016. r = kvm_loongarch_vcpu_set_attr(vcpu, &attr);
  1017. break;
  1018. }
  1019. default:
  1020. r = -ENOIOCTLCMD;
  1021. break;
  1022. }
  1023. return r;
  1024. }
  1025. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1026. {
  1027. int i = 0;
  1028. fpu->fcc = vcpu->arch.fpu.fcc;
  1029. fpu->fcsr = vcpu->arch.fpu.fcsr;
  1030. for (i = 0; i < NUM_FPU_REGS; i++)
  1031. memcpy(&fpu->fpr[i], &vcpu->arch.fpu.fpr[i], FPU_REG_WIDTH / 64);
  1032. return 0;
  1033. }
  1034. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  1035. {
  1036. int i = 0;
  1037. vcpu->arch.fpu.fcc = fpu->fcc;
  1038. vcpu->arch.fpu.fcsr = fpu->fcsr;
  1039. for (i = 0; i < NUM_FPU_REGS; i++)
  1040. memcpy(&vcpu->arch.fpu.fpr[i], &fpu->fpr[i], FPU_REG_WIDTH / 64);
  1041. return 0;
  1042. }
  1043. #ifdef CONFIG_CPU_HAS_LBT
  1044. int kvm_own_lbt(struct kvm_vcpu *vcpu)
  1045. {
  1046. if (!kvm_guest_has_lbt(&vcpu->arch))
  1047. return -EINVAL;
  1048. preempt_disable();
  1049. set_csr_euen(CSR_EUEN_LBTEN);
  1050. _restore_lbt(&vcpu->arch.lbt);
  1051. vcpu->arch.aux_inuse |= KVM_LARCH_LBT;
  1052. preempt_enable();
  1053. return 0;
  1054. }
  1055. static void kvm_lose_lbt(struct kvm_vcpu *vcpu)
  1056. {
  1057. preempt_disable();
  1058. if (vcpu->arch.aux_inuse & KVM_LARCH_LBT) {
  1059. _save_lbt(&vcpu->arch.lbt);
  1060. clear_csr_euen(CSR_EUEN_LBTEN);
  1061. vcpu->arch.aux_inuse &= ~KVM_LARCH_LBT;
  1062. }
  1063. preempt_enable();
  1064. }
  1065. static void kvm_check_fcsr(struct kvm_vcpu *vcpu, unsigned long fcsr)
  1066. {
  1067. /*
  1068. * If TM is enabled, top register save/restore will
  1069. * cause lbt exception, here enable lbt in advance
  1070. */
  1071. if (fcsr & FPU_CSR_TM)
  1072. kvm_own_lbt(vcpu);
  1073. }
  1074. static void kvm_check_fcsr_alive(struct kvm_vcpu *vcpu)
  1075. {
  1076. if (vcpu->arch.aux_inuse & KVM_LARCH_FPU) {
  1077. if (vcpu->arch.aux_inuse & KVM_LARCH_LBT)
  1078. return;
  1079. kvm_check_fcsr(vcpu, read_fcsr(LOONGARCH_FCSR0));
  1080. }
  1081. }
  1082. #else
  1083. static inline void kvm_lose_lbt(struct kvm_vcpu *vcpu) { }
  1084. static inline void kvm_check_fcsr(struct kvm_vcpu *vcpu, unsigned long fcsr) { }
  1085. static inline void kvm_check_fcsr_alive(struct kvm_vcpu *vcpu) { }
  1086. #endif
  1087. /* Enable FPU and restore context */
  1088. void kvm_own_fpu(struct kvm_vcpu *vcpu)
  1089. {
  1090. preempt_disable();
  1091. /*
  1092. * Enable FPU for guest
  1093. * Set FR and FRE according to guest context
  1094. */
  1095. kvm_check_fcsr(vcpu, vcpu->arch.fpu.fcsr);
  1096. set_csr_euen(CSR_EUEN_FPEN);
  1097. kvm_restore_fpu(&vcpu->arch.fpu);
  1098. vcpu->arch.aux_inuse |= KVM_LARCH_FPU;
  1099. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
  1100. preempt_enable();
  1101. }
  1102. #ifdef CONFIG_CPU_HAS_LSX
  1103. /* Enable LSX and restore context */
  1104. int kvm_own_lsx(struct kvm_vcpu *vcpu)
  1105. {
  1106. if (!kvm_guest_has_fpu(&vcpu->arch) || !kvm_guest_has_lsx(&vcpu->arch))
  1107. return -EINVAL;
  1108. preempt_disable();
  1109. /* Enable LSX for guest */
  1110. kvm_check_fcsr(vcpu, vcpu->arch.fpu.fcsr);
  1111. set_csr_euen(CSR_EUEN_LSXEN | CSR_EUEN_FPEN);
  1112. switch (vcpu->arch.aux_inuse & KVM_LARCH_FPU) {
  1113. case KVM_LARCH_FPU:
  1114. /*
  1115. * Guest FPU state already loaded,
  1116. * only restore upper LSX state
  1117. */
  1118. _restore_lsx_upper(&vcpu->arch.fpu);
  1119. break;
  1120. default:
  1121. /* Neither FP or LSX already active,
  1122. * restore full LSX state
  1123. */
  1124. kvm_restore_lsx(&vcpu->arch.fpu);
  1125. break;
  1126. }
  1127. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_LSX);
  1128. vcpu->arch.aux_inuse |= KVM_LARCH_LSX | KVM_LARCH_FPU;
  1129. preempt_enable();
  1130. return 0;
  1131. }
  1132. #endif
  1133. #ifdef CONFIG_CPU_HAS_LASX
  1134. /* Enable LASX and restore context */
  1135. int kvm_own_lasx(struct kvm_vcpu *vcpu)
  1136. {
  1137. if (!kvm_guest_has_fpu(&vcpu->arch) || !kvm_guest_has_lsx(&vcpu->arch) || !kvm_guest_has_lasx(&vcpu->arch))
  1138. return -EINVAL;
  1139. preempt_disable();
  1140. kvm_check_fcsr(vcpu, vcpu->arch.fpu.fcsr);
  1141. set_csr_euen(CSR_EUEN_FPEN | CSR_EUEN_LSXEN | CSR_EUEN_LASXEN);
  1142. switch (vcpu->arch.aux_inuse & (KVM_LARCH_FPU | KVM_LARCH_LSX)) {
  1143. case KVM_LARCH_LSX:
  1144. case KVM_LARCH_LSX | KVM_LARCH_FPU:
  1145. /* Guest LSX state already loaded, only restore upper LASX state */
  1146. _restore_lasx_upper(&vcpu->arch.fpu);
  1147. break;
  1148. case KVM_LARCH_FPU:
  1149. /* Guest FP state already loaded, only restore upper LSX & LASX state */
  1150. _restore_lsx_upper(&vcpu->arch.fpu);
  1151. _restore_lasx_upper(&vcpu->arch.fpu);
  1152. break;
  1153. default:
  1154. /* Neither FP or LSX already active, restore full LASX state */
  1155. kvm_restore_lasx(&vcpu->arch.fpu);
  1156. break;
  1157. }
  1158. trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_LASX);
  1159. vcpu->arch.aux_inuse |= KVM_LARCH_LASX | KVM_LARCH_LSX | KVM_LARCH_FPU;
  1160. preempt_enable();
  1161. return 0;
  1162. }
  1163. #endif
  1164. /* Save context and disable FPU */
  1165. void kvm_lose_fpu(struct kvm_vcpu *vcpu)
  1166. {
  1167. preempt_disable();
  1168. kvm_check_fcsr_alive(vcpu);
  1169. if (vcpu->arch.aux_inuse & KVM_LARCH_LASX) {
  1170. kvm_save_lasx(&vcpu->arch.fpu);
  1171. vcpu->arch.aux_inuse &= ~(KVM_LARCH_LSX | KVM_LARCH_FPU | KVM_LARCH_LASX);
  1172. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_LASX);
  1173. /* Disable LASX & LSX & FPU */
  1174. clear_csr_euen(CSR_EUEN_FPEN | CSR_EUEN_LSXEN | CSR_EUEN_LASXEN);
  1175. } else if (vcpu->arch.aux_inuse & KVM_LARCH_LSX) {
  1176. kvm_save_lsx(&vcpu->arch.fpu);
  1177. vcpu->arch.aux_inuse &= ~(KVM_LARCH_LSX | KVM_LARCH_FPU);
  1178. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_LSX);
  1179. /* Disable LSX & FPU */
  1180. clear_csr_euen(CSR_EUEN_FPEN | CSR_EUEN_LSXEN);
  1181. } else if (vcpu->arch.aux_inuse & KVM_LARCH_FPU) {
  1182. kvm_save_fpu(&vcpu->arch.fpu);
  1183. vcpu->arch.aux_inuse &= ~KVM_LARCH_FPU;
  1184. trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
  1185. /* Disable FPU */
  1186. clear_csr_euen(CSR_EUEN_FPEN);
  1187. }
  1188. kvm_lose_lbt(vcpu);
  1189. preempt_enable();
  1190. }
  1191. int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
  1192. {
  1193. int intr = (int)irq->irq;
  1194. if (intr > 0)
  1195. kvm_queue_irq(vcpu, intr);
  1196. else if (intr < 0)
  1197. kvm_dequeue_irq(vcpu, -intr);
  1198. else {
  1199. kvm_err("%s: invalid interrupt ioctl %d\n", __func__, irq->irq);
  1200. return -EINVAL;
  1201. }
  1202. kvm_vcpu_kick(vcpu);
  1203. return 0;
  1204. }
  1205. long kvm_arch_vcpu_async_ioctl(struct file *filp,
  1206. unsigned int ioctl, unsigned long arg)
  1207. {
  1208. void __user *argp = (void __user *)arg;
  1209. struct kvm_vcpu *vcpu = filp->private_data;
  1210. if (ioctl == KVM_INTERRUPT) {
  1211. struct kvm_interrupt irq;
  1212. if (copy_from_user(&irq, argp, sizeof(irq)))
  1213. return -EFAULT;
  1214. kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__, irq.irq);
  1215. return kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1216. }
  1217. return -ENOIOCTLCMD;
  1218. }
  1219. int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
  1220. {
  1221. return 0;
  1222. }
  1223. int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
  1224. {
  1225. unsigned long timer_hz;
  1226. struct loongarch_csrs *csr;
  1227. vcpu->arch.vpid = 0;
  1228. vcpu->arch.flush_gpa = INVALID_GPA;
  1229. hrtimer_init(&vcpu->arch.swtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
  1230. vcpu->arch.swtimer.function = kvm_swtimer_wakeup;
  1231. vcpu->arch.handle_exit = kvm_handle_exit;
  1232. vcpu->arch.guest_eentry = (unsigned long)kvm_loongarch_ops->exc_entry;
  1233. vcpu->arch.csr = kzalloc(sizeof(struct loongarch_csrs), GFP_KERNEL);
  1234. if (!vcpu->arch.csr)
  1235. return -ENOMEM;
  1236. /*
  1237. * All kvm exceptions share one exception entry, and host <-> guest
  1238. * switch also switch ECFG.VS field, keep host ECFG.VS info here.
  1239. */
  1240. vcpu->arch.host_ecfg = (read_csr_ecfg() & CSR_ECFG_VS);
  1241. /* Init */
  1242. vcpu->arch.last_sched_cpu = -1;
  1243. /*
  1244. * Initialize guest register state to valid architectural reset state.
  1245. */
  1246. timer_hz = calc_const_freq();
  1247. kvm_init_timer(vcpu, timer_hz);
  1248. /* Set Initialize mode for guest */
  1249. csr = vcpu->arch.csr;
  1250. kvm_write_sw_gcsr(csr, LOONGARCH_CSR_CRMD, CSR_CRMD_DA);
  1251. /* Set cpuid */
  1252. kvm_write_sw_gcsr(csr, LOONGARCH_CSR_TMID, vcpu->vcpu_id);
  1253. kvm_write_sw_gcsr(csr, LOONGARCH_CSR_CPUID, KVM_MAX_PHYID);
  1254. /* Start with no pending virtual guest interrupts */
  1255. csr->csrs[LOONGARCH_CSR_GINTC] = 0;
  1256. return 0;
  1257. }
  1258. void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
  1259. {
  1260. }
  1261. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  1262. {
  1263. int cpu;
  1264. struct kvm_context *context;
  1265. hrtimer_cancel(&vcpu->arch.swtimer);
  1266. kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
  1267. kvm_drop_cpuid(vcpu);
  1268. kfree(vcpu->arch.csr);
  1269. /*
  1270. * If the vCPU is freed and reused as another vCPU, we don't want the
  1271. * matching pointer wrongly hanging around in last_vcpu.
  1272. */
  1273. for_each_possible_cpu(cpu) {
  1274. context = per_cpu_ptr(vcpu->kvm->arch.vmcs, cpu);
  1275. if (context->last_vcpu == vcpu)
  1276. context->last_vcpu = NULL;
  1277. }
  1278. }
  1279. static int _kvm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1280. {
  1281. bool migrated;
  1282. struct kvm_context *context;
  1283. struct loongarch_csrs *csr = vcpu->arch.csr;
  1284. /*
  1285. * Have we migrated to a different CPU?
  1286. * If so, any old guest TLB state may be stale.
  1287. */
  1288. migrated = (vcpu->arch.last_sched_cpu != cpu);
  1289. /*
  1290. * Was this the last vCPU to run on this CPU?
  1291. * If not, any old guest state from this vCPU will have been clobbered.
  1292. */
  1293. context = per_cpu_ptr(vcpu->kvm->arch.vmcs, cpu);
  1294. if (migrated || (context->last_vcpu != vcpu))
  1295. vcpu->arch.aux_inuse &= ~KVM_LARCH_HWCSR_USABLE;
  1296. context->last_vcpu = vcpu;
  1297. /* Restore timer state regardless */
  1298. kvm_restore_timer(vcpu);
  1299. /* Control guest page CCA attribute */
  1300. change_csr_gcfg(CSR_GCFG_MATC_MASK, CSR_GCFG_MATC_ROOT);
  1301. kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
  1302. /* Restore hardware PMU CSRs */
  1303. kvm_restore_pmu(vcpu);
  1304. /* Don't bother restoring registers multiple times unless necessary */
  1305. if (vcpu->arch.aux_inuse & KVM_LARCH_HWCSR_USABLE)
  1306. return 0;
  1307. write_csr_gcntc((ulong)vcpu->kvm->arch.time_offset);
  1308. /* Restore guest CSR registers */
  1309. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_CRMD);
  1310. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PRMD);
  1311. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_EUEN);
  1312. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_MISC);
  1313. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_ECFG);
  1314. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_ERA);
  1315. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_BADV);
  1316. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_BADI);
  1317. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_EENTRY);
  1318. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBIDX);
  1319. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBEHI);
  1320. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBELO0);
  1321. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBELO1);
  1322. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_ASID);
  1323. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PGDL);
  1324. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PGDH);
  1325. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PWCTL0);
  1326. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_PWCTL1);
  1327. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_STLBPGSIZE);
  1328. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_RVACFG);
  1329. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_CPUID);
  1330. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS0);
  1331. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS1);
  1332. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS2);
  1333. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS3);
  1334. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS4);
  1335. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS5);
  1336. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS6);
  1337. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_KS7);
  1338. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TMID);
  1339. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_CNTC);
  1340. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRENTRY);
  1341. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRBADV);
  1342. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRERA);
  1343. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRSAVE);
  1344. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO0);
  1345. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO1);
  1346. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBREHI);
  1347. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_TLBRPRMD);
  1348. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN0);
  1349. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN1);
  1350. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN2);
  1351. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_DMWIN3);
  1352. kvm_restore_hw_gcsr(csr, LOONGARCH_CSR_LLBCTL);
  1353. /* Restore Root.GINTC from unused Guest.GINTC register */
  1354. write_csr_gintc(csr->csrs[LOONGARCH_CSR_GINTC]);
  1355. /*
  1356. * We should clear linked load bit to break interrupted atomics. This
  1357. * prevents a SC on the next vCPU from succeeding by matching a LL on
  1358. * the previous vCPU.
  1359. */
  1360. if (vcpu->kvm->created_vcpus > 1)
  1361. set_gcsr_llbctl(CSR_LLBCTL_WCLLB);
  1362. vcpu->arch.aux_inuse |= KVM_LARCH_HWCSR_USABLE;
  1363. return 0;
  1364. }
  1365. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1366. {
  1367. unsigned long flags;
  1368. local_irq_save(flags);
  1369. /* Restore guest state to registers */
  1370. _kvm_vcpu_load(vcpu, cpu);
  1371. local_irq_restore(flags);
  1372. }
  1373. static int _kvm_vcpu_put(struct kvm_vcpu *vcpu, int cpu)
  1374. {
  1375. struct loongarch_csrs *csr = vcpu->arch.csr;
  1376. kvm_lose_fpu(vcpu);
  1377. /*
  1378. * Update CSR state from hardware if software CSR state is stale,
  1379. * most CSR registers are kept unchanged during process context
  1380. * switch except CSR registers like remaining timer tick value and
  1381. * injected interrupt state.
  1382. */
  1383. if (vcpu->arch.aux_inuse & KVM_LARCH_SWCSR_LATEST)
  1384. goto out;
  1385. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_CRMD);
  1386. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRMD);
  1387. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_EUEN);
  1388. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_MISC);
  1389. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_ECFG);
  1390. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_ERA);
  1391. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_BADV);
  1392. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_BADI);
  1393. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_EENTRY);
  1394. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBIDX);
  1395. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBEHI);
  1396. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBELO0);
  1397. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBELO1);
  1398. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_ASID);
  1399. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PGDL);
  1400. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PGDH);
  1401. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PWCTL0);
  1402. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PWCTL1);
  1403. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_STLBPGSIZE);
  1404. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_RVACFG);
  1405. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_CPUID);
  1406. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRCFG1);
  1407. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRCFG2);
  1408. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_PRCFG3);
  1409. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS0);
  1410. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS1);
  1411. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS2);
  1412. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS3);
  1413. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS4);
  1414. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS5);
  1415. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS6);
  1416. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_KS7);
  1417. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TMID);
  1418. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_CNTC);
  1419. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_LLBCTL);
  1420. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRENTRY);
  1421. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRBADV);
  1422. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRERA);
  1423. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRSAVE);
  1424. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO0);
  1425. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRELO1);
  1426. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBREHI);
  1427. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_TLBRPRMD);
  1428. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN0);
  1429. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN1);
  1430. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN2);
  1431. kvm_save_hw_gcsr(csr, LOONGARCH_CSR_DMWIN3);
  1432. vcpu->arch.aux_inuse |= KVM_LARCH_SWCSR_LATEST;
  1433. out:
  1434. kvm_save_timer(vcpu);
  1435. /* Save Root.GINTC into unused Guest.GINTC register */
  1436. csr->csrs[LOONGARCH_CSR_GINTC] = read_csr_gintc();
  1437. return 0;
  1438. }
  1439. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1440. {
  1441. int cpu;
  1442. unsigned long flags;
  1443. local_irq_save(flags);
  1444. cpu = smp_processor_id();
  1445. vcpu->arch.last_sched_cpu = cpu;
  1446. /* Save guest state in registers */
  1447. _kvm_vcpu_put(vcpu, cpu);
  1448. local_irq_restore(flags);
  1449. }
  1450. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
  1451. {
  1452. int r = -EINTR;
  1453. struct kvm_run *run = vcpu->run;
  1454. if (vcpu->mmio_needed) {
  1455. if (!vcpu->mmio_is_write)
  1456. kvm_complete_mmio_read(vcpu, run);
  1457. vcpu->mmio_needed = 0;
  1458. }
  1459. if (run->exit_reason == KVM_EXIT_LOONGARCH_IOCSR) {
  1460. if (!run->iocsr_io.is_write)
  1461. kvm_complete_iocsr_read(vcpu, run);
  1462. }
  1463. if (!vcpu->wants_to_run)
  1464. return r;
  1465. /* Clear exit_reason */
  1466. run->exit_reason = KVM_EXIT_UNKNOWN;
  1467. lose_fpu(1);
  1468. vcpu_load(vcpu);
  1469. kvm_sigset_activate(vcpu);
  1470. r = kvm_pre_enter_guest(vcpu);
  1471. if (r != RESUME_GUEST)
  1472. goto out;
  1473. guest_timing_enter_irqoff();
  1474. guest_state_enter_irqoff();
  1475. trace_kvm_enter(vcpu);
  1476. r = kvm_loongarch_ops->enter_guest(run, vcpu);
  1477. trace_kvm_out(vcpu);
  1478. /*
  1479. * Guest exit is already recorded at kvm_handle_exit()
  1480. * return value must not be RESUME_GUEST
  1481. */
  1482. local_irq_enable();
  1483. out:
  1484. kvm_sigset_deactivate(vcpu);
  1485. vcpu_put(vcpu);
  1486. return r;
  1487. }