process.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * OpenRISC process.c
  4. *
  5. * Linux architectural port borrowing liberally from similar works of
  6. * others. All original copyrights apply as per the original source
  7. * declaration.
  8. *
  9. * Modifications for the OpenRISC architecture:
  10. * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
  11. * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
  12. *
  13. * This file handles the architecture-dependent parts of process handling...
  14. */
  15. #define __KERNEL_SYSCALLS__
  16. #include <linux/cpu.h>
  17. #include <linux/errno.h>
  18. #include <linux/sched.h>
  19. #include <linux/sched/debug.h>
  20. #include <linux/sched/task.h>
  21. #include <linux/sched/task_stack.h>
  22. #include <linux/kernel.h>
  23. #include <linux/export.h>
  24. #include <linux/mm.h>
  25. #include <linux/stddef.h>
  26. #include <linux/unistd.h>
  27. #include <linux/ptrace.h>
  28. #include <linux/slab.h>
  29. #include <linux/elfcore.h>
  30. #include <linux/interrupt.h>
  31. #include <linux/delay.h>
  32. #include <linux/init_task.h>
  33. #include <linux/mqueue.h>
  34. #include <linux/fs.h>
  35. #include <linux/reboot.h>
  36. #include <linux/uaccess.h>
  37. #include <asm/fpu.h>
  38. #include <asm/io.h>
  39. #include <asm/processor.h>
  40. #include <asm/spr_defs.h>
  41. #include <asm/switch_to.h>
  42. #include <linux/smp.h>
  43. /*
  44. * Pointer to Current thread info structure.
  45. *
  46. * Used at user space -> kernel transitions.
  47. */
  48. struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
  49. void machine_restart(char *cmd)
  50. {
  51. do_kernel_restart(cmd);
  52. __asm__("l.nop 13");
  53. /* Give a grace period for failure to restart of 1s */
  54. mdelay(1000);
  55. /* Whoops - the platform was unable to reboot. Tell the user! */
  56. pr_emerg("Reboot failed -- System halted\n");
  57. while (1);
  58. }
  59. /*
  60. * This is used if a sys-off handler was not set by a power management
  61. * driver, in this case we can assume we are on a simulator. On
  62. * OpenRISC simulators l.nop 1 will trigger the simulator exit.
  63. */
  64. static void default_power_off(void)
  65. {
  66. __asm__("l.nop 1");
  67. }
  68. /*
  69. * Similar to machine_power_off, but don't shut off power. Add code
  70. * here to freeze the system for e.g. post-mortem debug purpose when
  71. * possible. This halt has nothing to do with the idle halt.
  72. */
  73. void machine_halt(void)
  74. {
  75. printk(KERN_INFO "*** MACHINE HALT ***\n");
  76. __asm__("l.nop 1");
  77. }
  78. /* If or when software power-off is implemented, add code here. */
  79. void machine_power_off(void)
  80. {
  81. printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
  82. do_kernel_power_off();
  83. default_power_off();
  84. }
  85. /*
  86. * Send the doze signal to the cpu if available.
  87. * Make sure, that all interrupts are enabled
  88. */
  89. void arch_cpu_idle(void)
  90. {
  91. raw_local_irq_enable();
  92. if (mfspr(SPR_UPR) & SPR_UPR_PMP)
  93. mtspr(SPR_PMR, mfspr(SPR_PMR) | SPR_PMR_DME);
  94. raw_local_irq_disable();
  95. }
  96. void (*pm_power_off)(void) = NULL;
  97. EXPORT_SYMBOL(pm_power_off);
  98. /*
  99. * When a process does an "exec", machine state like FPU and debug
  100. * registers need to be reset. This is a hook function for that.
  101. * Currently we don't have any such state to reset, so this is empty.
  102. */
  103. void flush_thread(void)
  104. {
  105. }
  106. void show_regs(struct pt_regs *regs)
  107. {
  108. show_regs_print_info(KERN_DEFAULT);
  109. /* __PHX__ cleanup this mess */
  110. show_registers(regs);
  111. }
  112. /*
  113. * Copy the thread-specific (arch specific) info from the current
  114. * process to the new one p
  115. */
  116. extern asmlinkage void ret_from_fork(void);
  117. /*
  118. * copy_thread
  119. * @clone_flags: flags
  120. * @usp: user stack pointer or fn for kernel thread
  121. * @arg: arg to fn for kernel thread; always NULL for userspace thread
  122. * @p: the newly created task
  123. * @tls: the Thread Local Storage pointer for the new process
  124. *
  125. * At the top of a newly initialized kernel stack are two stacked pt_reg
  126. * structures. The first (topmost) is the userspace context of the thread.
  127. * The second is the kernelspace context of the thread.
  128. *
  129. * A kernel thread will not be returning to userspace, so the topmost pt_regs
  130. * struct can be uninitialized; it _does_ need to exist, though, because
  131. * a kernel thread can become a userspace thread by doing a kernel_execve, in
  132. * which case the topmost context will be initialized and used for 'returning'
  133. * to userspace.
  134. *
  135. * The second pt_reg struct needs to be initialized to 'return' to
  136. * ret_from_fork. A kernel thread will need to set r20 to the address of
  137. * a function to call into (with arg in r22); userspace threads need to set
  138. * r20 to NULL in which case ret_from_fork will just continue a return to
  139. * userspace.
  140. *
  141. * A kernel thread 'fn' may return; this is effectively what happens when
  142. * kernel_execve is called. In that case, the userspace pt_regs must have
  143. * been initialized (which kernel_execve takes care of, see start_thread
  144. * below); ret_from_fork will then continue its execution causing the
  145. * 'kernel thread' to return to userspace as a userspace thread.
  146. */
  147. int
  148. copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
  149. {
  150. unsigned long clone_flags = args->flags;
  151. unsigned long usp = args->stack;
  152. unsigned long tls = args->tls;
  153. struct pt_regs *userregs;
  154. struct pt_regs *kregs;
  155. unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
  156. unsigned long top_of_kernel_stack;
  157. top_of_kernel_stack = sp;
  158. /* Locate userspace context on stack... */
  159. sp -= STACK_FRAME_OVERHEAD; /* redzone */
  160. sp -= sizeof(struct pt_regs);
  161. userregs = (struct pt_regs *) sp;
  162. /* ...and kernel context */
  163. sp -= STACK_FRAME_OVERHEAD; /* redzone */
  164. sp -= sizeof(struct pt_regs);
  165. kregs = (struct pt_regs *)sp;
  166. if (unlikely(args->fn)) {
  167. memset(kregs, 0, sizeof(struct pt_regs));
  168. kregs->gpr[20] = (unsigned long)args->fn;
  169. kregs->gpr[22] = (unsigned long)args->fn_arg;
  170. } else {
  171. *userregs = *current_pt_regs();
  172. if (usp)
  173. userregs->sp = usp;
  174. /*
  175. * For CLONE_SETTLS set "tp" (r10) to the TLS pointer.
  176. */
  177. if (clone_flags & CLONE_SETTLS)
  178. userregs->gpr[10] = tls;
  179. userregs->gpr[11] = 0; /* Result from fork() */
  180. kregs->gpr[20] = 0; /* Userspace thread */
  181. }
  182. /*
  183. * _switch wants the kernel stack page in pt_regs->sp so that it
  184. * can restore it to thread_info->ksp... see _switch for details.
  185. */
  186. kregs->sp = top_of_kernel_stack;
  187. kregs->gpr[9] = (unsigned long)ret_from_fork;
  188. task_thread_info(p)->ksp = (unsigned long)kregs;
  189. return 0;
  190. }
  191. /*
  192. * Set up a thread for executing a new program
  193. */
  194. void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
  195. {
  196. unsigned long sr = mfspr(SPR_SR) & ~SPR_SR_SM;
  197. memset(regs, 0, sizeof(struct pt_regs));
  198. regs->pc = pc;
  199. regs->sr = sr;
  200. regs->sp = sp;
  201. }
  202. extern struct thread_info *_switch(struct thread_info *old_ti,
  203. struct thread_info *new_ti);
  204. extern int lwa_flag;
  205. struct task_struct *__switch_to(struct task_struct *old,
  206. struct task_struct *new)
  207. {
  208. struct task_struct *last;
  209. struct thread_info *new_ti, *old_ti;
  210. unsigned long flags;
  211. local_irq_save(flags);
  212. save_fpu(current);
  213. /* current_set is an array of saved current pointers
  214. * (one for each cpu). we need them at user->kernel transition,
  215. * while we save them at kernel->user transition
  216. */
  217. new_ti = new->stack;
  218. old_ti = old->stack;
  219. lwa_flag = 0;
  220. current_thread_info_set[smp_processor_id()] = new_ti;
  221. last = (_switch(old_ti, new_ti))->task;
  222. restore_fpu(current);
  223. local_irq_restore(flags);
  224. return last;
  225. }
  226. /*
  227. * Write out registers in core dump format, as defined by the
  228. * struct user_regs_struct
  229. */
  230. void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
  231. {
  232. dest[0] = 0; /* r0 */
  233. memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
  234. dest[32] = regs->pc;
  235. dest[33] = regs->sr;
  236. dest[34] = 0;
  237. dest[35] = 0;
  238. }
  239. unsigned long __get_wchan(struct task_struct *p)
  240. {
  241. /* TODO */
  242. return 0;
  243. }