book3s_paired_singles.c 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. *
  4. * Copyright Novell Inc 2010
  5. *
  6. * Authors: Alexander Graf <agraf@suse.de>
  7. */
  8. #include <asm/kvm.h>
  9. #include <asm/kvm_ppc.h>
  10. #include <asm/disassemble.h>
  11. #include <asm/kvm_book3s.h>
  12. #include <asm/kvm_fpu.h>
  13. #include <asm/reg.h>
  14. #include <asm/cacheflush.h>
  15. #include <asm/switch_to.h>
  16. #include <linux/vmalloc.h>
  17. /* #define DEBUG */
  18. #ifdef DEBUG
  19. #define dprintk printk
  20. #else
  21. #define dprintk(...) do { } while(0);
  22. #endif
  23. #define OP_LFS 48
  24. #define OP_LFSU 49
  25. #define OP_LFD 50
  26. #define OP_LFDU 51
  27. #define OP_STFS 52
  28. #define OP_STFSU 53
  29. #define OP_STFD 54
  30. #define OP_STFDU 55
  31. #define OP_PSQ_L 56
  32. #define OP_PSQ_LU 57
  33. #define OP_PSQ_ST 60
  34. #define OP_PSQ_STU 61
  35. #define OP_31_LFSX 535
  36. #define OP_31_LFSUX 567
  37. #define OP_31_LFDX 599
  38. #define OP_31_LFDUX 631
  39. #define OP_31_STFSX 663
  40. #define OP_31_STFSUX 695
  41. #define OP_31_STFX 727
  42. #define OP_31_STFUX 759
  43. #define OP_31_LWIZX 887
  44. #define OP_31_STFIWX 983
  45. #define OP_59_FADDS 21
  46. #define OP_59_FSUBS 20
  47. #define OP_59_FSQRTS 22
  48. #define OP_59_FDIVS 18
  49. #define OP_59_FRES 24
  50. #define OP_59_FMULS 25
  51. #define OP_59_FRSQRTES 26
  52. #define OP_59_FMSUBS 28
  53. #define OP_59_FMADDS 29
  54. #define OP_59_FNMSUBS 30
  55. #define OP_59_FNMADDS 31
  56. #define OP_63_FCMPU 0
  57. #define OP_63_FCPSGN 8
  58. #define OP_63_FRSP 12
  59. #define OP_63_FCTIW 14
  60. #define OP_63_FCTIWZ 15
  61. #define OP_63_FDIV 18
  62. #define OP_63_FADD 21
  63. #define OP_63_FSQRT 22
  64. #define OP_63_FSEL 23
  65. #define OP_63_FRE 24
  66. #define OP_63_FMUL 25
  67. #define OP_63_FRSQRTE 26
  68. #define OP_63_FMSUB 28
  69. #define OP_63_FMADD 29
  70. #define OP_63_FNMSUB 30
  71. #define OP_63_FNMADD 31
  72. #define OP_63_FCMPO 32
  73. #define OP_63_MTFSB1 38 // XXX
  74. #define OP_63_FSUB 20
  75. #define OP_63_FNEG 40
  76. #define OP_63_MCRFS 64
  77. #define OP_63_MTFSB0 70
  78. #define OP_63_FMR 72
  79. #define OP_63_MTFSFI 134
  80. #define OP_63_FABS 264
  81. #define OP_63_MFFS 583
  82. #define OP_63_MTFSF 711
  83. #define OP_4X_PS_CMPU0 0
  84. #define OP_4X_PSQ_LX 6
  85. #define OP_4XW_PSQ_STX 7
  86. #define OP_4A_PS_SUM0 10
  87. #define OP_4A_PS_SUM1 11
  88. #define OP_4A_PS_MULS0 12
  89. #define OP_4A_PS_MULS1 13
  90. #define OP_4A_PS_MADDS0 14
  91. #define OP_4A_PS_MADDS1 15
  92. #define OP_4A_PS_DIV 18
  93. #define OP_4A_PS_SUB 20
  94. #define OP_4A_PS_ADD 21
  95. #define OP_4A_PS_SEL 23
  96. #define OP_4A_PS_RES 24
  97. #define OP_4A_PS_MUL 25
  98. #define OP_4A_PS_RSQRTE 26
  99. #define OP_4A_PS_MSUB 28
  100. #define OP_4A_PS_MADD 29
  101. #define OP_4A_PS_NMSUB 30
  102. #define OP_4A_PS_NMADD 31
  103. #define OP_4X_PS_CMPO0 32
  104. #define OP_4X_PSQ_LUX 38
  105. #define OP_4XW_PSQ_STUX 39
  106. #define OP_4X_PS_NEG 40
  107. #define OP_4X_PS_CMPU1 64
  108. #define OP_4X_PS_MR 72
  109. #define OP_4X_PS_CMPO1 96
  110. #define OP_4X_PS_NABS 136
  111. #define OP_4X_PS_ABS 264
  112. #define OP_4X_PS_MERGE00 528
  113. #define OP_4X_PS_MERGE01 560
  114. #define OP_4X_PS_MERGE10 592
  115. #define OP_4X_PS_MERGE11 624
  116. #define SCALAR_NONE 0
  117. #define SCALAR_HIGH (1 << 0)
  118. #define SCALAR_LOW (1 << 1)
  119. #define SCALAR_NO_PS0 (1 << 2)
  120. #define SCALAR_NO_PS1 (1 << 3)
  121. #define GQR_ST_TYPE_MASK 0x00000007
  122. #define GQR_ST_TYPE_SHIFT 0
  123. #define GQR_ST_SCALE_MASK 0x00003f00
  124. #define GQR_ST_SCALE_SHIFT 8
  125. #define GQR_LD_TYPE_MASK 0x00070000
  126. #define GQR_LD_TYPE_SHIFT 16
  127. #define GQR_LD_SCALE_MASK 0x3f000000
  128. #define GQR_LD_SCALE_SHIFT 24
  129. #define GQR_QUANTIZE_FLOAT 0
  130. #define GQR_QUANTIZE_U8 4
  131. #define GQR_QUANTIZE_U16 5
  132. #define GQR_QUANTIZE_S8 6
  133. #define GQR_QUANTIZE_S16 7
  134. #define FPU_LS_SINGLE 0
  135. #define FPU_LS_DOUBLE 1
  136. #define FPU_LS_SINGLE_LOW 2
  137. static inline void kvmppc_sync_qpr(struct kvm_vcpu *vcpu, int rt)
  138. {
  139. kvm_cvt_df(&VCPU_FPR(vcpu, rt), &vcpu->arch.qpr[rt]);
  140. }
  141. static void kvmppc_inject_pf(struct kvm_vcpu *vcpu, ulong eaddr, bool is_store)
  142. {
  143. u32 dsisr;
  144. u64 msr = kvmppc_get_msr(vcpu);
  145. msr = kvmppc_set_field(msr, 33, 36, 0);
  146. msr = kvmppc_set_field(msr, 42, 47, 0);
  147. kvmppc_set_msr(vcpu, msr);
  148. kvmppc_set_dar(vcpu, eaddr);
  149. /* Page Fault */
  150. dsisr = kvmppc_set_field(0, 33, 33, 1);
  151. if (is_store)
  152. dsisr = kvmppc_set_field(dsisr, 38, 38, 1);
  153. kvmppc_set_dsisr(vcpu, dsisr);
  154. kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_DATA_STORAGE);
  155. }
  156. static int kvmppc_emulate_fpr_load(struct kvm_vcpu *vcpu,
  157. int rs, ulong addr, int ls_type)
  158. {
  159. int emulated = EMULATE_FAIL;
  160. int r;
  161. char tmp[8];
  162. int len = sizeof(u32);
  163. if (ls_type == FPU_LS_DOUBLE)
  164. len = sizeof(u64);
  165. /* read from memory */
  166. r = kvmppc_ld(vcpu, &addr, len, tmp, true);
  167. vcpu->arch.paddr_accessed = addr;
  168. if (r < 0) {
  169. kvmppc_inject_pf(vcpu, addr, false);
  170. goto done_load;
  171. } else if (r == EMULATE_DO_MMIO) {
  172. emulated = kvmppc_handle_load(vcpu, KVM_MMIO_REG_FPR | rs,
  173. len, 1);
  174. goto done_load;
  175. }
  176. emulated = EMULATE_DONE;
  177. /* put in registers */
  178. switch (ls_type) {
  179. case FPU_LS_SINGLE:
  180. kvm_cvt_fd((u32*)tmp, &VCPU_FPR(vcpu, rs));
  181. vcpu->arch.qpr[rs] = *((u32*)tmp);
  182. break;
  183. case FPU_LS_DOUBLE:
  184. VCPU_FPR(vcpu, rs) = *((u64*)tmp);
  185. break;
  186. }
  187. dprintk(KERN_INFO "KVM: FPR_LD [0x%llx] at 0x%lx (%d)\n", *(u64*)tmp,
  188. addr, len);
  189. done_load:
  190. return emulated;
  191. }
  192. static int kvmppc_emulate_fpr_store(struct kvm_vcpu *vcpu,
  193. int rs, ulong addr, int ls_type)
  194. {
  195. int emulated = EMULATE_FAIL;
  196. int r;
  197. char tmp[8];
  198. u64 val;
  199. int len;
  200. switch (ls_type) {
  201. case FPU_LS_SINGLE:
  202. kvm_cvt_df(&VCPU_FPR(vcpu, rs), (u32*)tmp);
  203. val = *((u32*)tmp);
  204. len = sizeof(u32);
  205. break;
  206. case FPU_LS_SINGLE_LOW:
  207. *((u32*)tmp) = VCPU_FPR(vcpu, rs);
  208. val = VCPU_FPR(vcpu, rs) & 0xffffffff;
  209. len = sizeof(u32);
  210. break;
  211. case FPU_LS_DOUBLE:
  212. *((u64*)tmp) = VCPU_FPR(vcpu, rs);
  213. val = VCPU_FPR(vcpu, rs);
  214. len = sizeof(u64);
  215. break;
  216. default:
  217. val = 0;
  218. len = 0;
  219. }
  220. r = kvmppc_st(vcpu, &addr, len, tmp, true);
  221. vcpu->arch.paddr_accessed = addr;
  222. if (r < 0) {
  223. kvmppc_inject_pf(vcpu, addr, true);
  224. } else if (r == EMULATE_DO_MMIO) {
  225. emulated = kvmppc_handle_store(vcpu, val, len, 1);
  226. } else {
  227. emulated = EMULATE_DONE;
  228. }
  229. dprintk(KERN_INFO "KVM: FPR_ST [0x%llx] at 0x%lx (%d)\n",
  230. val, addr, len);
  231. return emulated;
  232. }
  233. static int kvmppc_emulate_psq_load(struct kvm_vcpu *vcpu,
  234. int rs, ulong addr, bool w, int i)
  235. {
  236. int emulated = EMULATE_FAIL;
  237. int r;
  238. float one = 1.0;
  239. u32 tmp[2];
  240. /* read from memory */
  241. if (w) {
  242. r = kvmppc_ld(vcpu, &addr, sizeof(u32), tmp, true);
  243. memcpy(&tmp[1], &one, sizeof(u32));
  244. } else {
  245. r = kvmppc_ld(vcpu, &addr, sizeof(u32) * 2, tmp, true);
  246. }
  247. vcpu->arch.paddr_accessed = addr;
  248. if (r < 0) {
  249. kvmppc_inject_pf(vcpu, addr, false);
  250. goto done_load;
  251. } else if ((r == EMULATE_DO_MMIO) && w) {
  252. emulated = kvmppc_handle_load(vcpu, KVM_MMIO_REG_FPR | rs,
  253. 4, 1);
  254. vcpu->arch.qpr[rs] = tmp[1];
  255. goto done_load;
  256. } else if (r == EMULATE_DO_MMIO) {
  257. emulated = kvmppc_handle_load(vcpu, KVM_MMIO_REG_FQPR | rs,
  258. 8, 1);
  259. goto done_load;
  260. }
  261. emulated = EMULATE_DONE;
  262. /* put in registers */
  263. kvm_cvt_fd(&tmp[0], &VCPU_FPR(vcpu, rs));
  264. vcpu->arch.qpr[rs] = tmp[1];
  265. dprintk(KERN_INFO "KVM: PSQ_LD [0x%x, 0x%x] at 0x%lx (%d)\n", tmp[0],
  266. tmp[1], addr, w ? 4 : 8);
  267. done_load:
  268. return emulated;
  269. }
  270. static int kvmppc_emulate_psq_store(struct kvm_vcpu *vcpu,
  271. int rs, ulong addr, bool w, int i)
  272. {
  273. int emulated = EMULATE_FAIL;
  274. int r;
  275. u32 tmp[2];
  276. int len = w ? sizeof(u32) : sizeof(u64);
  277. kvm_cvt_df(&VCPU_FPR(vcpu, rs), &tmp[0]);
  278. tmp[1] = vcpu->arch.qpr[rs];
  279. r = kvmppc_st(vcpu, &addr, len, tmp, true);
  280. vcpu->arch.paddr_accessed = addr;
  281. if (r < 0) {
  282. kvmppc_inject_pf(vcpu, addr, true);
  283. } else if ((r == EMULATE_DO_MMIO) && w) {
  284. emulated = kvmppc_handle_store(vcpu, tmp[0], 4, 1);
  285. } else if (r == EMULATE_DO_MMIO) {
  286. u64 val = ((u64)tmp[0] << 32) | tmp[1];
  287. emulated = kvmppc_handle_store(vcpu, val, 8, 1);
  288. } else {
  289. emulated = EMULATE_DONE;
  290. }
  291. dprintk(KERN_INFO "KVM: PSQ_ST [0x%x, 0x%x] at 0x%lx (%d)\n",
  292. tmp[0], tmp[1], addr, len);
  293. return emulated;
  294. }
  295. /*
  296. * Cuts out inst bits with ordering according to spec.
  297. * That means the leftmost bit is zero. All given bits are included.
  298. */
  299. static inline u32 inst_get_field(u32 inst, int msb, int lsb)
  300. {
  301. return kvmppc_get_field(inst, msb + 32, lsb + 32);
  302. }
  303. static bool kvmppc_inst_is_paired_single(struct kvm_vcpu *vcpu, u32 inst)
  304. {
  305. if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
  306. return false;
  307. switch (get_op(inst)) {
  308. case OP_PSQ_L:
  309. case OP_PSQ_LU:
  310. case OP_PSQ_ST:
  311. case OP_PSQ_STU:
  312. case OP_LFS:
  313. case OP_LFSU:
  314. case OP_LFD:
  315. case OP_LFDU:
  316. case OP_STFS:
  317. case OP_STFSU:
  318. case OP_STFD:
  319. case OP_STFDU:
  320. return true;
  321. case 4:
  322. /* X form */
  323. switch (inst_get_field(inst, 21, 30)) {
  324. case OP_4X_PS_CMPU0:
  325. case OP_4X_PSQ_LX:
  326. case OP_4X_PS_CMPO0:
  327. case OP_4X_PSQ_LUX:
  328. case OP_4X_PS_NEG:
  329. case OP_4X_PS_CMPU1:
  330. case OP_4X_PS_MR:
  331. case OP_4X_PS_CMPO1:
  332. case OP_4X_PS_NABS:
  333. case OP_4X_PS_ABS:
  334. case OP_4X_PS_MERGE00:
  335. case OP_4X_PS_MERGE01:
  336. case OP_4X_PS_MERGE10:
  337. case OP_4X_PS_MERGE11:
  338. return true;
  339. }
  340. /* XW form */
  341. switch (inst_get_field(inst, 25, 30)) {
  342. case OP_4XW_PSQ_STX:
  343. case OP_4XW_PSQ_STUX:
  344. return true;
  345. }
  346. /* A form */
  347. switch (inst_get_field(inst, 26, 30)) {
  348. case OP_4A_PS_SUM1:
  349. case OP_4A_PS_SUM0:
  350. case OP_4A_PS_MULS0:
  351. case OP_4A_PS_MULS1:
  352. case OP_4A_PS_MADDS0:
  353. case OP_4A_PS_MADDS1:
  354. case OP_4A_PS_DIV:
  355. case OP_4A_PS_SUB:
  356. case OP_4A_PS_ADD:
  357. case OP_4A_PS_SEL:
  358. case OP_4A_PS_RES:
  359. case OP_4A_PS_MUL:
  360. case OP_4A_PS_RSQRTE:
  361. case OP_4A_PS_MSUB:
  362. case OP_4A_PS_MADD:
  363. case OP_4A_PS_NMSUB:
  364. case OP_4A_PS_NMADD:
  365. return true;
  366. }
  367. break;
  368. case 59:
  369. switch (inst_get_field(inst, 21, 30)) {
  370. case OP_59_FADDS:
  371. case OP_59_FSUBS:
  372. case OP_59_FDIVS:
  373. case OP_59_FRES:
  374. case OP_59_FRSQRTES:
  375. return true;
  376. }
  377. switch (inst_get_field(inst, 26, 30)) {
  378. case OP_59_FMULS:
  379. case OP_59_FMSUBS:
  380. case OP_59_FMADDS:
  381. case OP_59_FNMSUBS:
  382. case OP_59_FNMADDS:
  383. return true;
  384. }
  385. break;
  386. case 63:
  387. switch (inst_get_field(inst, 21, 30)) {
  388. case OP_63_MTFSB0:
  389. case OP_63_MTFSB1:
  390. case OP_63_MTFSF:
  391. case OP_63_MTFSFI:
  392. case OP_63_MCRFS:
  393. case OP_63_MFFS:
  394. case OP_63_FCMPU:
  395. case OP_63_FCMPO:
  396. case OP_63_FNEG:
  397. case OP_63_FMR:
  398. case OP_63_FABS:
  399. case OP_63_FRSP:
  400. case OP_63_FDIV:
  401. case OP_63_FADD:
  402. case OP_63_FSUB:
  403. case OP_63_FCTIW:
  404. case OP_63_FCTIWZ:
  405. case OP_63_FRSQRTE:
  406. case OP_63_FCPSGN:
  407. return true;
  408. }
  409. switch (inst_get_field(inst, 26, 30)) {
  410. case OP_63_FMUL:
  411. case OP_63_FSEL:
  412. case OP_63_FMSUB:
  413. case OP_63_FMADD:
  414. case OP_63_FNMSUB:
  415. case OP_63_FNMADD:
  416. return true;
  417. }
  418. break;
  419. case 31:
  420. switch (inst_get_field(inst, 21, 30)) {
  421. case OP_31_LFSX:
  422. case OP_31_LFSUX:
  423. case OP_31_LFDX:
  424. case OP_31_LFDUX:
  425. case OP_31_STFSX:
  426. case OP_31_STFSUX:
  427. case OP_31_STFX:
  428. case OP_31_STFUX:
  429. case OP_31_STFIWX:
  430. return true;
  431. }
  432. break;
  433. }
  434. return false;
  435. }
  436. static int get_d_signext(u32 inst)
  437. {
  438. int d = inst & 0x8ff;
  439. if (d & 0x800)
  440. return -(d & 0x7ff);
  441. return (d & 0x7ff);
  442. }
  443. static int kvmppc_ps_three_in(struct kvm_vcpu *vcpu, bool rc,
  444. int reg_out, int reg_in1, int reg_in2,
  445. int reg_in3, int scalar,
  446. void (*func)(u64 *fpscr,
  447. u32 *dst, u32 *src1,
  448. u32 *src2, u32 *src3))
  449. {
  450. u32 *qpr = vcpu->arch.qpr;
  451. u32 ps0_out;
  452. u32 ps0_in1, ps0_in2, ps0_in3;
  453. u32 ps1_in1, ps1_in2, ps1_in3;
  454. /* RC */
  455. WARN_ON(rc);
  456. /* PS0 */
  457. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in1), &ps0_in1);
  458. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in2), &ps0_in2);
  459. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in3), &ps0_in3);
  460. if (scalar & SCALAR_LOW)
  461. ps0_in2 = qpr[reg_in2];
  462. func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in1, &ps0_in2, &ps0_in3);
  463. dprintk(KERN_INFO "PS3 ps0 -> f(0x%x, 0x%x, 0x%x) = 0x%x\n",
  464. ps0_in1, ps0_in2, ps0_in3, ps0_out);
  465. if (!(scalar & SCALAR_NO_PS0))
  466. kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
  467. /* PS1 */
  468. ps1_in1 = qpr[reg_in1];
  469. ps1_in2 = qpr[reg_in2];
  470. ps1_in3 = qpr[reg_in3];
  471. if (scalar & SCALAR_HIGH)
  472. ps1_in2 = ps0_in2;
  473. if (!(scalar & SCALAR_NO_PS1))
  474. func(&vcpu->arch.fp.fpscr, &qpr[reg_out], &ps1_in1, &ps1_in2, &ps1_in3);
  475. dprintk(KERN_INFO "PS3 ps1 -> f(0x%x, 0x%x, 0x%x) = 0x%x\n",
  476. ps1_in1, ps1_in2, ps1_in3, qpr[reg_out]);
  477. return EMULATE_DONE;
  478. }
  479. static int kvmppc_ps_two_in(struct kvm_vcpu *vcpu, bool rc,
  480. int reg_out, int reg_in1, int reg_in2,
  481. int scalar,
  482. void (*func)(u64 *fpscr,
  483. u32 *dst, u32 *src1,
  484. u32 *src2))
  485. {
  486. u32 *qpr = vcpu->arch.qpr;
  487. u32 ps0_out;
  488. u32 ps0_in1, ps0_in2;
  489. u32 ps1_out;
  490. u32 ps1_in1, ps1_in2;
  491. /* RC */
  492. WARN_ON(rc);
  493. /* PS0 */
  494. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in1), &ps0_in1);
  495. if (scalar & SCALAR_LOW)
  496. ps0_in2 = qpr[reg_in2];
  497. else
  498. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in2), &ps0_in2);
  499. func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in1, &ps0_in2);
  500. if (!(scalar & SCALAR_NO_PS0)) {
  501. dprintk(KERN_INFO "PS2 ps0 -> f(0x%x, 0x%x) = 0x%x\n",
  502. ps0_in1, ps0_in2, ps0_out);
  503. kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
  504. }
  505. /* PS1 */
  506. ps1_in1 = qpr[reg_in1];
  507. ps1_in2 = qpr[reg_in2];
  508. if (scalar & SCALAR_HIGH)
  509. ps1_in2 = ps0_in2;
  510. func(&vcpu->arch.fp.fpscr, &ps1_out, &ps1_in1, &ps1_in2);
  511. if (!(scalar & SCALAR_NO_PS1)) {
  512. qpr[reg_out] = ps1_out;
  513. dprintk(KERN_INFO "PS2 ps1 -> f(0x%x, 0x%x) = 0x%x\n",
  514. ps1_in1, ps1_in2, qpr[reg_out]);
  515. }
  516. return EMULATE_DONE;
  517. }
  518. static int kvmppc_ps_one_in(struct kvm_vcpu *vcpu, bool rc,
  519. int reg_out, int reg_in,
  520. void (*func)(u64 *t,
  521. u32 *dst, u32 *src1))
  522. {
  523. u32 *qpr = vcpu->arch.qpr;
  524. u32 ps0_out, ps0_in;
  525. u32 ps1_in;
  526. /* RC */
  527. WARN_ON(rc);
  528. /* PS0 */
  529. kvm_cvt_df(&VCPU_FPR(vcpu, reg_in), &ps0_in);
  530. func(&vcpu->arch.fp.fpscr, &ps0_out, &ps0_in);
  531. dprintk(KERN_INFO "PS1 ps0 -> f(0x%x) = 0x%x\n",
  532. ps0_in, ps0_out);
  533. kvm_cvt_fd(&ps0_out, &VCPU_FPR(vcpu, reg_out));
  534. /* PS1 */
  535. ps1_in = qpr[reg_in];
  536. func(&vcpu->arch.fp.fpscr, &qpr[reg_out], &ps1_in);
  537. dprintk(KERN_INFO "PS1 ps1 -> f(0x%x) = 0x%x\n",
  538. ps1_in, qpr[reg_out]);
  539. return EMULATE_DONE;
  540. }
  541. int kvmppc_emulate_paired_single(struct kvm_vcpu *vcpu)
  542. {
  543. u32 inst;
  544. ppc_inst_t pinst;
  545. enum emulation_result emulated = EMULATE_DONE;
  546. int ax_rd, ax_ra, ax_rb, ax_rc;
  547. short full_d;
  548. u64 *fpr_d, *fpr_a, *fpr_b, *fpr_c;
  549. bool rcomp;
  550. u32 cr;
  551. #ifdef DEBUG
  552. int i;
  553. #endif
  554. emulated = kvmppc_get_last_inst(vcpu, INST_GENERIC, &pinst);
  555. inst = ppc_inst_val(pinst);
  556. if (emulated != EMULATE_DONE)
  557. return emulated;
  558. ax_rd = inst_get_field(inst, 6, 10);
  559. ax_ra = inst_get_field(inst, 11, 15);
  560. ax_rb = inst_get_field(inst, 16, 20);
  561. ax_rc = inst_get_field(inst, 21, 25);
  562. full_d = inst_get_field(inst, 16, 31);
  563. fpr_d = &VCPU_FPR(vcpu, ax_rd);
  564. fpr_a = &VCPU_FPR(vcpu, ax_ra);
  565. fpr_b = &VCPU_FPR(vcpu, ax_rb);
  566. fpr_c = &VCPU_FPR(vcpu, ax_rc);
  567. rcomp = (inst & 1) ? true : false;
  568. cr = kvmppc_get_cr(vcpu);
  569. if (!kvmppc_inst_is_paired_single(vcpu, inst))
  570. return EMULATE_FAIL;
  571. if (!(kvmppc_get_msr(vcpu) & MSR_FP)) {
  572. kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL);
  573. return EMULATE_AGAIN;
  574. }
  575. kvmppc_giveup_ext(vcpu, MSR_FP);
  576. preempt_disable();
  577. enable_kernel_fp();
  578. /* Do we need to clear FE0 / FE1 here? Don't think so. */
  579. #ifdef DEBUG
  580. for (i = 0; i < ARRAY_SIZE(vcpu->arch.fp.fpr); i++) {
  581. u32 f;
  582. kvm_cvt_df(&VCPU_FPR(vcpu, i), &f);
  583. dprintk(KERN_INFO "FPR[%d] = 0x%x / 0x%llx QPR[%d] = 0x%x\n",
  584. i, f, VCPU_FPR(vcpu, i), i, vcpu->arch.qpr[i]);
  585. }
  586. #endif
  587. switch (get_op(inst)) {
  588. case OP_PSQ_L:
  589. {
  590. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  591. bool w = inst_get_field(inst, 16, 16) ? true : false;
  592. int i = inst_get_field(inst, 17, 19);
  593. addr += get_d_signext(inst);
  594. emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
  595. break;
  596. }
  597. case OP_PSQ_LU:
  598. {
  599. ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
  600. bool w = inst_get_field(inst, 16, 16) ? true : false;
  601. int i = inst_get_field(inst, 17, 19);
  602. addr += get_d_signext(inst);
  603. emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
  604. if (emulated == EMULATE_DONE)
  605. kvmppc_set_gpr(vcpu, ax_ra, addr);
  606. break;
  607. }
  608. case OP_PSQ_ST:
  609. {
  610. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  611. bool w = inst_get_field(inst, 16, 16) ? true : false;
  612. int i = inst_get_field(inst, 17, 19);
  613. addr += get_d_signext(inst);
  614. emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
  615. break;
  616. }
  617. case OP_PSQ_STU:
  618. {
  619. ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
  620. bool w = inst_get_field(inst, 16, 16) ? true : false;
  621. int i = inst_get_field(inst, 17, 19);
  622. addr += get_d_signext(inst);
  623. emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
  624. if (emulated == EMULATE_DONE)
  625. kvmppc_set_gpr(vcpu, ax_ra, addr);
  626. break;
  627. }
  628. case 4:
  629. /* X form */
  630. switch (inst_get_field(inst, 21, 30)) {
  631. case OP_4X_PS_CMPU0:
  632. /* XXX */
  633. emulated = EMULATE_FAIL;
  634. break;
  635. case OP_4X_PSQ_LX:
  636. {
  637. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  638. bool w = inst_get_field(inst, 21, 21) ? true : false;
  639. int i = inst_get_field(inst, 22, 24);
  640. addr += kvmppc_get_gpr(vcpu, ax_rb);
  641. emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
  642. break;
  643. }
  644. case OP_4X_PS_CMPO0:
  645. /* XXX */
  646. emulated = EMULATE_FAIL;
  647. break;
  648. case OP_4X_PSQ_LUX:
  649. {
  650. ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
  651. bool w = inst_get_field(inst, 21, 21) ? true : false;
  652. int i = inst_get_field(inst, 22, 24);
  653. addr += kvmppc_get_gpr(vcpu, ax_rb);
  654. emulated = kvmppc_emulate_psq_load(vcpu, ax_rd, addr, w, i);
  655. if (emulated == EMULATE_DONE)
  656. kvmppc_set_gpr(vcpu, ax_ra, addr);
  657. break;
  658. }
  659. case OP_4X_PS_NEG:
  660. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
  661. VCPU_FPR(vcpu, ax_rd) ^= 0x8000000000000000ULL;
  662. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  663. vcpu->arch.qpr[ax_rd] ^= 0x80000000;
  664. break;
  665. case OP_4X_PS_CMPU1:
  666. /* XXX */
  667. emulated = EMULATE_FAIL;
  668. break;
  669. case OP_4X_PS_MR:
  670. WARN_ON(rcomp);
  671. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
  672. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  673. break;
  674. case OP_4X_PS_CMPO1:
  675. /* XXX */
  676. emulated = EMULATE_FAIL;
  677. break;
  678. case OP_4X_PS_NABS:
  679. WARN_ON(rcomp);
  680. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
  681. VCPU_FPR(vcpu, ax_rd) |= 0x8000000000000000ULL;
  682. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  683. vcpu->arch.qpr[ax_rd] |= 0x80000000;
  684. break;
  685. case OP_4X_PS_ABS:
  686. WARN_ON(rcomp);
  687. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rb);
  688. VCPU_FPR(vcpu, ax_rd) &= ~0x8000000000000000ULL;
  689. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  690. vcpu->arch.qpr[ax_rd] &= ~0x80000000;
  691. break;
  692. case OP_4X_PS_MERGE00:
  693. WARN_ON(rcomp);
  694. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_ra);
  695. /* vcpu->arch.qpr[ax_rd] = VCPU_FPR(vcpu, ax_rb); */
  696. kvm_cvt_df(&VCPU_FPR(vcpu, ax_rb),
  697. &vcpu->arch.qpr[ax_rd]);
  698. break;
  699. case OP_4X_PS_MERGE01:
  700. WARN_ON(rcomp);
  701. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_ra);
  702. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  703. break;
  704. case OP_4X_PS_MERGE10:
  705. WARN_ON(rcomp);
  706. /* VCPU_FPR(vcpu, ax_rd) = vcpu->arch.qpr[ax_ra]; */
  707. kvm_cvt_fd(&vcpu->arch.qpr[ax_ra],
  708. &VCPU_FPR(vcpu, ax_rd));
  709. /* vcpu->arch.qpr[ax_rd] = VCPU_FPR(vcpu, ax_rb); */
  710. kvm_cvt_df(&VCPU_FPR(vcpu, ax_rb),
  711. &vcpu->arch.qpr[ax_rd]);
  712. break;
  713. case OP_4X_PS_MERGE11:
  714. WARN_ON(rcomp);
  715. /* VCPU_FPR(vcpu, ax_rd) = vcpu->arch.qpr[ax_ra]; */
  716. kvm_cvt_fd(&vcpu->arch.qpr[ax_ra],
  717. &VCPU_FPR(vcpu, ax_rd));
  718. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rb];
  719. break;
  720. }
  721. /* XW form */
  722. switch (inst_get_field(inst, 25, 30)) {
  723. case OP_4XW_PSQ_STX:
  724. {
  725. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  726. bool w = inst_get_field(inst, 21, 21) ? true : false;
  727. int i = inst_get_field(inst, 22, 24);
  728. addr += kvmppc_get_gpr(vcpu, ax_rb);
  729. emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
  730. break;
  731. }
  732. case OP_4XW_PSQ_STUX:
  733. {
  734. ulong addr = kvmppc_get_gpr(vcpu, ax_ra);
  735. bool w = inst_get_field(inst, 21, 21) ? true : false;
  736. int i = inst_get_field(inst, 22, 24);
  737. addr += kvmppc_get_gpr(vcpu, ax_rb);
  738. emulated = kvmppc_emulate_psq_store(vcpu, ax_rd, addr, w, i);
  739. if (emulated == EMULATE_DONE)
  740. kvmppc_set_gpr(vcpu, ax_ra, addr);
  741. break;
  742. }
  743. }
  744. /* A form */
  745. switch (inst_get_field(inst, 26, 30)) {
  746. case OP_4A_PS_SUM1:
  747. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  748. ax_rb, ax_ra, SCALAR_NO_PS0 | SCALAR_HIGH, fps_fadds);
  749. VCPU_FPR(vcpu, ax_rd) = VCPU_FPR(vcpu, ax_rc);
  750. break;
  751. case OP_4A_PS_SUM0:
  752. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  753. ax_ra, ax_rb, SCALAR_NO_PS1 | SCALAR_LOW, fps_fadds);
  754. vcpu->arch.qpr[ax_rd] = vcpu->arch.qpr[ax_rc];
  755. break;
  756. case OP_4A_PS_MULS0:
  757. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  758. ax_ra, ax_rc, SCALAR_HIGH, fps_fmuls);
  759. break;
  760. case OP_4A_PS_MULS1:
  761. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  762. ax_ra, ax_rc, SCALAR_LOW, fps_fmuls);
  763. break;
  764. case OP_4A_PS_MADDS0:
  765. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  766. ax_ra, ax_rc, ax_rb, SCALAR_HIGH, fps_fmadds);
  767. break;
  768. case OP_4A_PS_MADDS1:
  769. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  770. ax_ra, ax_rc, ax_rb, SCALAR_LOW, fps_fmadds);
  771. break;
  772. case OP_4A_PS_DIV:
  773. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  774. ax_ra, ax_rb, SCALAR_NONE, fps_fdivs);
  775. break;
  776. case OP_4A_PS_SUB:
  777. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  778. ax_ra, ax_rb, SCALAR_NONE, fps_fsubs);
  779. break;
  780. case OP_4A_PS_ADD:
  781. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  782. ax_ra, ax_rb, SCALAR_NONE, fps_fadds);
  783. break;
  784. case OP_4A_PS_SEL:
  785. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  786. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fsel);
  787. break;
  788. case OP_4A_PS_RES:
  789. emulated = kvmppc_ps_one_in(vcpu, rcomp, ax_rd,
  790. ax_rb, fps_fres);
  791. break;
  792. case OP_4A_PS_MUL:
  793. emulated = kvmppc_ps_two_in(vcpu, rcomp, ax_rd,
  794. ax_ra, ax_rc, SCALAR_NONE, fps_fmuls);
  795. break;
  796. case OP_4A_PS_RSQRTE:
  797. emulated = kvmppc_ps_one_in(vcpu, rcomp, ax_rd,
  798. ax_rb, fps_frsqrte);
  799. break;
  800. case OP_4A_PS_MSUB:
  801. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  802. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fmsubs);
  803. break;
  804. case OP_4A_PS_MADD:
  805. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  806. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fmadds);
  807. break;
  808. case OP_4A_PS_NMSUB:
  809. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  810. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fnmsubs);
  811. break;
  812. case OP_4A_PS_NMADD:
  813. emulated = kvmppc_ps_three_in(vcpu, rcomp, ax_rd,
  814. ax_ra, ax_rc, ax_rb, SCALAR_NONE, fps_fnmadds);
  815. break;
  816. }
  817. break;
  818. /* Real FPU operations */
  819. case OP_LFS:
  820. {
  821. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
  822. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
  823. FPU_LS_SINGLE);
  824. break;
  825. }
  826. case OP_LFSU:
  827. {
  828. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
  829. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
  830. FPU_LS_SINGLE);
  831. if (emulated == EMULATE_DONE)
  832. kvmppc_set_gpr(vcpu, ax_ra, addr);
  833. break;
  834. }
  835. case OP_LFD:
  836. {
  837. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
  838. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
  839. FPU_LS_DOUBLE);
  840. break;
  841. }
  842. case OP_LFDU:
  843. {
  844. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
  845. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd, addr,
  846. FPU_LS_DOUBLE);
  847. if (emulated == EMULATE_DONE)
  848. kvmppc_set_gpr(vcpu, ax_ra, addr);
  849. break;
  850. }
  851. case OP_STFS:
  852. {
  853. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
  854. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
  855. FPU_LS_SINGLE);
  856. break;
  857. }
  858. case OP_STFSU:
  859. {
  860. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
  861. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
  862. FPU_LS_SINGLE);
  863. if (emulated == EMULATE_DONE)
  864. kvmppc_set_gpr(vcpu, ax_ra, addr);
  865. break;
  866. }
  867. case OP_STFD:
  868. {
  869. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) + full_d;
  870. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
  871. FPU_LS_DOUBLE);
  872. break;
  873. }
  874. case OP_STFDU:
  875. {
  876. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) + full_d;
  877. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd, addr,
  878. FPU_LS_DOUBLE);
  879. if (emulated == EMULATE_DONE)
  880. kvmppc_set_gpr(vcpu, ax_ra, addr);
  881. break;
  882. }
  883. case 31:
  884. switch (inst_get_field(inst, 21, 30)) {
  885. case OP_31_LFSX:
  886. {
  887. ulong addr = ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0;
  888. addr += kvmppc_get_gpr(vcpu, ax_rb);
  889. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
  890. addr, FPU_LS_SINGLE);
  891. break;
  892. }
  893. case OP_31_LFSUX:
  894. {
  895. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
  896. kvmppc_get_gpr(vcpu, ax_rb);
  897. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
  898. addr, FPU_LS_SINGLE);
  899. if (emulated == EMULATE_DONE)
  900. kvmppc_set_gpr(vcpu, ax_ra, addr);
  901. break;
  902. }
  903. case OP_31_LFDX:
  904. {
  905. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
  906. kvmppc_get_gpr(vcpu, ax_rb);
  907. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
  908. addr, FPU_LS_DOUBLE);
  909. break;
  910. }
  911. case OP_31_LFDUX:
  912. {
  913. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
  914. kvmppc_get_gpr(vcpu, ax_rb);
  915. emulated = kvmppc_emulate_fpr_load(vcpu, ax_rd,
  916. addr, FPU_LS_DOUBLE);
  917. if (emulated == EMULATE_DONE)
  918. kvmppc_set_gpr(vcpu, ax_ra, addr);
  919. break;
  920. }
  921. case OP_31_STFSX:
  922. {
  923. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
  924. kvmppc_get_gpr(vcpu, ax_rb);
  925. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  926. addr, FPU_LS_SINGLE);
  927. break;
  928. }
  929. case OP_31_STFSUX:
  930. {
  931. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
  932. kvmppc_get_gpr(vcpu, ax_rb);
  933. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  934. addr, FPU_LS_SINGLE);
  935. if (emulated == EMULATE_DONE)
  936. kvmppc_set_gpr(vcpu, ax_ra, addr);
  937. break;
  938. }
  939. case OP_31_STFX:
  940. {
  941. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
  942. kvmppc_get_gpr(vcpu, ax_rb);
  943. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  944. addr, FPU_LS_DOUBLE);
  945. break;
  946. }
  947. case OP_31_STFUX:
  948. {
  949. ulong addr = kvmppc_get_gpr(vcpu, ax_ra) +
  950. kvmppc_get_gpr(vcpu, ax_rb);
  951. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  952. addr, FPU_LS_DOUBLE);
  953. if (emulated == EMULATE_DONE)
  954. kvmppc_set_gpr(vcpu, ax_ra, addr);
  955. break;
  956. }
  957. case OP_31_STFIWX:
  958. {
  959. ulong addr = (ax_ra ? kvmppc_get_gpr(vcpu, ax_ra) : 0) +
  960. kvmppc_get_gpr(vcpu, ax_rb);
  961. emulated = kvmppc_emulate_fpr_store(vcpu, ax_rd,
  962. addr,
  963. FPU_LS_SINGLE_LOW);
  964. break;
  965. }
  966. break;
  967. }
  968. break;
  969. case 59:
  970. switch (inst_get_field(inst, 21, 30)) {
  971. case OP_59_FADDS:
  972. fpd_fadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  973. kvmppc_sync_qpr(vcpu, ax_rd);
  974. break;
  975. case OP_59_FSUBS:
  976. fpd_fsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  977. kvmppc_sync_qpr(vcpu, ax_rd);
  978. break;
  979. case OP_59_FDIVS:
  980. fpd_fdivs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  981. kvmppc_sync_qpr(vcpu, ax_rd);
  982. break;
  983. case OP_59_FRES:
  984. fpd_fres(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  985. kvmppc_sync_qpr(vcpu, ax_rd);
  986. break;
  987. case OP_59_FRSQRTES:
  988. fpd_frsqrtes(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  989. kvmppc_sync_qpr(vcpu, ax_rd);
  990. break;
  991. }
  992. switch (inst_get_field(inst, 26, 30)) {
  993. case OP_59_FMULS:
  994. fpd_fmuls(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c);
  995. kvmppc_sync_qpr(vcpu, ax_rd);
  996. break;
  997. case OP_59_FMSUBS:
  998. fpd_fmsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  999. kvmppc_sync_qpr(vcpu, ax_rd);
  1000. break;
  1001. case OP_59_FMADDS:
  1002. fpd_fmadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1003. kvmppc_sync_qpr(vcpu, ax_rd);
  1004. break;
  1005. case OP_59_FNMSUBS:
  1006. fpd_fnmsubs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1007. kvmppc_sync_qpr(vcpu, ax_rd);
  1008. break;
  1009. case OP_59_FNMADDS:
  1010. fpd_fnmadds(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1011. kvmppc_sync_qpr(vcpu, ax_rd);
  1012. break;
  1013. }
  1014. break;
  1015. case 63:
  1016. switch (inst_get_field(inst, 21, 30)) {
  1017. case OP_63_MTFSB0:
  1018. case OP_63_MTFSB1:
  1019. case OP_63_MCRFS:
  1020. case OP_63_MTFSFI:
  1021. /* XXX need to implement */
  1022. break;
  1023. case OP_63_MFFS:
  1024. /* XXX missing CR */
  1025. *fpr_d = vcpu->arch.fp.fpscr;
  1026. break;
  1027. case OP_63_MTFSF:
  1028. /* XXX missing fm bits */
  1029. /* XXX missing CR */
  1030. vcpu->arch.fp.fpscr = *fpr_b;
  1031. break;
  1032. case OP_63_FCMPU:
  1033. {
  1034. u32 tmp_cr;
  1035. u32 cr0_mask = 0xf0000000;
  1036. u32 cr_shift = inst_get_field(inst, 6, 8) * 4;
  1037. fpd_fcmpu(&vcpu->arch.fp.fpscr, &tmp_cr, fpr_a, fpr_b);
  1038. cr &= ~(cr0_mask >> cr_shift);
  1039. cr |= (cr & cr0_mask) >> cr_shift;
  1040. break;
  1041. }
  1042. case OP_63_FCMPO:
  1043. {
  1044. u32 tmp_cr;
  1045. u32 cr0_mask = 0xf0000000;
  1046. u32 cr_shift = inst_get_field(inst, 6, 8) * 4;
  1047. fpd_fcmpo(&vcpu->arch.fp.fpscr, &tmp_cr, fpr_a, fpr_b);
  1048. cr &= ~(cr0_mask >> cr_shift);
  1049. cr |= (cr & cr0_mask) >> cr_shift;
  1050. break;
  1051. }
  1052. case OP_63_FNEG:
  1053. fpd_fneg(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1054. break;
  1055. case OP_63_FMR:
  1056. *fpr_d = *fpr_b;
  1057. break;
  1058. case OP_63_FABS:
  1059. fpd_fabs(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1060. break;
  1061. case OP_63_FCPSGN:
  1062. fpd_fcpsgn(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  1063. break;
  1064. case OP_63_FDIV:
  1065. fpd_fdiv(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  1066. break;
  1067. case OP_63_FADD:
  1068. fpd_fadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  1069. break;
  1070. case OP_63_FSUB:
  1071. fpd_fsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_b);
  1072. break;
  1073. case OP_63_FCTIW:
  1074. fpd_fctiw(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1075. break;
  1076. case OP_63_FCTIWZ:
  1077. fpd_fctiwz(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1078. break;
  1079. case OP_63_FRSP:
  1080. fpd_frsp(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1081. kvmppc_sync_qpr(vcpu, ax_rd);
  1082. break;
  1083. case OP_63_FRSQRTE:
  1084. {
  1085. double one = 1.0f;
  1086. /* fD = sqrt(fB) */
  1087. fpd_fsqrt(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_b);
  1088. /* fD = 1.0f / fD */
  1089. fpd_fdiv(&vcpu->arch.fp.fpscr, &cr, fpr_d, (u64*)&one, fpr_d);
  1090. break;
  1091. }
  1092. }
  1093. switch (inst_get_field(inst, 26, 30)) {
  1094. case OP_63_FMUL:
  1095. fpd_fmul(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c);
  1096. break;
  1097. case OP_63_FSEL:
  1098. fpd_fsel(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1099. break;
  1100. case OP_63_FMSUB:
  1101. fpd_fmsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1102. break;
  1103. case OP_63_FMADD:
  1104. fpd_fmadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1105. break;
  1106. case OP_63_FNMSUB:
  1107. fpd_fnmsub(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1108. break;
  1109. case OP_63_FNMADD:
  1110. fpd_fnmadd(&vcpu->arch.fp.fpscr, &cr, fpr_d, fpr_a, fpr_c, fpr_b);
  1111. break;
  1112. }
  1113. break;
  1114. }
  1115. #ifdef DEBUG
  1116. for (i = 0; i < ARRAY_SIZE(vcpu->arch.fp.fpr); i++) {
  1117. u32 f;
  1118. kvm_cvt_df(&VCPU_FPR(vcpu, i), &f);
  1119. dprintk(KERN_INFO "FPR[%d] = 0x%x\n", i, f);
  1120. }
  1121. #endif
  1122. if (rcomp)
  1123. kvmppc_set_cr(vcpu, cr);
  1124. disable_kernel_fp();
  1125. preempt_enable();
  1126. return emulated;
  1127. }