irq.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Common interrupt code for 32 and 64 bit
  4. */
  5. #include <linux/cpu.h>
  6. #include <linux/interrupt.h>
  7. #include <linux/kernel_stat.h>
  8. #include <linux/of.h>
  9. #include <linux/seq_file.h>
  10. #include <linux/smp.h>
  11. #include <linux/ftrace.h>
  12. #include <linux/delay.h>
  13. #include <linux/export.h>
  14. #include <linux/irq.h>
  15. #include <asm/irq_stack.h>
  16. #include <asm/apic.h>
  17. #include <asm/io_apic.h>
  18. #include <asm/irq.h>
  19. #include <asm/mce.h>
  20. #include <asm/hw_irq.h>
  21. #include <asm/desc.h>
  22. #include <asm/traps.h>
  23. #include <asm/thermal.h>
  24. #include <asm/posted_intr.h>
  25. #include <asm/irq_remapping.h>
  26. #define CREATE_TRACE_POINTS
  27. #include <asm/trace/irq_vectors.h>
  28. DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
  29. EXPORT_PER_CPU_SYMBOL(irq_stat);
  30. atomic_t irq_err_count;
  31. /*
  32. * 'what should we do if we get a hw irq event on an illegal vector'.
  33. * each architecture has to answer this themselves.
  34. */
  35. void ack_bad_irq(unsigned int irq)
  36. {
  37. if (printk_ratelimit())
  38. pr_err("unexpected IRQ trap at vector %02x\n", irq);
  39. /*
  40. * Currently unexpected vectors happen only on SMP and APIC.
  41. * We _must_ ack these because every local APIC has only N
  42. * irq slots per priority level, and a 'hanging, unacked' IRQ
  43. * holds up an irq slot - in excessive cases (when multiple
  44. * unexpected vectors occur) that might lock up the APIC
  45. * completely.
  46. * But only ack when the APIC is enabled -AK
  47. */
  48. apic_eoi();
  49. }
  50. #define irq_stats(x) (&per_cpu(irq_stat, x))
  51. /*
  52. * /proc/interrupts printing for arch specific interrupts
  53. */
  54. int arch_show_interrupts(struct seq_file *p, int prec)
  55. {
  56. int j;
  57. seq_printf(p, "%*s: ", prec, "NMI");
  58. for_each_online_cpu(j)
  59. seq_printf(p, "%10u ", irq_stats(j)->__nmi_count);
  60. seq_puts(p, " Non-maskable interrupts\n");
  61. #ifdef CONFIG_X86_LOCAL_APIC
  62. seq_printf(p, "%*s: ", prec, "LOC");
  63. for_each_online_cpu(j)
  64. seq_printf(p, "%10u ", irq_stats(j)->apic_timer_irqs);
  65. seq_puts(p, " Local timer interrupts\n");
  66. seq_printf(p, "%*s: ", prec, "SPU");
  67. for_each_online_cpu(j)
  68. seq_printf(p, "%10u ", irq_stats(j)->irq_spurious_count);
  69. seq_puts(p, " Spurious interrupts\n");
  70. seq_printf(p, "%*s: ", prec, "PMI");
  71. for_each_online_cpu(j)
  72. seq_printf(p, "%10u ", irq_stats(j)->apic_perf_irqs);
  73. seq_puts(p, " Performance monitoring interrupts\n");
  74. seq_printf(p, "%*s: ", prec, "IWI");
  75. for_each_online_cpu(j)
  76. seq_printf(p, "%10u ", irq_stats(j)->apic_irq_work_irqs);
  77. seq_puts(p, " IRQ work interrupts\n");
  78. seq_printf(p, "%*s: ", prec, "RTR");
  79. for_each_online_cpu(j)
  80. seq_printf(p, "%10u ", irq_stats(j)->icr_read_retry_count);
  81. seq_puts(p, " APIC ICR read retries\n");
  82. if (x86_platform_ipi_callback) {
  83. seq_printf(p, "%*s: ", prec, "PLT");
  84. for_each_online_cpu(j)
  85. seq_printf(p, "%10u ", irq_stats(j)->x86_platform_ipis);
  86. seq_puts(p, " Platform interrupts\n");
  87. }
  88. #endif
  89. #ifdef CONFIG_SMP
  90. seq_printf(p, "%*s: ", prec, "RES");
  91. for_each_online_cpu(j)
  92. seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
  93. seq_puts(p, " Rescheduling interrupts\n");
  94. seq_printf(p, "%*s: ", prec, "CAL");
  95. for_each_online_cpu(j)
  96. seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
  97. seq_puts(p, " Function call interrupts\n");
  98. seq_printf(p, "%*s: ", prec, "TLB");
  99. for_each_online_cpu(j)
  100. seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
  101. seq_puts(p, " TLB shootdowns\n");
  102. #endif
  103. #ifdef CONFIG_X86_THERMAL_VECTOR
  104. seq_printf(p, "%*s: ", prec, "TRM");
  105. for_each_online_cpu(j)
  106. seq_printf(p, "%10u ", irq_stats(j)->irq_thermal_count);
  107. seq_puts(p, " Thermal event interrupts\n");
  108. #endif
  109. #ifdef CONFIG_X86_MCE_THRESHOLD
  110. seq_printf(p, "%*s: ", prec, "THR");
  111. for_each_online_cpu(j)
  112. seq_printf(p, "%10u ", irq_stats(j)->irq_threshold_count);
  113. seq_puts(p, " Threshold APIC interrupts\n");
  114. #endif
  115. #ifdef CONFIG_X86_MCE_AMD
  116. seq_printf(p, "%*s: ", prec, "DFR");
  117. for_each_online_cpu(j)
  118. seq_printf(p, "%10u ", irq_stats(j)->irq_deferred_error_count);
  119. seq_puts(p, " Deferred Error APIC interrupts\n");
  120. #endif
  121. #ifdef CONFIG_X86_MCE
  122. seq_printf(p, "%*s: ", prec, "MCE");
  123. for_each_online_cpu(j)
  124. seq_printf(p, "%10u ", per_cpu(mce_exception_count, j));
  125. seq_puts(p, " Machine check exceptions\n");
  126. seq_printf(p, "%*s: ", prec, "MCP");
  127. for_each_online_cpu(j)
  128. seq_printf(p, "%10u ", per_cpu(mce_poll_count, j));
  129. seq_puts(p, " Machine check polls\n");
  130. #endif
  131. #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
  132. if (test_bit(HYPERVISOR_CALLBACK_VECTOR, system_vectors)) {
  133. seq_printf(p, "%*s: ", prec, "HYP");
  134. for_each_online_cpu(j)
  135. seq_printf(p, "%10u ",
  136. irq_stats(j)->irq_hv_callback_count);
  137. seq_puts(p, " Hypervisor callback interrupts\n");
  138. }
  139. #endif
  140. #if IS_ENABLED(CONFIG_HYPERV)
  141. if (test_bit(HYPERV_REENLIGHTENMENT_VECTOR, system_vectors)) {
  142. seq_printf(p, "%*s: ", prec, "HRE");
  143. for_each_online_cpu(j)
  144. seq_printf(p, "%10u ",
  145. irq_stats(j)->irq_hv_reenlightenment_count);
  146. seq_puts(p, " Hyper-V reenlightenment interrupts\n");
  147. }
  148. if (test_bit(HYPERV_STIMER0_VECTOR, system_vectors)) {
  149. seq_printf(p, "%*s: ", prec, "HVS");
  150. for_each_online_cpu(j)
  151. seq_printf(p, "%10u ",
  152. irq_stats(j)->hyperv_stimer0_count);
  153. seq_puts(p, " Hyper-V stimer0 interrupts\n");
  154. }
  155. #endif
  156. seq_printf(p, "%*s: %10u\n", prec, "ERR", atomic_read(&irq_err_count));
  157. #if defined(CONFIG_X86_IO_APIC)
  158. seq_printf(p, "%*s: %10u\n", prec, "MIS", atomic_read(&irq_mis_count));
  159. #endif
  160. #if IS_ENABLED(CONFIG_KVM)
  161. seq_printf(p, "%*s: ", prec, "PIN");
  162. for_each_online_cpu(j)
  163. seq_printf(p, "%10u ", irq_stats(j)->kvm_posted_intr_ipis);
  164. seq_puts(p, " Posted-interrupt notification event\n");
  165. seq_printf(p, "%*s: ", prec, "NPI");
  166. for_each_online_cpu(j)
  167. seq_printf(p, "%10u ",
  168. irq_stats(j)->kvm_posted_intr_nested_ipis);
  169. seq_puts(p, " Nested posted-interrupt event\n");
  170. seq_printf(p, "%*s: ", prec, "PIW");
  171. for_each_online_cpu(j)
  172. seq_printf(p, "%10u ",
  173. irq_stats(j)->kvm_posted_intr_wakeup_ipis);
  174. seq_puts(p, " Posted-interrupt wakeup event\n");
  175. #endif
  176. #ifdef CONFIG_X86_POSTED_MSI
  177. seq_printf(p, "%*s: ", prec, "PMN");
  178. for_each_online_cpu(j)
  179. seq_printf(p, "%10u ",
  180. irq_stats(j)->posted_msi_notification_count);
  181. seq_puts(p, " Posted MSI notification event\n");
  182. #endif
  183. return 0;
  184. }
  185. /*
  186. * /proc/stat helpers
  187. */
  188. u64 arch_irq_stat_cpu(unsigned int cpu)
  189. {
  190. u64 sum = irq_stats(cpu)->__nmi_count;
  191. #ifdef CONFIG_X86_LOCAL_APIC
  192. sum += irq_stats(cpu)->apic_timer_irqs;
  193. sum += irq_stats(cpu)->irq_spurious_count;
  194. sum += irq_stats(cpu)->apic_perf_irqs;
  195. sum += irq_stats(cpu)->apic_irq_work_irqs;
  196. sum += irq_stats(cpu)->icr_read_retry_count;
  197. if (x86_platform_ipi_callback)
  198. sum += irq_stats(cpu)->x86_platform_ipis;
  199. #endif
  200. #ifdef CONFIG_SMP
  201. sum += irq_stats(cpu)->irq_resched_count;
  202. sum += irq_stats(cpu)->irq_call_count;
  203. #endif
  204. #ifdef CONFIG_X86_THERMAL_VECTOR
  205. sum += irq_stats(cpu)->irq_thermal_count;
  206. #endif
  207. #ifdef CONFIG_X86_MCE_THRESHOLD
  208. sum += irq_stats(cpu)->irq_threshold_count;
  209. #endif
  210. #ifdef CONFIG_X86_HV_CALLBACK_VECTOR
  211. sum += irq_stats(cpu)->irq_hv_callback_count;
  212. #endif
  213. #if IS_ENABLED(CONFIG_HYPERV)
  214. sum += irq_stats(cpu)->irq_hv_reenlightenment_count;
  215. sum += irq_stats(cpu)->hyperv_stimer0_count;
  216. #endif
  217. #ifdef CONFIG_X86_MCE
  218. sum += per_cpu(mce_exception_count, cpu);
  219. sum += per_cpu(mce_poll_count, cpu);
  220. #endif
  221. return sum;
  222. }
  223. u64 arch_irq_stat(void)
  224. {
  225. u64 sum = atomic_read(&irq_err_count);
  226. return sum;
  227. }
  228. static __always_inline void handle_irq(struct irq_desc *desc,
  229. struct pt_regs *regs)
  230. {
  231. if (IS_ENABLED(CONFIG_X86_64))
  232. generic_handle_irq_desc(desc);
  233. else
  234. __handle_irq(desc, regs);
  235. }
  236. static __always_inline int call_irq_handler(int vector, struct pt_regs *regs)
  237. {
  238. struct irq_desc *desc;
  239. int ret = 0;
  240. desc = __this_cpu_read(vector_irq[vector]);
  241. if (likely(!IS_ERR_OR_NULL(desc))) {
  242. handle_irq(desc, regs);
  243. } else {
  244. ret = -EINVAL;
  245. if (desc == VECTOR_UNUSED) {
  246. pr_emerg_ratelimited("%s: %d.%u No irq handler for vector\n",
  247. __func__, smp_processor_id(),
  248. vector);
  249. } else {
  250. __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
  251. }
  252. }
  253. return ret;
  254. }
  255. /*
  256. * common_interrupt() handles all normal device IRQ's (the special SMP
  257. * cross-CPU interrupts have their own entry points).
  258. */
  259. DEFINE_IDTENTRY_IRQ(common_interrupt)
  260. {
  261. struct pt_regs *old_regs = set_irq_regs(regs);
  262. /* entry code tells RCU that we're not quiescent. Check it. */
  263. RCU_LOCKDEP_WARN(!rcu_is_watching(), "IRQ failed to wake up RCU");
  264. if (unlikely(call_irq_handler(vector, regs)))
  265. apic_eoi();
  266. set_irq_regs(old_regs);
  267. }
  268. #ifdef CONFIG_X86_LOCAL_APIC
  269. /* Function pointer for generic interrupt vector handling */
  270. void (*x86_platform_ipi_callback)(void) = NULL;
  271. /*
  272. * Handler for X86_PLATFORM_IPI_VECTOR.
  273. */
  274. DEFINE_IDTENTRY_SYSVEC(sysvec_x86_platform_ipi)
  275. {
  276. struct pt_regs *old_regs = set_irq_regs(regs);
  277. apic_eoi();
  278. trace_x86_platform_ipi_entry(X86_PLATFORM_IPI_VECTOR);
  279. inc_irq_stat(x86_platform_ipis);
  280. if (x86_platform_ipi_callback)
  281. x86_platform_ipi_callback();
  282. trace_x86_platform_ipi_exit(X86_PLATFORM_IPI_VECTOR);
  283. set_irq_regs(old_regs);
  284. }
  285. #endif
  286. #if IS_ENABLED(CONFIG_KVM)
  287. static void dummy_handler(void) {}
  288. static void (*kvm_posted_intr_wakeup_handler)(void) = dummy_handler;
  289. void kvm_set_posted_intr_wakeup_handler(void (*handler)(void))
  290. {
  291. if (handler)
  292. kvm_posted_intr_wakeup_handler = handler;
  293. else {
  294. kvm_posted_intr_wakeup_handler = dummy_handler;
  295. synchronize_rcu();
  296. }
  297. }
  298. EXPORT_SYMBOL_GPL(kvm_set_posted_intr_wakeup_handler);
  299. /*
  300. * Handler for POSTED_INTERRUPT_VECTOR.
  301. */
  302. DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_ipi)
  303. {
  304. apic_eoi();
  305. inc_irq_stat(kvm_posted_intr_ipis);
  306. }
  307. /*
  308. * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
  309. */
  310. DEFINE_IDTENTRY_SYSVEC(sysvec_kvm_posted_intr_wakeup_ipi)
  311. {
  312. apic_eoi();
  313. inc_irq_stat(kvm_posted_intr_wakeup_ipis);
  314. kvm_posted_intr_wakeup_handler();
  315. }
  316. /*
  317. * Handler for POSTED_INTERRUPT_NESTED_VECTOR.
  318. */
  319. DEFINE_IDTENTRY_SYSVEC_SIMPLE(sysvec_kvm_posted_intr_nested_ipi)
  320. {
  321. apic_eoi();
  322. inc_irq_stat(kvm_posted_intr_nested_ipis);
  323. }
  324. #endif
  325. #ifdef CONFIG_X86_POSTED_MSI
  326. /* Posted Interrupt Descriptors for coalesced MSIs to be posted */
  327. DEFINE_PER_CPU_ALIGNED(struct pi_desc, posted_msi_pi_desc);
  328. void intel_posted_msi_init(void)
  329. {
  330. u32 destination;
  331. u32 apic_id;
  332. this_cpu_write(posted_msi_pi_desc.nv, POSTED_MSI_NOTIFICATION_VECTOR);
  333. /*
  334. * APIC destination ID is stored in bit 8:15 while in XAPIC mode.
  335. * VT-d spec. CH 9.11
  336. */
  337. apic_id = this_cpu_read(x86_cpu_to_apicid);
  338. destination = x2apic_enabled() ? apic_id : apic_id << 8;
  339. this_cpu_write(posted_msi_pi_desc.ndst, destination);
  340. }
  341. /*
  342. * De-multiplexing posted interrupts is on the performance path, the code
  343. * below is written to optimize the cache performance based on the following
  344. * considerations:
  345. * 1.Posted interrupt descriptor (PID) fits in a cache line that is frequently
  346. * accessed by both CPU and IOMMU.
  347. * 2.During posted MSI processing, the CPU needs to do 64-bit read and xchg
  348. * for checking and clearing posted interrupt request (PIR), a 256 bit field
  349. * within the PID.
  350. * 3.On the other side, the IOMMU does atomic swaps of the entire PID cache
  351. * line when posting interrupts and setting control bits.
  352. * 4.The CPU can access the cache line a magnitude faster than the IOMMU.
  353. * 5.Each time the IOMMU does interrupt posting to the PIR will evict the PID
  354. * cache line. The cache line states after each operation are as follows:
  355. * CPU IOMMU PID Cache line state
  356. * ---------------------------------------------------------------
  357. *...read64 exclusive
  358. *...lock xchg64 modified
  359. *... post/atomic swap invalid
  360. *...-------------------------------------------------------------
  361. *
  362. * To reduce L1 data cache miss, it is important to avoid contention with
  363. * IOMMU's interrupt posting/atomic swap. Therefore, a copy of PIR is used
  364. * to dispatch interrupt handlers.
  365. *
  366. * In addition, the code is trying to keep the cache line state consistent
  367. * as much as possible. e.g. when making a copy and clearing the PIR
  368. * (assuming non-zero PIR bits are present in the entire PIR), it does:
  369. * read, read, read, read, xchg, xchg, xchg, xchg
  370. * instead of:
  371. * read, xchg, read, xchg, read, xchg, read, xchg
  372. */
  373. static __always_inline bool handle_pending_pir(u64 *pir, struct pt_regs *regs)
  374. {
  375. int i, vec = FIRST_EXTERNAL_VECTOR;
  376. unsigned long pir_copy[4];
  377. bool handled = false;
  378. for (i = 0; i < 4; i++)
  379. pir_copy[i] = pir[i];
  380. for (i = 0; i < 4; i++) {
  381. if (!pir_copy[i])
  382. continue;
  383. pir_copy[i] = arch_xchg(&pir[i], 0);
  384. handled = true;
  385. }
  386. if (handled) {
  387. for_each_set_bit_from(vec, pir_copy, FIRST_SYSTEM_VECTOR)
  388. call_irq_handler(vec, regs);
  389. }
  390. return handled;
  391. }
  392. /*
  393. * Performance data shows that 3 is good enough to harvest 90+% of the benefit
  394. * on high IRQ rate workload.
  395. */
  396. #define MAX_POSTED_MSI_COALESCING_LOOP 3
  397. /*
  398. * For MSIs that are delivered as posted interrupts, the CPU notifications
  399. * can be coalesced if the MSIs arrive in high frequency bursts.
  400. */
  401. DEFINE_IDTENTRY_SYSVEC(sysvec_posted_msi_notification)
  402. {
  403. struct pt_regs *old_regs = set_irq_regs(regs);
  404. struct pi_desc *pid;
  405. int i = 0;
  406. pid = this_cpu_ptr(&posted_msi_pi_desc);
  407. inc_irq_stat(posted_msi_notification_count);
  408. irq_enter();
  409. /*
  410. * Max coalescing count includes the extra round of handle_pending_pir
  411. * after clearing the outstanding notification bit. Hence, at most
  412. * MAX_POSTED_MSI_COALESCING_LOOP - 1 loops are executed here.
  413. */
  414. while (++i < MAX_POSTED_MSI_COALESCING_LOOP) {
  415. if (!handle_pending_pir(pid->pir64, regs))
  416. break;
  417. }
  418. /*
  419. * Clear outstanding notification bit to allow new IRQ notifications,
  420. * do this last to maximize the window of interrupt coalescing.
  421. */
  422. pi_clear_on(pid);
  423. /*
  424. * There could be a race of PI notification and the clearing of ON bit,
  425. * process PIR bits one last time such that handling the new interrupts
  426. * are not delayed until the next IRQ.
  427. */
  428. handle_pending_pir(pid->pir64, regs);
  429. apic_eoi();
  430. irq_exit();
  431. set_irq_regs(old_regs);
  432. }
  433. #endif /* X86_POSTED_MSI */
  434. #ifdef CONFIG_HOTPLUG_CPU
  435. /* A cpu has been removed from cpu_online_mask. Reset irq affinities. */
  436. void fixup_irqs(void)
  437. {
  438. unsigned int vector;
  439. struct irq_desc *desc;
  440. struct irq_data *data;
  441. struct irq_chip *chip;
  442. irq_migrate_all_off_this_cpu();
  443. /*
  444. * We can remove mdelay() and then send spurious interrupts to
  445. * new cpu targets for all the irqs that were handled previously by
  446. * this cpu. While it works, I have seen spurious interrupt messages
  447. * (nothing wrong but still...).
  448. *
  449. * So for now, retain mdelay(1) and check the IRR and then send those
  450. * interrupts to new targets as this cpu is already offlined...
  451. */
  452. mdelay(1);
  453. /*
  454. * We can walk the vector array of this cpu without holding
  455. * vector_lock because the cpu is already marked !online, so
  456. * nothing else will touch it.
  457. */
  458. for (vector = FIRST_EXTERNAL_VECTOR; vector < NR_VECTORS; vector++) {
  459. if (IS_ERR_OR_NULL(__this_cpu_read(vector_irq[vector])))
  460. continue;
  461. if (is_vector_pending(vector)) {
  462. desc = __this_cpu_read(vector_irq[vector]);
  463. raw_spin_lock(&desc->lock);
  464. data = irq_desc_get_irq_data(desc);
  465. chip = irq_data_get_irq_chip(data);
  466. if (chip->irq_retrigger) {
  467. chip->irq_retrigger(data);
  468. __this_cpu_write(vector_irq[vector], VECTOR_RETRIGGERED);
  469. }
  470. raw_spin_unlock(&desc->lock);
  471. }
  472. if (__this_cpu_read(vector_irq[vector]) != VECTOR_RETRIGGERED)
  473. __this_cpu_write(vector_irq[vector], VECTOR_UNUSED);
  474. }
  475. }
  476. #endif
  477. #ifdef CONFIG_X86_THERMAL_VECTOR
  478. static void smp_thermal_vector(void)
  479. {
  480. if (x86_thermal_enabled())
  481. intel_thermal_interrupt();
  482. else
  483. pr_err("CPU%d: Unexpected LVT thermal interrupt!\n",
  484. smp_processor_id());
  485. }
  486. DEFINE_IDTENTRY_SYSVEC(sysvec_thermal)
  487. {
  488. trace_thermal_apic_entry(THERMAL_APIC_VECTOR);
  489. inc_irq_stat(irq_thermal_count);
  490. smp_thermal_vector();
  491. trace_thermal_apic_exit(THERMAL_APIC_VECTOR);
  492. apic_eoi();
  493. }
  494. #endif