init.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079
  1. #include <linux/gfp.h>
  2. #include <linux/initrd.h>
  3. #include <linux/ioport.h>
  4. #include <linux/swap.h>
  5. #include <linux/memblock.h>
  6. #include <linux/swapfile.h>
  7. #include <linux/swapops.h>
  8. #include <linux/kmemleak.h>
  9. #include <linux/sched/task.h>
  10. #include <linux/execmem.h>
  11. #include <asm/set_memory.h>
  12. #include <asm/cpu_device_id.h>
  13. #include <asm/e820/api.h>
  14. #include <asm/init.h>
  15. #include <asm/page.h>
  16. #include <asm/page_types.h>
  17. #include <asm/sections.h>
  18. #include <asm/setup.h>
  19. #include <asm/tlbflush.h>
  20. #include <asm/tlb.h>
  21. #include <asm/proto.h>
  22. #include <asm/dma.h> /* for MAX_DMA_PFN */
  23. #include <asm/kaslr.h>
  24. #include <asm/hypervisor.h>
  25. #include <asm/cpufeature.h>
  26. #include <asm/pti.h>
  27. #include <asm/text-patching.h>
  28. #include <asm/memtype.h>
  29. #include <asm/paravirt.h>
  30. /*
  31. * We need to define the tracepoints somewhere, and tlb.c
  32. * is only compiled when SMP=y.
  33. */
  34. #include <trace/events/tlb.h>
  35. #include "mm_internal.h"
  36. /*
  37. * Tables translating between page_cache_type_t and pte encoding.
  38. *
  39. * The default values are defined statically as minimal supported mode;
  40. * WC and WT fall back to UC-. pat_init() updates these values to support
  41. * more cache modes, WC and WT, when it is safe to do so. See pat_init()
  42. * for the details. Note, __early_ioremap() used during early boot-time
  43. * takes pgprot_t (pte encoding) and does not use these tables.
  44. *
  45. * Index into __cachemode2pte_tbl[] is the cachemode.
  46. *
  47. * Index into __pte2cachemode_tbl[] are the caching attribute bits of the pte
  48. * (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT) at index bit positions 0, 1, 2.
  49. */
  50. static uint16_t __cachemode2pte_tbl[_PAGE_CACHE_MODE_NUM] = {
  51. [_PAGE_CACHE_MODE_WB ] = 0 | 0 ,
  52. [_PAGE_CACHE_MODE_WC ] = 0 | _PAGE_PCD,
  53. [_PAGE_CACHE_MODE_UC_MINUS] = 0 | _PAGE_PCD,
  54. [_PAGE_CACHE_MODE_UC ] = _PAGE_PWT | _PAGE_PCD,
  55. [_PAGE_CACHE_MODE_WT ] = 0 | _PAGE_PCD,
  56. [_PAGE_CACHE_MODE_WP ] = 0 | _PAGE_PCD,
  57. };
  58. unsigned long cachemode2protval(enum page_cache_mode pcm)
  59. {
  60. if (likely(pcm == 0))
  61. return 0;
  62. return __cachemode2pte_tbl[pcm];
  63. }
  64. EXPORT_SYMBOL(cachemode2protval);
  65. static uint8_t __pte2cachemode_tbl[8] = {
  66. [__pte2cm_idx( 0 | 0 | 0 )] = _PAGE_CACHE_MODE_WB,
  67. [__pte2cm_idx(_PAGE_PWT | 0 | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  68. [__pte2cm_idx( 0 | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC_MINUS,
  69. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | 0 )] = _PAGE_CACHE_MODE_UC,
  70. [__pte2cm_idx( 0 | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_WB,
  71. [__pte2cm_idx(_PAGE_PWT | 0 | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  72. [__pte2cm_idx(0 | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC_MINUS,
  73. [__pte2cm_idx(_PAGE_PWT | _PAGE_PCD | _PAGE_PAT)] = _PAGE_CACHE_MODE_UC,
  74. };
  75. /*
  76. * Check that the write-protect PAT entry is set for write-protect.
  77. * To do this without making assumptions how PAT has been set up (Xen has
  78. * another layout than the kernel), translate the _PAGE_CACHE_MODE_WP cache
  79. * mode via the __cachemode2pte_tbl[] into protection bits (those protection
  80. * bits will select a cache mode of WP or better), and then translate the
  81. * protection bits back into the cache mode using __pte2cm_idx() and the
  82. * __pte2cachemode_tbl[] array. This will return the really used cache mode.
  83. */
  84. bool x86_has_pat_wp(void)
  85. {
  86. uint16_t prot = __cachemode2pte_tbl[_PAGE_CACHE_MODE_WP];
  87. return __pte2cachemode_tbl[__pte2cm_idx(prot)] == _PAGE_CACHE_MODE_WP;
  88. }
  89. enum page_cache_mode pgprot2cachemode(pgprot_t pgprot)
  90. {
  91. unsigned long masked;
  92. masked = pgprot_val(pgprot) & _PAGE_CACHE_MASK;
  93. if (likely(masked == 0))
  94. return 0;
  95. return __pte2cachemode_tbl[__pte2cm_idx(masked)];
  96. }
  97. static unsigned long __initdata pgt_buf_start;
  98. static unsigned long __initdata pgt_buf_end;
  99. static unsigned long __initdata pgt_buf_top;
  100. static unsigned long min_pfn_mapped;
  101. static bool __initdata can_use_brk_pgt = true;
  102. /*
  103. * Pages returned are already directly mapped.
  104. *
  105. * Changing that is likely to break Xen, see commit:
  106. *
  107. * 279b706 x86,xen: introduce x86_init.mapping.pagetable_reserve
  108. *
  109. * for detailed information.
  110. */
  111. __ref void *alloc_low_pages(unsigned int num)
  112. {
  113. unsigned long pfn;
  114. int i;
  115. if (after_bootmem) {
  116. unsigned int order;
  117. order = get_order((unsigned long)num << PAGE_SHIFT);
  118. return (void *)__get_free_pages(GFP_ATOMIC | __GFP_ZERO, order);
  119. }
  120. if ((pgt_buf_end + num) > pgt_buf_top || !can_use_brk_pgt) {
  121. unsigned long ret = 0;
  122. if (min_pfn_mapped < max_pfn_mapped) {
  123. ret = memblock_phys_alloc_range(
  124. PAGE_SIZE * num, PAGE_SIZE,
  125. min_pfn_mapped << PAGE_SHIFT,
  126. max_pfn_mapped << PAGE_SHIFT);
  127. }
  128. if (!ret && can_use_brk_pgt)
  129. ret = __pa(extend_brk(PAGE_SIZE * num, PAGE_SIZE));
  130. if (!ret)
  131. panic("alloc_low_pages: can not alloc memory");
  132. pfn = ret >> PAGE_SHIFT;
  133. } else {
  134. pfn = pgt_buf_end;
  135. pgt_buf_end += num;
  136. }
  137. for (i = 0; i < num; i++) {
  138. void *adr;
  139. adr = __va((pfn + i) << PAGE_SHIFT);
  140. clear_page(adr);
  141. }
  142. return __va(pfn << PAGE_SHIFT);
  143. }
  144. /*
  145. * By default need to be able to allocate page tables below PGD firstly for
  146. * the 0-ISA_END_ADDRESS range and secondly for the initial PMD_SIZE mapping.
  147. * With KASLR memory randomization, depending on the machine e820 memory and the
  148. * PUD alignment, twice that many pages may be needed when KASLR memory
  149. * randomization is enabled.
  150. */
  151. #ifndef CONFIG_X86_5LEVEL
  152. #define INIT_PGD_PAGE_TABLES 3
  153. #else
  154. #define INIT_PGD_PAGE_TABLES 4
  155. #endif
  156. #ifndef CONFIG_RANDOMIZE_MEMORY
  157. #define INIT_PGD_PAGE_COUNT (2 * INIT_PGD_PAGE_TABLES)
  158. #else
  159. #define INIT_PGD_PAGE_COUNT (4 * INIT_PGD_PAGE_TABLES)
  160. #endif
  161. #define INIT_PGT_BUF_SIZE (INIT_PGD_PAGE_COUNT * PAGE_SIZE)
  162. RESERVE_BRK(early_pgt_alloc, INIT_PGT_BUF_SIZE);
  163. void __init early_alloc_pgt_buf(void)
  164. {
  165. unsigned long tables = INIT_PGT_BUF_SIZE;
  166. phys_addr_t base;
  167. base = __pa(extend_brk(tables, PAGE_SIZE));
  168. pgt_buf_start = base >> PAGE_SHIFT;
  169. pgt_buf_end = pgt_buf_start;
  170. pgt_buf_top = pgt_buf_start + (tables >> PAGE_SHIFT);
  171. }
  172. int after_bootmem;
  173. early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
  174. struct map_range {
  175. unsigned long start;
  176. unsigned long end;
  177. unsigned page_size_mask;
  178. };
  179. static int page_size_mask;
  180. /*
  181. * Save some of cr4 feature set we're using (e.g. Pentium 4MB
  182. * enable and PPro Global page enable), so that any CPU's that boot
  183. * up after us can get the correct flags. Invoked on the boot CPU.
  184. */
  185. static inline void cr4_set_bits_and_update_boot(unsigned long mask)
  186. {
  187. mmu_cr4_features |= mask;
  188. if (trampoline_cr4_features)
  189. *trampoline_cr4_features = mmu_cr4_features;
  190. cr4_set_bits(mask);
  191. }
  192. static void __init probe_page_size_mask(void)
  193. {
  194. /*
  195. * For pagealloc debugging, identity mapping will use small pages.
  196. * This will simplify cpa(), which otherwise needs to support splitting
  197. * large pages into small in interrupt context, etc.
  198. */
  199. if (boot_cpu_has(X86_FEATURE_PSE) && !debug_pagealloc_enabled())
  200. page_size_mask |= 1 << PG_LEVEL_2M;
  201. else
  202. direct_gbpages = 0;
  203. /* Enable PSE if available */
  204. if (boot_cpu_has(X86_FEATURE_PSE))
  205. cr4_set_bits_and_update_boot(X86_CR4_PSE);
  206. /* Enable PGE if available */
  207. __supported_pte_mask &= ~_PAGE_GLOBAL;
  208. if (boot_cpu_has(X86_FEATURE_PGE)) {
  209. cr4_set_bits_and_update_boot(X86_CR4_PGE);
  210. __supported_pte_mask |= _PAGE_GLOBAL;
  211. }
  212. /* By the default is everything supported: */
  213. __default_kernel_pte_mask = __supported_pte_mask;
  214. /* Except when with PTI where the kernel is mostly non-Global: */
  215. if (cpu_feature_enabled(X86_FEATURE_PTI))
  216. __default_kernel_pte_mask &= ~_PAGE_GLOBAL;
  217. /* Enable 1 GB linear kernel mappings if available: */
  218. if (direct_gbpages && boot_cpu_has(X86_FEATURE_GBPAGES)) {
  219. printk(KERN_INFO "Using GB pages for direct mapping\n");
  220. page_size_mask |= 1 << PG_LEVEL_1G;
  221. } else {
  222. direct_gbpages = 0;
  223. }
  224. }
  225. /*
  226. * INVLPG may not properly flush Global entries
  227. * on these CPUs when PCIDs are enabled.
  228. */
  229. static const struct x86_cpu_id invlpg_miss_ids[] = {
  230. X86_MATCH_VFM(INTEL_ALDERLAKE, 0),
  231. X86_MATCH_VFM(INTEL_ALDERLAKE_L, 0),
  232. X86_MATCH_VFM(INTEL_ATOM_GRACEMONT, 0),
  233. X86_MATCH_VFM(INTEL_RAPTORLAKE, 0),
  234. X86_MATCH_VFM(INTEL_RAPTORLAKE_P, 0),
  235. X86_MATCH_VFM(INTEL_RAPTORLAKE_S, 0),
  236. {}
  237. };
  238. static void setup_pcid(void)
  239. {
  240. if (!IS_ENABLED(CONFIG_X86_64))
  241. return;
  242. if (!boot_cpu_has(X86_FEATURE_PCID))
  243. return;
  244. if (x86_match_cpu(invlpg_miss_ids)) {
  245. pr_info("Incomplete global flushes, disabling PCID");
  246. setup_clear_cpu_cap(X86_FEATURE_PCID);
  247. return;
  248. }
  249. if (boot_cpu_has(X86_FEATURE_PGE)) {
  250. /*
  251. * This can't be cr4_set_bits_and_update_boot() -- the
  252. * trampoline code can't handle CR4.PCIDE and it wouldn't
  253. * do any good anyway. Despite the name,
  254. * cr4_set_bits_and_update_boot() doesn't actually cause
  255. * the bits in question to remain set all the way through
  256. * the secondary boot asm.
  257. *
  258. * Instead, we brute-force it and set CR4.PCIDE manually in
  259. * start_secondary().
  260. */
  261. cr4_set_bits(X86_CR4_PCIDE);
  262. } else {
  263. /*
  264. * flush_tlb_all(), as currently implemented, won't work if
  265. * PCID is on but PGE is not. Since that combination
  266. * doesn't exist on real hardware, there's no reason to try
  267. * to fully support it, but it's polite to avoid corrupting
  268. * data if we're on an improperly configured VM.
  269. */
  270. setup_clear_cpu_cap(X86_FEATURE_PCID);
  271. }
  272. }
  273. #ifdef CONFIG_X86_32
  274. #define NR_RANGE_MR 3
  275. #else /* CONFIG_X86_64 */
  276. #define NR_RANGE_MR 5
  277. #endif
  278. static int __meminit save_mr(struct map_range *mr, int nr_range,
  279. unsigned long start_pfn, unsigned long end_pfn,
  280. unsigned long page_size_mask)
  281. {
  282. if (start_pfn < end_pfn) {
  283. if (nr_range >= NR_RANGE_MR)
  284. panic("run out of range for init_memory_mapping\n");
  285. mr[nr_range].start = start_pfn<<PAGE_SHIFT;
  286. mr[nr_range].end = end_pfn<<PAGE_SHIFT;
  287. mr[nr_range].page_size_mask = page_size_mask;
  288. nr_range++;
  289. }
  290. return nr_range;
  291. }
  292. /*
  293. * adjust the page_size_mask for small range to go with
  294. * big page size instead small one if nearby are ram too.
  295. */
  296. static void __ref adjust_range_page_size_mask(struct map_range *mr,
  297. int nr_range)
  298. {
  299. int i;
  300. for (i = 0; i < nr_range; i++) {
  301. if ((page_size_mask & (1<<PG_LEVEL_2M)) &&
  302. !(mr[i].page_size_mask & (1<<PG_LEVEL_2M))) {
  303. unsigned long start = round_down(mr[i].start, PMD_SIZE);
  304. unsigned long end = round_up(mr[i].end, PMD_SIZE);
  305. #ifdef CONFIG_X86_32
  306. if ((end >> PAGE_SHIFT) > max_low_pfn)
  307. continue;
  308. #endif
  309. if (memblock_is_region_memory(start, end - start))
  310. mr[i].page_size_mask |= 1<<PG_LEVEL_2M;
  311. }
  312. if ((page_size_mask & (1<<PG_LEVEL_1G)) &&
  313. !(mr[i].page_size_mask & (1<<PG_LEVEL_1G))) {
  314. unsigned long start = round_down(mr[i].start, PUD_SIZE);
  315. unsigned long end = round_up(mr[i].end, PUD_SIZE);
  316. if (memblock_is_region_memory(start, end - start))
  317. mr[i].page_size_mask |= 1<<PG_LEVEL_1G;
  318. }
  319. }
  320. }
  321. static const char *page_size_string(struct map_range *mr)
  322. {
  323. static const char str_1g[] = "1G";
  324. static const char str_2m[] = "2M";
  325. static const char str_4m[] = "4M";
  326. static const char str_4k[] = "4k";
  327. if (mr->page_size_mask & (1<<PG_LEVEL_1G))
  328. return str_1g;
  329. /*
  330. * 32-bit without PAE has a 4M large page size.
  331. * PG_LEVEL_2M is misnamed, but we can at least
  332. * print out the right size in the string.
  333. */
  334. if (IS_ENABLED(CONFIG_X86_32) &&
  335. !IS_ENABLED(CONFIG_X86_PAE) &&
  336. mr->page_size_mask & (1<<PG_LEVEL_2M))
  337. return str_4m;
  338. if (mr->page_size_mask & (1<<PG_LEVEL_2M))
  339. return str_2m;
  340. return str_4k;
  341. }
  342. static int __meminit split_mem_range(struct map_range *mr, int nr_range,
  343. unsigned long start,
  344. unsigned long end)
  345. {
  346. unsigned long start_pfn, end_pfn, limit_pfn;
  347. unsigned long pfn;
  348. int i;
  349. limit_pfn = PFN_DOWN(end);
  350. /* head if not big page alignment ? */
  351. pfn = start_pfn = PFN_DOWN(start);
  352. #ifdef CONFIG_X86_32
  353. /*
  354. * Don't use a large page for the first 2/4MB of memory
  355. * because there are often fixed size MTRRs in there
  356. * and overlapping MTRRs into large pages can cause
  357. * slowdowns.
  358. */
  359. if (pfn == 0)
  360. end_pfn = PFN_DOWN(PMD_SIZE);
  361. else
  362. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  363. #else /* CONFIG_X86_64 */
  364. end_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  365. #endif
  366. if (end_pfn > limit_pfn)
  367. end_pfn = limit_pfn;
  368. if (start_pfn < end_pfn) {
  369. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  370. pfn = end_pfn;
  371. }
  372. /* big page (2M) range */
  373. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  374. #ifdef CONFIG_X86_32
  375. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  376. #else /* CONFIG_X86_64 */
  377. end_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  378. if (end_pfn > round_down(limit_pfn, PFN_DOWN(PMD_SIZE)))
  379. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  380. #endif
  381. if (start_pfn < end_pfn) {
  382. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  383. page_size_mask & (1<<PG_LEVEL_2M));
  384. pfn = end_pfn;
  385. }
  386. #ifdef CONFIG_X86_64
  387. /* big page (1G) range */
  388. start_pfn = round_up(pfn, PFN_DOWN(PUD_SIZE));
  389. end_pfn = round_down(limit_pfn, PFN_DOWN(PUD_SIZE));
  390. if (start_pfn < end_pfn) {
  391. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  392. page_size_mask &
  393. ((1<<PG_LEVEL_2M)|(1<<PG_LEVEL_1G)));
  394. pfn = end_pfn;
  395. }
  396. /* tail is not big page (1G) alignment */
  397. start_pfn = round_up(pfn, PFN_DOWN(PMD_SIZE));
  398. end_pfn = round_down(limit_pfn, PFN_DOWN(PMD_SIZE));
  399. if (start_pfn < end_pfn) {
  400. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn,
  401. page_size_mask & (1<<PG_LEVEL_2M));
  402. pfn = end_pfn;
  403. }
  404. #endif
  405. /* tail is not big page (2M) alignment */
  406. start_pfn = pfn;
  407. end_pfn = limit_pfn;
  408. nr_range = save_mr(mr, nr_range, start_pfn, end_pfn, 0);
  409. if (!after_bootmem)
  410. adjust_range_page_size_mask(mr, nr_range);
  411. /* try to merge same page size and continuous */
  412. for (i = 0; nr_range > 1 && i < nr_range - 1; i++) {
  413. unsigned long old_start;
  414. if (mr[i].end != mr[i+1].start ||
  415. mr[i].page_size_mask != mr[i+1].page_size_mask)
  416. continue;
  417. /* move it */
  418. old_start = mr[i].start;
  419. memmove(&mr[i], &mr[i+1],
  420. (nr_range - 1 - i) * sizeof(struct map_range));
  421. mr[i--].start = old_start;
  422. nr_range--;
  423. }
  424. for (i = 0; i < nr_range; i++)
  425. pr_debug(" [mem %#010lx-%#010lx] page %s\n",
  426. mr[i].start, mr[i].end - 1,
  427. page_size_string(&mr[i]));
  428. return nr_range;
  429. }
  430. struct range pfn_mapped[E820_MAX_ENTRIES];
  431. int nr_pfn_mapped;
  432. static void add_pfn_range_mapped(unsigned long start_pfn, unsigned long end_pfn)
  433. {
  434. nr_pfn_mapped = add_range_with_merge(pfn_mapped, E820_MAX_ENTRIES,
  435. nr_pfn_mapped, start_pfn, end_pfn);
  436. nr_pfn_mapped = clean_sort_range(pfn_mapped, E820_MAX_ENTRIES);
  437. max_pfn_mapped = max(max_pfn_mapped, end_pfn);
  438. if (start_pfn < (1UL<<(32-PAGE_SHIFT)))
  439. max_low_pfn_mapped = max(max_low_pfn_mapped,
  440. min(end_pfn, 1UL<<(32-PAGE_SHIFT)));
  441. }
  442. bool pfn_range_is_mapped(unsigned long start_pfn, unsigned long end_pfn)
  443. {
  444. int i;
  445. for (i = 0; i < nr_pfn_mapped; i++)
  446. if ((start_pfn >= pfn_mapped[i].start) &&
  447. (end_pfn <= pfn_mapped[i].end))
  448. return true;
  449. return false;
  450. }
  451. /*
  452. * Setup the direct mapping of the physical memory at PAGE_OFFSET.
  453. * This runs before bootmem is initialized and gets pages directly from
  454. * the physical memory. To access them they are temporarily mapped.
  455. */
  456. unsigned long __ref init_memory_mapping(unsigned long start,
  457. unsigned long end, pgprot_t prot)
  458. {
  459. struct map_range mr[NR_RANGE_MR];
  460. unsigned long ret = 0;
  461. int nr_range, i;
  462. pr_debug("init_memory_mapping: [mem %#010lx-%#010lx]\n",
  463. start, end - 1);
  464. memset(mr, 0, sizeof(mr));
  465. nr_range = split_mem_range(mr, 0, start, end);
  466. for (i = 0; i < nr_range; i++)
  467. ret = kernel_physical_mapping_init(mr[i].start, mr[i].end,
  468. mr[i].page_size_mask,
  469. prot);
  470. add_pfn_range_mapped(start >> PAGE_SHIFT, ret >> PAGE_SHIFT);
  471. return ret >> PAGE_SHIFT;
  472. }
  473. /*
  474. * We need to iterate through the E820 memory map and create direct mappings
  475. * for only E820_TYPE_RAM and E820_KERN_RESERVED regions. We cannot simply
  476. * create direct mappings for all pfns from [0 to max_low_pfn) and
  477. * [4GB to max_pfn) because of possible memory holes in high addresses
  478. * that cannot be marked as UC by fixed/variable range MTRRs.
  479. * Depending on the alignment of E820 ranges, this may possibly result
  480. * in using smaller size (i.e. 4K instead of 2M or 1G) page tables.
  481. *
  482. * init_mem_mapping() calls init_range_memory_mapping() with big range.
  483. * That range would have hole in the middle or ends, and only ram parts
  484. * will be mapped in init_range_memory_mapping().
  485. */
  486. static unsigned long __init init_range_memory_mapping(
  487. unsigned long r_start,
  488. unsigned long r_end)
  489. {
  490. unsigned long start_pfn, end_pfn;
  491. unsigned long mapped_ram_size = 0;
  492. int i;
  493. for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, NULL) {
  494. u64 start = clamp_val(PFN_PHYS(start_pfn), r_start, r_end);
  495. u64 end = clamp_val(PFN_PHYS(end_pfn), r_start, r_end);
  496. if (start >= end)
  497. continue;
  498. /*
  499. * if it is overlapping with brk pgt, we need to
  500. * alloc pgt buf from memblock instead.
  501. */
  502. can_use_brk_pgt = max(start, (u64)pgt_buf_end<<PAGE_SHIFT) >=
  503. min(end, (u64)pgt_buf_top<<PAGE_SHIFT);
  504. init_memory_mapping(start, end, PAGE_KERNEL);
  505. mapped_ram_size += end - start;
  506. can_use_brk_pgt = true;
  507. }
  508. return mapped_ram_size;
  509. }
  510. static unsigned long __init get_new_step_size(unsigned long step_size)
  511. {
  512. /*
  513. * Initial mapped size is PMD_SIZE (2M).
  514. * We can not set step_size to be PUD_SIZE (1G) yet.
  515. * In worse case, when we cross the 1G boundary, and
  516. * PG_LEVEL_2M is not set, we will need 1+1+512 pages (2M + 8k)
  517. * to map 1G range with PTE. Hence we use one less than the
  518. * difference of page table level shifts.
  519. *
  520. * Don't need to worry about overflow in the top-down case, on 32bit,
  521. * when step_size is 0, round_down() returns 0 for start, and that
  522. * turns it into 0x100000000ULL.
  523. * In the bottom-up case, round_up(x, 0) returns 0 though too, which
  524. * needs to be taken into consideration by the code below.
  525. */
  526. return step_size << (PMD_SHIFT - PAGE_SHIFT - 1);
  527. }
  528. /**
  529. * memory_map_top_down - Map [map_start, map_end) top down
  530. * @map_start: start address of the target memory range
  531. * @map_end: end address of the target memory range
  532. *
  533. * This function will setup direct mapping for memory range
  534. * [map_start, map_end) in top-down. That said, the page tables
  535. * will be allocated at the end of the memory, and we map the
  536. * memory in top-down.
  537. */
  538. static void __init memory_map_top_down(unsigned long map_start,
  539. unsigned long map_end)
  540. {
  541. unsigned long real_end, last_start;
  542. unsigned long step_size;
  543. unsigned long addr;
  544. unsigned long mapped_ram_size = 0;
  545. /*
  546. * Systems that have many reserved areas near top of the memory,
  547. * e.g. QEMU with less than 1G RAM and EFI enabled, or Xen, will
  548. * require lots of 4K mappings which may exhaust pgt_buf.
  549. * Start with top-most PMD_SIZE range aligned at PMD_SIZE to ensure
  550. * there is enough mapped memory that can be allocated from
  551. * memblock.
  552. */
  553. addr = memblock_phys_alloc_range(PMD_SIZE, PMD_SIZE, map_start,
  554. map_end);
  555. memblock_phys_free(addr, PMD_SIZE);
  556. real_end = addr + PMD_SIZE;
  557. /* step_size need to be small so pgt_buf from BRK could cover it */
  558. step_size = PMD_SIZE;
  559. max_pfn_mapped = 0; /* will get exact value next */
  560. min_pfn_mapped = real_end >> PAGE_SHIFT;
  561. last_start = real_end;
  562. /*
  563. * We start from the top (end of memory) and go to the bottom.
  564. * The memblock_find_in_range() gets us a block of RAM from the
  565. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  566. * for page table.
  567. */
  568. while (last_start > map_start) {
  569. unsigned long start;
  570. if (last_start > step_size) {
  571. start = round_down(last_start - 1, step_size);
  572. if (start < map_start)
  573. start = map_start;
  574. } else
  575. start = map_start;
  576. mapped_ram_size += init_range_memory_mapping(start,
  577. last_start);
  578. last_start = start;
  579. min_pfn_mapped = last_start >> PAGE_SHIFT;
  580. if (mapped_ram_size >= step_size)
  581. step_size = get_new_step_size(step_size);
  582. }
  583. if (real_end < map_end)
  584. init_range_memory_mapping(real_end, map_end);
  585. }
  586. /**
  587. * memory_map_bottom_up - Map [map_start, map_end) bottom up
  588. * @map_start: start address of the target memory range
  589. * @map_end: end address of the target memory range
  590. *
  591. * This function will setup direct mapping for memory range
  592. * [map_start, map_end) in bottom-up. Since we have limited the
  593. * bottom-up allocation above the kernel, the page tables will
  594. * be allocated just above the kernel and we map the memory
  595. * in [map_start, map_end) in bottom-up.
  596. */
  597. static void __init memory_map_bottom_up(unsigned long map_start,
  598. unsigned long map_end)
  599. {
  600. unsigned long next, start;
  601. unsigned long mapped_ram_size = 0;
  602. /* step_size need to be small so pgt_buf from BRK could cover it */
  603. unsigned long step_size = PMD_SIZE;
  604. start = map_start;
  605. min_pfn_mapped = start >> PAGE_SHIFT;
  606. /*
  607. * We start from the bottom (@map_start) and go to the top (@map_end).
  608. * The memblock_find_in_range() gets us a block of RAM from the
  609. * end of RAM in [min_pfn_mapped, max_pfn_mapped) used as new pages
  610. * for page table.
  611. */
  612. while (start < map_end) {
  613. if (step_size && map_end - start > step_size) {
  614. next = round_up(start + 1, step_size);
  615. if (next > map_end)
  616. next = map_end;
  617. } else {
  618. next = map_end;
  619. }
  620. mapped_ram_size += init_range_memory_mapping(start, next);
  621. start = next;
  622. if (mapped_ram_size >= step_size)
  623. step_size = get_new_step_size(step_size);
  624. }
  625. }
  626. /*
  627. * The real mode trampoline, which is required for bootstrapping CPUs
  628. * occupies only a small area under the low 1MB. See reserve_real_mode()
  629. * for details.
  630. *
  631. * If KASLR is disabled the first PGD entry of the direct mapping is copied
  632. * to map the real mode trampoline.
  633. *
  634. * If KASLR is enabled, copy only the PUD which covers the low 1MB
  635. * area. This limits the randomization granularity to 1GB for both 4-level
  636. * and 5-level paging.
  637. */
  638. static void __init init_trampoline(void)
  639. {
  640. #ifdef CONFIG_X86_64
  641. /*
  642. * The code below will alias kernel page-tables in the user-range of the
  643. * address space, including the Global bit. So global TLB entries will
  644. * be created when using the trampoline page-table.
  645. */
  646. if (!kaslr_memory_enabled())
  647. trampoline_pgd_entry = init_top_pgt[pgd_index(__PAGE_OFFSET)];
  648. else
  649. init_trampoline_kaslr();
  650. #endif
  651. }
  652. void __init init_mem_mapping(void)
  653. {
  654. unsigned long end;
  655. pti_check_boottime_disable();
  656. probe_page_size_mask();
  657. setup_pcid();
  658. #ifdef CONFIG_X86_64
  659. end = max_pfn << PAGE_SHIFT;
  660. #else
  661. end = max_low_pfn << PAGE_SHIFT;
  662. #endif
  663. /* the ISA range is always mapped regardless of memory holes */
  664. init_memory_mapping(0, ISA_END_ADDRESS, PAGE_KERNEL);
  665. /* Init the trampoline, possibly with KASLR memory offset */
  666. init_trampoline();
  667. /*
  668. * If the allocation is in bottom-up direction, we setup direct mapping
  669. * in bottom-up, otherwise we setup direct mapping in top-down.
  670. */
  671. if (memblock_bottom_up()) {
  672. unsigned long kernel_end = __pa_symbol(_end);
  673. /*
  674. * we need two separate calls here. This is because we want to
  675. * allocate page tables above the kernel. So we first map
  676. * [kernel_end, end) to make memory above the kernel be mapped
  677. * as soon as possible. And then use page tables allocated above
  678. * the kernel to map [ISA_END_ADDRESS, kernel_end).
  679. */
  680. memory_map_bottom_up(kernel_end, end);
  681. memory_map_bottom_up(ISA_END_ADDRESS, kernel_end);
  682. } else {
  683. memory_map_top_down(ISA_END_ADDRESS, end);
  684. }
  685. #ifdef CONFIG_X86_64
  686. if (max_pfn > max_low_pfn) {
  687. /* can we preserve max_low_pfn ?*/
  688. max_low_pfn = max_pfn;
  689. }
  690. #else
  691. early_ioremap_page_table_range_init();
  692. #endif
  693. load_cr3(swapper_pg_dir);
  694. __flush_tlb_all();
  695. x86_init.hyper.init_mem_mapping();
  696. early_memtest(0, max_pfn_mapped << PAGE_SHIFT);
  697. }
  698. /*
  699. * Initialize an mm_struct to be used during poking and a pointer to be used
  700. * during patching.
  701. */
  702. void __init poking_init(void)
  703. {
  704. spinlock_t *ptl;
  705. pte_t *ptep;
  706. poking_mm = mm_alloc();
  707. BUG_ON(!poking_mm);
  708. /* Xen PV guests need the PGD to be pinned. */
  709. paravirt_enter_mmap(poking_mm);
  710. /*
  711. * Randomize the poking address, but make sure that the following page
  712. * will be mapped at the same PMD. We need 2 pages, so find space for 3,
  713. * and adjust the address if the PMD ends after the first one.
  714. */
  715. poking_addr = TASK_UNMAPPED_BASE;
  716. if (IS_ENABLED(CONFIG_RANDOMIZE_BASE))
  717. poking_addr += (kaslr_get_random_long("Poking") & PAGE_MASK) %
  718. (TASK_SIZE - TASK_UNMAPPED_BASE - 3 * PAGE_SIZE);
  719. if (((poking_addr + PAGE_SIZE) & ~PMD_MASK) == 0)
  720. poking_addr += PAGE_SIZE;
  721. /*
  722. * We need to trigger the allocation of the page-tables that will be
  723. * needed for poking now. Later, poking may be performed in an atomic
  724. * section, which might cause allocation to fail.
  725. */
  726. ptep = get_locked_pte(poking_mm, poking_addr, &ptl);
  727. BUG_ON(!ptep);
  728. pte_unmap_unlock(ptep, ptl);
  729. }
  730. /*
  731. * devmem_is_allowed() checks to see if /dev/mem access to a certain address
  732. * is valid. The argument is a physical page number.
  733. *
  734. * On x86, access has to be given to the first megabyte of RAM because that
  735. * area traditionally contains BIOS code and data regions used by X, dosemu,
  736. * and similar apps. Since they map the entire memory range, the whole range
  737. * must be allowed (for mapping), but any areas that would otherwise be
  738. * disallowed are flagged as being "zero filled" instead of rejected.
  739. * Access has to be given to non-kernel-ram areas as well, these contain the
  740. * PCI mmio resources as well as potential bios/acpi data regions.
  741. */
  742. int devmem_is_allowed(unsigned long pagenr)
  743. {
  744. if (region_intersects(PFN_PHYS(pagenr), PAGE_SIZE,
  745. IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE)
  746. != REGION_DISJOINT) {
  747. /*
  748. * For disallowed memory regions in the low 1MB range,
  749. * request that the page be shown as all zeros.
  750. */
  751. if (pagenr < 256)
  752. return 2;
  753. return 0;
  754. }
  755. /*
  756. * This must follow RAM test, since System RAM is considered a
  757. * restricted resource under CONFIG_STRICT_DEVMEM.
  758. */
  759. if (iomem_is_exclusive(pagenr << PAGE_SHIFT)) {
  760. /* Low 1MB bypasses iomem restrictions. */
  761. if (pagenr < 256)
  762. return 1;
  763. return 0;
  764. }
  765. return 1;
  766. }
  767. void free_init_pages(const char *what, unsigned long begin, unsigned long end)
  768. {
  769. unsigned long begin_aligned, end_aligned;
  770. /* Make sure boundaries are page aligned */
  771. begin_aligned = PAGE_ALIGN(begin);
  772. end_aligned = end & PAGE_MASK;
  773. if (WARN_ON(begin_aligned != begin || end_aligned != end)) {
  774. begin = begin_aligned;
  775. end = end_aligned;
  776. }
  777. if (begin >= end)
  778. return;
  779. /*
  780. * If debugging page accesses then do not free this memory but
  781. * mark them not present - any buggy init-section access will
  782. * create a kernel page fault:
  783. */
  784. if (debug_pagealloc_enabled()) {
  785. pr_info("debug: unmapping init [mem %#010lx-%#010lx]\n",
  786. begin, end - 1);
  787. /*
  788. * Inform kmemleak about the hole in the memory since the
  789. * corresponding pages will be unmapped.
  790. */
  791. kmemleak_free_part((void *)begin, end - begin);
  792. set_memory_np(begin, (end - begin) >> PAGE_SHIFT);
  793. } else {
  794. /*
  795. * We just marked the kernel text read only above, now that
  796. * we are going to free part of that, we need to make that
  797. * writeable and non-executable first.
  798. */
  799. set_memory_nx(begin, (end - begin) >> PAGE_SHIFT);
  800. set_memory_rw(begin, (end - begin) >> PAGE_SHIFT);
  801. free_reserved_area((void *)begin, (void *)end,
  802. POISON_FREE_INITMEM, what);
  803. }
  804. }
  805. /*
  806. * begin/end can be in the direct map or the "high kernel mapping"
  807. * used for the kernel image only. free_init_pages() will do the
  808. * right thing for either kind of address.
  809. */
  810. void free_kernel_image_pages(const char *what, void *begin, void *end)
  811. {
  812. unsigned long begin_ul = (unsigned long)begin;
  813. unsigned long end_ul = (unsigned long)end;
  814. unsigned long len_pages = (end_ul - begin_ul) >> PAGE_SHIFT;
  815. free_init_pages(what, begin_ul, end_ul);
  816. /*
  817. * PTI maps some of the kernel into userspace. For performance,
  818. * this includes some kernel areas that do not contain secrets.
  819. * Those areas might be adjacent to the parts of the kernel image
  820. * being freed, which may contain secrets. Remove the "high kernel
  821. * image mapping" for these freed areas, ensuring they are not even
  822. * potentially vulnerable to Meltdown regardless of the specific
  823. * optimizations PTI is currently using.
  824. *
  825. * The "noalias" prevents unmapping the direct map alias which is
  826. * needed to access the freed pages.
  827. *
  828. * This is only valid for 64bit kernels. 32bit has only one mapping
  829. * which can't be treated in this way for obvious reasons.
  830. */
  831. if (IS_ENABLED(CONFIG_X86_64) && cpu_feature_enabled(X86_FEATURE_PTI))
  832. set_memory_np_noalias(begin_ul, len_pages);
  833. }
  834. void __ref free_initmem(void)
  835. {
  836. e820__reallocate_tables();
  837. mem_encrypt_free_decrypted_mem();
  838. free_kernel_image_pages("unused kernel image (initmem)",
  839. &__init_begin, &__init_end);
  840. }
  841. #ifdef CONFIG_BLK_DEV_INITRD
  842. void __init free_initrd_mem(unsigned long start, unsigned long end)
  843. {
  844. /*
  845. * end could be not aligned, and We can not align that,
  846. * decompressor could be confused by aligned initrd_end
  847. * We already reserve the end partial page before in
  848. * - i386_start_kernel()
  849. * - x86_64_start_kernel()
  850. * - relocate_initrd()
  851. * So here We can do PAGE_ALIGN() safely to get partial page to be freed
  852. */
  853. free_init_pages("initrd", start, PAGE_ALIGN(end));
  854. }
  855. #endif
  856. void __init zone_sizes_init(void)
  857. {
  858. unsigned long max_zone_pfns[MAX_NR_ZONES];
  859. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  860. #ifdef CONFIG_ZONE_DMA
  861. max_zone_pfns[ZONE_DMA] = min(MAX_DMA_PFN, max_low_pfn);
  862. #endif
  863. #ifdef CONFIG_ZONE_DMA32
  864. max_zone_pfns[ZONE_DMA32] = min(MAX_DMA32_PFN, max_low_pfn);
  865. #endif
  866. max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
  867. #ifdef CONFIG_HIGHMEM
  868. max_zone_pfns[ZONE_HIGHMEM] = max_pfn;
  869. #endif
  870. free_area_init(max_zone_pfns);
  871. }
  872. __visible DEFINE_PER_CPU_ALIGNED(struct tlb_state, cpu_tlbstate) = {
  873. .loaded_mm = &init_mm,
  874. .next_asid = 1,
  875. .cr4 = ~0UL, /* fail hard if we screw up cr4 shadow initialization */
  876. };
  877. #ifdef CONFIG_ADDRESS_MASKING
  878. DEFINE_PER_CPU(u64, tlbstate_untag_mask);
  879. EXPORT_PER_CPU_SYMBOL(tlbstate_untag_mask);
  880. #endif
  881. void update_cache_mode_entry(unsigned entry, enum page_cache_mode cache)
  882. {
  883. /* entry 0 MUST be WB (hardwired to speed up translations) */
  884. BUG_ON(!entry && cache != _PAGE_CACHE_MODE_WB);
  885. __cachemode2pte_tbl[cache] = __cm_idx2pte(entry);
  886. __pte2cachemode_tbl[entry] = cache;
  887. }
  888. #ifdef CONFIG_SWAP
  889. unsigned long arch_max_swapfile_size(void)
  890. {
  891. unsigned long pages;
  892. pages = generic_max_swapfile_size();
  893. if (boot_cpu_has_bug(X86_BUG_L1TF) && l1tf_mitigation != L1TF_MITIGATION_OFF) {
  894. /* Limit the swap file size to MAX_PA/2 for L1TF workaround */
  895. unsigned long long l1tf_limit = l1tf_pfn_limit();
  896. /*
  897. * We encode swap offsets also with 3 bits below those for pfn
  898. * which makes the usable limit higher.
  899. */
  900. #if CONFIG_PGTABLE_LEVELS > 2
  901. l1tf_limit <<= PAGE_SHIFT - SWP_OFFSET_FIRST_BIT;
  902. #endif
  903. pages = min_t(unsigned long long, l1tf_limit, pages);
  904. }
  905. return pages;
  906. }
  907. #endif
  908. #ifdef CONFIG_EXECMEM
  909. static struct execmem_info execmem_info __ro_after_init;
  910. struct execmem_info __init *execmem_arch_setup(void)
  911. {
  912. unsigned long start, offset = 0;
  913. if (kaslr_enabled())
  914. offset = get_random_u32_inclusive(1, 1024) * PAGE_SIZE;
  915. start = MODULES_VADDR + offset;
  916. execmem_info = (struct execmem_info){
  917. .ranges = {
  918. [EXECMEM_DEFAULT] = {
  919. .flags = EXECMEM_KASAN_SHADOW,
  920. .start = start,
  921. .end = MODULES_END,
  922. .pgprot = PAGE_KERNEL,
  923. .alignment = MODULE_ALIGN,
  924. },
  925. },
  926. };
  927. return &execmem_info;
  928. }
  929. #endif /* CONFIG_EXECMEM */