kaslr.c 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * This file implements KASLR memory randomization for x86_64. It randomizes
  4. * the virtual address space of kernel memory regions (physical memory
  5. * mapping, vmalloc & vmemmap) for x86_64. This security feature mitigates
  6. * exploits relying on predictable kernel addresses.
  7. *
  8. * Entropy is generated using the KASLR early boot functions now shared in
  9. * the lib directory (originally written by Kees Cook). Randomization is
  10. * done on PGD & P4D/PUD page table levels to increase possible addresses.
  11. * The physical memory mapping code was adapted to support P4D/PUD level
  12. * virtual addresses. This implementation on the best configuration provides
  13. * 30,000 possible virtual addresses in average for each memory region.
  14. * An additional low memory page is used to ensure each CPU can start with
  15. * a PGD aligned virtual address (for realmode).
  16. *
  17. * The order of each memory region is not changed. The feature looks at
  18. * the available space for the regions based on different configuration
  19. * options and randomizes the base and space between each. The size of the
  20. * physical memory mapping is the available physical memory.
  21. */
  22. #include <linux/kernel.h>
  23. #include <linux/init.h>
  24. #include <linux/random.h>
  25. #include <linux/memblock.h>
  26. #include <linux/pgtable.h>
  27. #include <asm/setup.h>
  28. #include <asm/kaslr.h>
  29. #include "mm_internal.h"
  30. #define TB_SHIFT 40
  31. /*
  32. * The end address could depend on more configuration options to make the
  33. * highest amount of space for randomization available, but that's too hard
  34. * to keep straight and caused issues already.
  35. */
  36. static const unsigned long vaddr_end = CPU_ENTRY_AREA_BASE;
  37. /*
  38. * Memory regions randomized by KASLR (except modules that use a separate logic
  39. * earlier during boot). The list is ordered based on virtual addresses. This
  40. * order is kept after randomization.
  41. */
  42. static __initdata struct kaslr_memory_region {
  43. unsigned long *base;
  44. unsigned long *end;
  45. unsigned long size_tb;
  46. } kaslr_regions[] = {
  47. {
  48. .base = &page_offset_base,
  49. .end = &physmem_end,
  50. },
  51. {
  52. .base = &vmalloc_base,
  53. },
  54. {
  55. .base = &vmemmap_base,
  56. },
  57. };
  58. /* The end of the possible address space for physical memory */
  59. unsigned long physmem_end __ro_after_init;
  60. /* Get size in bytes used by the memory region */
  61. static inline unsigned long get_padding(struct kaslr_memory_region *region)
  62. {
  63. return (region->size_tb << TB_SHIFT);
  64. }
  65. /* Initialize base and padding for each memory region randomized with KASLR */
  66. void __init kernel_randomize_memory(void)
  67. {
  68. size_t i;
  69. unsigned long vaddr_start, vaddr;
  70. unsigned long rand, memory_tb;
  71. struct rnd_state rand_state;
  72. unsigned long remain_entropy;
  73. unsigned long vmemmap_size;
  74. vaddr_start = pgtable_l5_enabled() ? __PAGE_OFFSET_BASE_L5 : __PAGE_OFFSET_BASE_L4;
  75. vaddr = vaddr_start;
  76. /*
  77. * These BUILD_BUG_ON checks ensure the memory layout is consistent
  78. * with the vaddr_start/vaddr_end variables. These checks are very
  79. * limited....
  80. */
  81. BUILD_BUG_ON(vaddr_start >= vaddr_end);
  82. BUILD_BUG_ON(vaddr_end != CPU_ENTRY_AREA_BASE);
  83. BUILD_BUG_ON(vaddr_end > __START_KERNEL_map);
  84. /* Preset the end of the possible address space for physical memory */
  85. physmem_end = ((1ULL << MAX_PHYSMEM_BITS) - 1);
  86. if (!kaslr_memory_enabled())
  87. return;
  88. kaslr_regions[0].size_tb = 1 << (MAX_PHYSMEM_BITS - TB_SHIFT);
  89. kaslr_regions[1].size_tb = VMALLOC_SIZE_TB;
  90. /*
  91. * Update Physical memory mapping to available and
  92. * add padding if needed (especially for memory hotplug support).
  93. */
  94. BUG_ON(kaslr_regions[0].base != &page_offset_base);
  95. memory_tb = DIV_ROUND_UP(max_pfn << PAGE_SHIFT, 1UL << TB_SHIFT) +
  96. CONFIG_RANDOMIZE_MEMORY_PHYSICAL_PADDING;
  97. /* Adapt physical memory region size based on available memory */
  98. if (memory_tb < kaslr_regions[0].size_tb)
  99. kaslr_regions[0].size_tb = memory_tb;
  100. /*
  101. * Calculate the vmemmap region size in TBs, aligned to a TB
  102. * boundary.
  103. */
  104. vmemmap_size = (kaslr_regions[0].size_tb << (TB_SHIFT - PAGE_SHIFT)) *
  105. sizeof(struct page);
  106. kaslr_regions[2].size_tb = DIV_ROUND_UP(vmemmap_size, 1UL << TB_SHIFT);
  107. /* Calculate entropy available between regions */
  108. remain_entropy = vaddr_end - vaddr_start;
  109. for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++)
  110. remain_entropy -= get_padding(&kaslr_regions[i]);
  111. prandom_seed_state(&rand_state, kaslr_get_random_long("Memory"));
  112. for (i = 0; i < ARRAY_SIZE(kaslr_regions); i++) {
  113. unsigned long entropy;
  114. /*
  115. * Select a random virtual address using the extra entropy
  116. * available.
  117. */
  118. entropy = remain_entropy / (ARRAY_SIZE(kaslr_regions) - i);
  119. prandom_bytes_state(&rand_state, &rand, sizeof(rand));
  120. entropy = (rand % (entropy + 1)) & PUD_MASK;
  121. vaddr += entropy;
  122. *kaslr_regions[i].base = vaddr;
  123. /* Calculate the end of the region */
  124. vaddr += get_padding(&kaslr_regions[i]);
  125. /*
  126. * KASLR trims the maximum possible size of the
  127. * direct-map. Update the physmem_end boundary.
  128. * No rounding required as the region starts
  129. * PUD aligned and size is in units of TB.
  130. */
  131. if (kaslr_regions[i].end)
  132. *kaslr_regions[i].end = __pa_nodebug(vaddr - 1);
  133. /* Add a minimum padding based on randomization alignment. */
  134. vaddr = round_up(vaddr + 1, PUD_SIZE);
  135. remain_entropy -= entropy;
  136. }
  137. }
  138. void __meminit init_trampoline_kaslr(void)
  139. {
  140. pud_t *pud_page_tramp, *pud, *pud_tramp;
  141. p4d_t *p4d_page_tramp, *p4d, *p4d_tramp;
  142. unsigned long paddr, vaddr;
  143. pgd_t *pgd;
  144. pud_page_tramp = alloc_low_page();
  145. /*
  146. * There are two mappings for the low 1MB area, the direct mapping
  147. * and the 1:1 mapping for the real mode trampoline:
  148. *
  149. * Direct mapping: virt_addr = phys_addr + PAGE_OFFSET
  150. * 1:1 mapping: virt_addr = phys_addr
  151. */
  152. paddr = 0;
  153. vaddr = (unsigned long)__va(paddr);
  154. pgd = pgd_offset_k(vaddr);
  155. p4d = p4d_offset(pgd, vaddr);
  156. pud = pud_offset(p4d, vaddr);
  157. pud_tramp = pud_page_tramp + pud_index(paddr);
  158. *pud_tramp = *pud;
  159. if (pgtable_l5_enabled()) {
  160. p4d_page_tramp = alloc_low_page();
  161. p4d_tramp = p4d_page_tramp + p4d_index(paddr);
  162. set_p4d(p4d_tramp,
  163. __p4d(_KERNPG_TABLE | __pa(pud_page_tramp)));
  164. trampoline_pgd_entry =
  165. __pgd(_KERNPG_TABLE | __pa(p4d_page_tramp));
  166. } else {
  167. trampoline_pgd_entry =
  168. __pgd(_KERNPG_TABLE | __pa(pud_page_tramp));
  169. }
  170. }