| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633 |
- // SPDX-License-Identifier: GPL-2.0
- /*
- * Bad block management
- *
- * - Heavily based on MD badblocks code from Neil Brown
- *
- * Copyright (c) 2015, Intel Corporation.
- */
- #include <linux/badblocks.h>
- #include <linux/seqlock.h>
- #include <linux/device.h>
- #include <linux/kernel.h>
- #include <linux/module.h>
- #include <linux/stddef.h>
- #include <linux/types.h>
- #include <linux/slab.h>
- /*
- * The purpose of badblocks set/clear is to manage bad blocks ranges which are
- * identified by LBA addresses.
- *
- * When the caller of badblocks_set() wants to set a range of bad blocks, the
- * setting range can be acked or unacked. And the setting range may merge,
- * overwrite, skip the overlapped already set range, depends on who they are
- * overlapped or adjacent, and the acknowledgment type of the ranges. It can be
- * more complicated when the setting range covers multiple already set bad block
- * ranges, with restrictions of maximum length of each bad range and the bad
- * table space limitation.
- *
- * It is difficult and unnecessary to take care of all the possible situations,
- * for setting a large range of bad blocks, we can handle it by dividing the
- * large range into smaller ones when encounter overlap, max range length or
- * bad table full conditions. Every time only a smaller piece of the bad range
- * is handled with a limited number of conditions how it is interacted with
- * possible overlapped or adjacent already set bad block ranges. Then the hard
- * complicated problem can be much simpler to handle in proper way.
- *
- * When setting a range of bad blocks to the bad table, the simplified situations
- * to be considered are, (The already set bad blocks ranges are naming with
- * prefix E, and the setting bad blocks range is naming with prefix S)
- *
- * 1) A setting range is not overlapped or adjacent to any other already set bad
- * block range.
- * +--------+
- * | S |
- * +--------+
- * +-------------+ +-------------+
- * | E1 | | E2 |
- * +-------------+ +-------------+
- * For this situation if the bad blocks table is not full, just allocate a
- * free slot from the bad blocks table to mark the setting range S. The
- * result is,
- * +-------------+ +--------+ +-------------+
- * | E1 | | S | | E2 |
- * +-------------+ +--------+ +-------------+
- * 2) A setting range starts exactly at a start LBA of an already set bad blocks
- * range.
- * 2.1) The setting range size < already set range size
- * +--------+
- * | S |
- * +--------+
- * +-------------+
- * | E |
- * +-------------+
- * 2.1.1) If S and E are both acked or unacked range, the setting range S can
- * be merged into existing bad range E. The result is,
- * +-------------+
- * | S |
- * +-------------+
- * 2.1.2) If S is unacked setting and E is acked, the setting will be denied, and
- * the result is,
- * +-------------+
- * | E |
- * +-------------+
- * 2.1.3) If S is acked setting and E is unacked, range S can overwrite on E.
- * An extra slot from the bad blocks table will be allocated for S, and head
- * of E will move to end of the inserted range S. The result is,
- * +--------+----+
- * | S | E |
- * +--------+----+
- * 2.2) The setting range size == already set range size
- * 2.2.1) If S and E are both acked or unacked range, the setting range S can
- * be merged into existing bad range E. The result is,
- * +-------------+
- * | S |
- * +-------------+
- * 2.2.2) If S is unacked setting and E is acked, the setting will be denied, and
- * the result is,
- * +-------------+
- * | E |
- * +-------------+
- * 2.2.3) If S is acked setting and E is unacked, range S can overwrite all of
- bad blocks range E. The result is,
- * +-------------+
- * | S |
- * +-------------+
- * 2.3) The setting range size > already set range size
- * +-------------------+
- * | S |
- * +-------------------+
- * +-------------+
- * | E |
- * +-------------+
- * For such situation, the setting range S can be treated as two parts, the
- * first part (S1) is as same size as the already set range E, the second
- * part (S2) is the rest of setting range.
- * +-------------+-----+ +-------------+ +-----+
- * | S1 | S2 | | S1 | | S2 |
- * +-------------+-----+ ===> +-------------+ +-----+
- * +-------------+ +-------------+
- * | E | | E |
- * +-------------+ +-------------+
- * Now we only focus on how to handle the setting range S1 and already set
- * range E, which are already explained in 2.2), for the rest S2 it will be
- * handled later in next loop.
- * 3) A setting range starts before the start LBA of an already set bad blocks
- * range.
- * +-------------+
- * | S |
- * +-------------+
- * +-------------+
- * | E |
- * +-------------+
- * For this situation, the setting range S can be divided into two parts, the
- * first (S1) ends at the start LBA of already set range E, the second part
- * (S2) starts exactly at a start LBA of the already set range E.
- * +----+---------+ +----+ +---------+
- * | S1 | S2 | | S1 | | S2 |
- * +----+---------+ ===> +----+ +---------+
- * +-------------+ +-------------+
- * | E | | E |
- * +-------------+ +-------------+
- * Now only the first part S1 should be handled in this loop, which is in
- * similar condition as 1). The rest part S2 has exact same start LBA address
- * of the already set range E, they will be handled in next loop in one of
- * situations in 2).
- * 4) A setting range starts after the start LBA of an already set bad blocks
- * range.
- * 4.1) If the setting range S exactly matches the tail part of already set bad
- * blocks range E, like the following chart shows,
- * +---------+
- * | S |
- * +---------+
- * +-------------+
- * | E |
- * +-------------+
- * 4.1.1) If range S and E have same acknowledge value (both acked or unacked),
- * they will be merged into one, the result is,
- * +-------------+
- * | S |
- * +-------------+
- * 4.1.2) If range E is acked and the setting range S is unacked, the setting
- * request of S will be rejected, the result is,
- * +-------------+
- * | E |
- * +-------------+
- * 4.1.3) If range E is unacked, and the setting range S is acked, then S may
- * overwrite the overlapped range of E, the result is,
- * +---+---------+
- * | E | S |
- * +---+---------+
- * 4.2) If the setting range S stays in middle of an already set range E, like
- * the following chart shows,
- * +----+
- * | S |
- * +----+
- * +--------------+
- * | E |
- * +--------------+
- * 4.2.1) If range S and E have same acknowledge value (both acked or unacked),
- * they will be merged into one, the result is,
- * +--------------+
- * | S |
- * +--------------+
- * 4.2.2) If range E is acked and the setting range S is unacked, the setting
- * request of S will be rejected, the result is also,
- * +--------------+
- * | E |
- * +--------------+
- * 4.2.3) If range E is unacked, and the setting range S is acked, then S will
- * inserted into middle of E and split previous range E into two parts (E1
- * and E2), the result is,
- * +----+----+----+
- * | E1 | S | E2 |
- * +----+----+----+
- * 4.3) If the setting bad blocks range S is overlapped with an already set bad
- * blocks range E. The range S starts after the start LBA of range E, and
- * ends after the end LBA of range E, as the following chart shows,
- * +-------------------+
- * | S |
- * +-------------------+
- * +-------------+
- * | E |
- * +-------------+
- * For this situation the range S can be divided into two parts, the first
- * part (S1) ends at end range E, and the second part (S2) has rest range of
- * origin S.
- * +---------+---------+ +---------+ +---------+
- * | S1 | S2 | | S1 | | S2 |
- * +---------+---------+ ===> +---------+ +---------+
- * +-------------+ +-------------+
- * | E | | E |
- * +-------------+ +-------------+
- * Now in this loop the setting range S1 and already set range E can be
- * handled as the situations 4.1), the rest range S2 will be handled in next
- * loop and ignored in this loop.
- * 5) A setting bad blocks range S is adjacent to one or more already set bad
- * blocks range(s), and they are all acked or unacked range.
- * 5.1) Front merge: If the already set bad blocks range E is before setting
- * range S and they are adjacent,
- * +------+
- * | S |
- * +------+
- * +-------+
- * | E |
- * +-------+
- * 5.1.1) When total size of range S and E <= BB_MAX_LEN, and their acknowledge
- * values are same, the setting range S can front merges into range E. The
- * result is,
- * +--------------+
- * | S |
- * +--------------+
- * 5.1.2) Otherwise these two ranges cannot merge, just insert the setting
- * range S right after already set range E into the bad blocks table. The
- * result is,
- * +--------+------+
- * | E | S |
- * +--------+------+
- * 6) Special cases which above conditions cannot handle
- * 6.1) Multiple already set ranges may merge into less ones in a full bad table
- * +-------------------------------------------------------+
- * | S |
- * +-------------------------------------------------------+
- * |<----- BB_MAX_LEN ----->|
- * +-----+ +-----+ +-----+
- * | E1 | | E2 | | E3 |
- * +-----+ +-----+ +-----+
- * In the above example, when the bad blocks table is full, inserting the
- * first part of setting range S will fail because no more available slot
- * can be allocated from bad blocks table. In this situation a proper
- * setting method should be go though all the setting bad blocks range and
- * look for chance to merge already set ranges into less ones. When there
- * is available slot from bad blocks table, re-try again to handle more
- * setting bad blocks ranges as many as possible.
- * +------------------------+
- * | S3 |
- * +------------------------+
- * |<----- BB_MAX_LEN ----->|
- * +-----+-----+-----+---+-----+--+
- * | S1 | S2 |
- * +-----+-----+-----+---+-----+--+
- * The above chart shows although the first part (S3) cannot be inserted due
- * to no-space in bad blocks table, but the following E1, E2 and E3 ranges
- * can be merged with rest part of S into less range S1 and S2. Now there is
- * 1 free slot in bad blocks table.
- * +------------------------+-----+-----+-----+---+-----+--+
- * | S3 | S1 | S2 |
- * +------------------------+-----+-----+-----+---+-----+--+
- * Since the bad blocks table is not full anymore, re-try again for the
- * origin setting range S. Now the setting range S3 can be inserted into the
- * bad blocks table with previous freed slot from multiple ranges merge.
- * 6.2) Front merge after overwrite
- * In the following example, in bad blocks table, E1 is an acked bad blocks
- * range and E2 is an unacked bad blocks range, therefore they are not able
- * to merge into a larger range. The setting bad blocks range S is acked,
- * therefore part of E2 can be overwritten by S.
- * +--------+
- * | S | acknowledged
- * +--------+ S: 1
- * +-------+-------------+ E1: 1
- * | E1 | E2 | E2: 0
- * +-------+-------------+
- * With previous simplified routines, after overwriting part of E2 with S,
- * the bad blocks table should be (E3 is remaining part of E2 which is not
- * overwritten by S),
- * acknowledged
- * +-------+--------+----+ S: 1
- * | E1 | S | E3 | E1: 1
- * +-------+--------+----+ E3: 0
- * The above result is correct but not perfect. Range E1 and S in the bad
- * blocks table are all acked, merging them into a larger one range may
- * occupy less bad blocks table space and make badblocks_check() faster.
- * Therefore in such situation, after overwriting range S, the previous range
- * E1 should be checked for possible front combination. Then the ideal
- * result can be,
- * +----------------+----+ acknowledged
- * | E1 | E3 | E1: 1
- * +----------------+----+ E3: 0
- * 6.3) Behind merge: If the already set bad blocks range E is behind the setting
- * range S and they are adjacent. Normally we don't need to care about this
- * because front merge handles this while going though range S from head to
- * tail, except for the tail part of range S. When the setting range S are
- * fully handled, all the above simplified routine doesn't check whether the
- * tail LBA of range S is adjacent to the next already set range and not
- * merge them even it is possible.
- * +------+
- * | S |
- * +------+
- * +-------+
- * | E |
- * +-------+
- * For the above special situation, when the setting range S are all handled
- * and the loop ends, an extra check is necessary for whether next already
- * set range E is right after S and mergeable.
- * 6.3.1) When total size of range E and S <= BB_MAX_LEN, and their acknowledge
- * values are same, the setting range S can behind merges into range E. The
- * result is,
- * +--------------+
- * | S |
- * +--------------+
- * 6.3.2) Otherwise these two ranges cannot merge, just insert the setting range
- * S in front of the already set range E in the bad blocks table. The result
- * is,
- * +------+-------+
- * | S | E |
- * +------+-------+
- *
- * All the above 5 simplified situations and 3 special cases may cover 99%+ of
- * the bad block range setting conditions. Maybe there is some rare corner case
- * is not considered and optimized, it won't hurt if badblocks_set() fails due
- * to no space, or some ranges are not merged to save bad blocks table space.
- *
- * Inside badblocks_set() each loop starts by jumping to re_insert label, every
- * time for the new loop prev_badblocks() is called to find an already set range
- * which starts before or at current setting range. Since the setting bad blocks
- * range is handled from head to tail, most of the cases it is unnecessary to do
- * the binary search inside prev_badblocks(), it is possible to provide a hint
- * to prev_badblocks() for a fast path, then the expensive binary search can be
- * avoided. In my test with the hint to prev_badblocks(), except for the first
- * loop, all rested calls to prev_badblocks() can go into the fast path and
- * return correct bad blocks table index immediately.
- *
- *
- * Clearing a bad blocks range from the bad block table has similar idea as
- * setting does, but much more simpler. The only thing needs to be noticed is
- * when the clearing range hits middle of a bad block range, the existing bad
- * block range will split into two, and one more item should be added into the
- * bad block table. The simplified situations to be considered are, (The already
- * set bad blocks ranges in bad block table are naming with prefix E, and the
- * clearing bad blocks range is naming with prefix C)
- *
- * 1) A clearing range is not overlapped to any already set ranges in bad block
- * table.
- * +-----+ | +-----+ | +-----+
- * | C | | | C | | | C |
- * +-----+ or +-----+ or +-----+
- * +---+ | +----+ +----+ | +---+
- * | E | | | E1 | | E2 | | | E |
- * +---+ | +----+ +----+ | +---+
- * For the above situations, no bad block to be cleared and no failure
- * happens, simply returns 0.
- * 2) The clearing range hits middle of an already setting bad blocks range in
- * the bad block table.
- * +---+
- * | C |
- * +---+
- * +-----------------+
- * | E |
- * +-----------------+
- * In this situation if the bad block table is not full, the range E will be
- * split into two ranges E1 and E2. The result is,
- * +------+ +------+
- * | E1 | | E2 |
- * +------+ +------+
- * 3) The clearing range starts exactly at same LBA as an already set bad block range
- * from the bad block table.
- * 3.1) Partially covered at head part
- * +------------+
- * | C |
- * +------------+
- * +-----------------+
- * | E |
- * +-----------------+
- * For this situation, the overlapped already set range will update the
- * start LBA to end of C and shrink the range to BB_LEN(E) - BB_LEN(C). No
- * item deleted from bad block table. The result is,
- * +----+
- * | E1 |
- * +----+
- * 3.2) Exact fully covered
- * +-----------------+
- * | C |
- * +-----------------+
- * +-----------------+
- * | E |
- * +-----------------+
- * For this situation the whole bad blocks range E will be cleared and its
- * corresponded item is deleted from the bad block table.
- * 4) The clearing range exactly ends at same LBA as an already set bad block
- * range.
- * +-------+
- * | C |
- * +-------+
- * +-----------------+
- * | E |
- * +-----------------+
- * For the above situation, the already set range E is updated to shrink its
- * end to the start of C, and reduce its length to BB_LEN(E) - BB_LEN(C).
- * The result is,
- * +---------+
- * | E |
- * +---------+
- * 5) The clearing range is partially overlapped with an already set bad block
- * range from the bad block table.
- * 5.1) The already set bad block range is front overlapped with the clearing
- * range.
- * +----------+
- * | C |
- * +----------+
- * +------------+
- * | E |
- * +------------+
- * For such situation, the clearing range C can be treated as two parts. The
- * first part ends at the start LBA of range E, and the second part starts at
- * same LBA of range E.
- * +----+-----+ +----+ +-----+
- * | C1 | C2 | | C1 | | C2 |
- * +----+-----+ ===> +----+ +-----+
- * +------------+ +------------+
- * | E | | E |
- * +------------+ +------------+
- * Now the first part C1 can be handled as condition 1), and the second part C2 can be
- * handled as condition 3.1) in next loop.
- * 5.2) The already set bad block range is behind overlaopped with the clearing
- * range.
- * +----------+
- * | C |
- * +----------+
- * +------------+
- * | E |
- * +------------+
- * For such situation, the clearing range C can be treated as two parts. The
- * first part C1 ends at same end LBA of range E, and the second part starts
- * at end LBA of range E.
- * +----+-----+ +----+ +-----+
- * | C1 | C2 | | C1 | | C2 |
- * +----+-----+ ===> +----+ +-----+
- * +------------+ +------------+
- * | E | | E |
- * +------------+ +------------+
- * Now the first part clearing range C1 can be handled as condition 4), and
- * the second part clearing range C2 can be handled as condition 1) in next
- * loop.
- *
- * All bad blocks range clearing can be simplified into the above 5 situations
- * by only handling the head part of the clearing range in each run of the
- * while-loop. The idea is similar to bad blocks range setting but much
- * simpler.
- */
- /*
- * Find the range starts at-or-before 's' from bad table. The search
- * starts from index 'hint' and stops at index 'hint_end' from the bad
- * table.
- */
- static int prev_by_hint(struct badblocks *bb, sector_t s, int hint)
- {
- int hint_end = hint + 2;
- u64 *p = bb->page;
- int ret = -1;
- while ((hint < hint_end) && ((hint + 1) <= bb->count) &&
- (BB_OFFSET(p[hint]) <= s)) {
- if ((hint + 1) == bb->count || BB_OFFSET(p[hint + 1]) > s) {
- ret = hint;
- break;
- }
- hint++;
- }
- return ret;
- }
- /*
- * Find the range starts at-or-before bad->start. If 'hint' is provided
- * (hint >= 0) then search in the bad table from hint firstly. It is
- * very probably the wanted bad range can be found from the hint index,
- * then the unnecessary while-loop iteration can be avoided.
- */
- static int prev_badblocks(struct badblocks *bb, struct badblocks_context *bad,
- int hint)
- {
- sector_t s = bad->start;
- int ret = -1;
- int lo, hi;
- u64 *p;
- if (!bb->count)
- goto out;
- if (hint >= 0) {
- ret = prev_by_hint(bb, s, hint);
- if (ret >= 0)
- goto out;
- }
- lo = 0;
- hi = bb->count;
- p = bb->page;
- /* The following bisect search might be unnecessary */
- if (BB_OFFSET(p[lo]) > s)
- return -1;
- if (BB_OFFSET(p[hi - 1]) <= s)
- return hi - 1;
- /* Do bisect search in bad table */
- while (hi - lo > 1) {
- int mid = (lo + hi)/2;
- sector_t a = BB_OFFSET(p[mid]);
- if (a == s) {
- ret = mid;
- goto out;
- }
- if (a < s)
- lo = mid;
- else
- hi = mid;
- }
- if (BB_OFFSET(p[lo]) <= s)
- ret = lo;
- out:
- return ret;
- }
- /*
- * Return 'true' if the range indicated by 'bad' can be backward merged
- * with the bad range (from the bad table) index by 'behind'.
- */
- static bool can_merge_behind(struct badblocks *bb,
- struct badblocks_context *bad, int behind)
- {
- sector_t sectors = bad->len;
- sector_t s = bad->start;
- u64 *p = bb->page;
- if ((s < BB_OFFSET(p[behind])) &&
- ((s + sectors) >= BB_OFFSET(p[behind])) &&
- ((BB_END(p[behind]) - s) <= BB_MAX_LEN) &&
- BB_ACK(p[behind]) == bad->ack)
- return true;
- return false;
- }
- /*
- * Do backward merge for range indicated by 'bad' and the bad range
- * (from the bad table) indexed by 'behind'. The return value is merged
- * sectors from bad->len.
- */
- static int behind_merge(struct badblocks *bb, struct badblocks_context *bad,
- int behind)
- {
- sector_t sectors = bad->len;
- sector_t s = bad->start;
- u64 *p = bb->page;
- int merged = 0;
- WARN_ON(s >= BB_OFFSET(p[behind]));
- WARN_ON((s + sectors) < BB_OFFSET(p[behind]));
- if (s < BB_OFFSET(p[behind])) {
- merged = BB_OFFSET(p[behind]) - s;
- p[behind] = BB_MAKE(s, BB_LEN(p[behind]) + merged, bad->ack);
- WARN_ON((BB_LEN(p[behind]) + merged) >= BB_MAX_LEN);
- }
- return merged;
- }
- /*
- * Return 'true' if the range indicated by 'bad' can be forward
- * merged with the bad range (from the bad table) indexed by 'prev'.
- */
- static bool can_merge_front(struct badblocks *bb, int prev,
- struct badblocks_context *bad)
- {
- sector_t s = bad->start;
- u64 *p = bb->page;
- if (BB_ACK(p[prev]) == bad->ack &&
- (s < BB_END(p[prev]) ||
- (s == BB_END(p[prev]) && (BB_LEN(p[prev]) < BB_MAX_LEN))))
- return true;
- return false;
- }
- /*
- * Do forward merge for range indicated by 'bad' and the bad range
- * (from bad table) indexed by 'prev'. The return value is sectors
- * merged from bad->len.
- */
- static int front_merge(struct badblocks *bb, int prev, struct badblocks_context *bad)
- {
- sector_t sectors = bad->len;
- sector_t s = bad->start;
- u64 *p = bb->page;
- int merged = 0;
- WARN_ON(s > BB_END(p[prev]));
- if (s < BB_END(p[prev])) {
- merged = min_t(sector_t, sectors, BB_END(p[prev]) - s);
- } else {
- merged = min_t(sector_t, sectors, BB_MAX_LEN - BB_LEN(p[prev]));
- if ((prev + 1) < bb->count &&
- merged > (BB_OFFSET(p[prev + 1]) - BB_END(p[prev]))) {
- merged = BB_OFFSET(p[prev + 1]) - BB_END(p[prev]);
- }
- p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
- BB_LEN(p[prev]) + merged, bad->ack);
- }
- return merged;
- }
- /*
- * 'Combine' is a special case which can_merge_front() is not able to
- * handle: If a bad range (indexed by 'prev' from bad table) exactly
- * starts as bad->start, and the bad range ahead of 'prev' (indexed by
- * 'prev - 1' from bad table) exactly ends at where 'prev' starts, and
- * the sum of their lengths does not exceed BB_MAX_LEN limitation, then
- * these two bad range (from bad table) can be combined.
- *
- * Return 'true' if bad ranges indexed by 'prev' and 'prev - 1' from bad
- * table can be combined.
- */
- static bool can_combine_front(struct badblocks *bb, int prev,
- struct badblocks_context *bad)
- {
- u64 *p = bb->page;
- if ((prev > 0) &&
- (BB_OFFSET(p[prev]) == bad->start) &&
- (BB_END(p[prev - 1]) == BB_OFFSET(p[prev])) &&
- (BB_LEN(p[prev - 1]) + BB_LEN(p[prev]) <= BB_MAX_LEN) &&
- (BB_ACK(p[prev - 1]) == BB_ACK(p[prev])))
- return true;
- return false;
- }
- /*
- * Combine the bad ranges indexed by 'prev' and 'prev - 1' (from bad
- * table) into one larger bad range, and the new range is indexed by
- * 'prev - 1'.
- * The caller of front_combine() will decrease bb->count, therefore
- * it is unnecessary to clear p[perv] after front merge.
- */
- static void front_combine(struct badblocks *bb, int prev)
- {
- u64 *p = bb->page;
- p[prev - 1] = BB_MAKE(BB_OFFSET(p[prev - 1]),
- BB_LEN(p[prev - 1]) + BB_LEN(p[prev]),
- BB_ACK(p[prev]));
- if ((prev + 1) < bb->count)
- memmove(p + prev, p + prev + 1, (bb->count - prev - 1) * 8);
- }
- /*
- * Return 'true' if the range indicated by 'bad' is exactly forward
- * overlapped with the bad range (from bad table) indexed by 'front'.
- * Exactly forward overlap means the bad range (from bad table) indexed
- * by 'prev' does not cover the whole range indicated by 'bad'.
- */
- static bool overlap_front(struct badblocks *bb, int front,
- struct badblocks_context *bad)
- {
- u64 *p = bb->page;
- if (bad->start >= BB_OFFSET(p[front]) &&
- bad->start < BB_END(p[front]))
- return true;
- return false;
- }
- /*
- * Return 'true' if the range indicated by 'bad' is exactly backward
- * overlapped with the bad range (from bad table) indexed by 'behind'.
- */
- static bool overlap_behind(struct badblocks *bb, struct badblocks_context *bad,
- int behind)
- {
- u64 *p = bb->page;
- if (bad->start < BB_OFFSET(p[behind]) &&
- (bad->start + bad->len) > BB_OFFSET(p[behind]))
- return true;
- return false;
- }
- /*
- * Return 'true' if the range indicated by 'bad' can overwrite the bad
- * range (from bad table) indexed by 'prev'.
- *
- * The range indicated by 'bad' can overwrite the bad range indexed by
- * 'prev' when,
- * 1) The whole range indicated by 'bad' can cover partial or whole bad
- * range (from bad table) indexed by 'prev'.
- * 2) The ack value of 'bad' is larger or equal to the ack value of bad
- * range 'prev'.
- *
- * If the overwriting doesn't cover the whole bad range (from bad table)
- * indexed by 'prev', new range might be split from existing bad range,
- * 1) The overwrite covers head or tail part of existing bad range, 1
- * extra bad range will be split and added into the bad table.
- * 2) The overwrite covers middle of existing bad range, 2 extra bad
- * ranges will be split (ahead and after the overwritten range) and
- * added into the bad table.
- * The number of extra split ranges of the overwriting is stored in
- * 'extra' and returned for the caller.
- */
- static bool can_front_overwrite(struct badblocks *bb, int prev,
- struct badblocks_context *bad, int *extra)
- {
- u64 *p = bb->page;
- int len;
- WARN_ON(!overlap_front(bb, prev, bad));
- if (BB_ACK(p[prev]) >= bad->ack)
- return false;
- if (BB_END(p[prev]) <= (bad->start + bad->len)) {
- len = BB_END(p[prev]) - bad->start;
- if (BB_OFFSET(p[prev]) == bad->start)
- *extra = 0;
- else
- *extra = 1;
- bad->len = len;
- } else {
- if (BB_OFFSET(p[prev]) == bad->start)
- *extra = 1;
- else
- /*
- * prev range will be split into two, beside the overwritten
- * one, an extra slot needed from bad table.
- */
- *extra = 2;
- }
- if ((bb->count + (*extra)) >= MAX_BADBLOCKS)
- return false;
- return true;
- }
- /*
- * Do the overwrite from the range indicated by 'bad' to the bad range
- * (from bad table) indexed by 'prev'.
- * The previously called can_front_overwrite() will provide how many
- * extra bad range(s) might be split and added into the bad table. All
- * the splitting cases in the bad table will be handled here.
- */
- static int front_overwrite(struct badblocks *bb, int prev,
- struct badblocks_context *bad, int extra)
- {
- u64 *p = bb->page;
- sector_t orig_end = BB_END(p[prev]);
- int orig_ack = BB_ACK(p[prev]);
- switch (extra) {
- case 0:
- p[prev] = BB_MAKE(BB_OFFSET(p[prev]), BB_LEN(p[prev]),
- bad->ack);
- break;
- case 1:
- if (BB_OFFSET(p[prev]) == bad->start) {
- p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
- bad->len, bad->ack);
- memmove(p + prev + 2, p + prev + 1,
- (bb->count - prev - 1) * 8);
- p[prev + 1] = BB_MAKE(bad->start + bad->len,
- orig_end - BB_END(p[prev]),
- orig_ack);
- } else {
- p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
- bad->start - BB_OFFSET(p[prev]),
- orig_ack);
- /*
- * prev +2 -> prev + 1 + 1, which is for,
- * 1) prev + 1: the slot index of the previous one
- * 2) + 1: one more slot for extra being 1.
- */
- memmove(p + prev + 2, p + prev + 1,
- (bb->count - prev - 1) * 8);
- p[prev + 1] = BB_MAKE(bad->start, bad->len, bad->ack);
- }
- break;
- case 2:
- p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
- bad->start - BB_OFFSET(p[prev]),
- orig_ack);
- /*
- * prev + 3 -> prev + 1 + 2, which is for,
- * 1) prev + 1: the slot index of the previous one
- * 2) + 2: two more slots for extra being 2.
- */
- memmove(p + prev + 3, p + prev + 1,
- (bb->count - prev - 1) * 8);
- p[prev + 1] = BB_MAKE(bad->start, bad->len, bad->ack);
- p[prev + 2] = BB_MAKE(BB_END(p[prev + 1]),
- orig_end - BB_END(p[prev + 1]),
- orig_ack);
- break;
- default:
- break;
- }
- return bad->len;
- }
- /*
- * Explicitly insert a range indicated by 'bad' to the bad table, where
- * the location is indexed by 'at'.
- */
- static int insert_at(struct badblocks *bb, int at, struct badblocks_context *bad)
- {
- u64 *p = bb->page;
- int len;
- WARN_ON(badblocks_full(bb));
- len = min_t(sector_t, bad->len, BB_MAX_LEN);
- if (at < bb->count)
- memmove(p + at + 1, p + at, (bb->count - at) * 8);
- p[at] = BB_MAKE(bad->start, len, bad->ack);
- return len;
- }
- static void badblocks_update_acked(struct badblocks *bb)
- {
- bool unacked = false;
- u64 *p = bb->page;
- int i;
- if (!bb->unacked_exist)
- return;
- for (i = 0; i < bb->count ; i++) {
- if (!BB_ACK(p[i])) {
- unacked = true;
- break;
- }
- }
- if (!unacked)
- bb->unacked_exist = 0;
- }
- /* Do exact work to set bad block range into the bad block table */
- static int _badblocks_set(struct badblocks *bb, sector_t s, int sectors,
- int acknowledged)
- {
- int retried = 0, space_desired = 0;
- int orig_len, len = 0, added = 0;
- struct badblocks_context bad;
- int prev = -1, hint = -1;
- sector_t orig_start;
- unsigned long flags;
- int rv = 0;
- u64 *p;
- if (bb->shift < 0)
- /* badblocks are disabled */
- return 1;
- if (sectors == 0)
- /* Invalid sectors number */
- return 1;
- if (bb->shift) {
- /* round the start down, and the end up */
- sector_t next = s + sectors;
- rounddown(s, bb->shift);
- roundup(next, bb->shift);
- sectors = next - s;
- }
- write_seqlock_irqsave(&bb->lock, flags);
- orig_start = s;
- orig_len = sectors;
- bad.ack = acknowledged;
- p = bb->page;
- re_insert:
- bad.start = s;
- bad.len = sectors;
- len = 0;
- if (badblocks_empty(bb)) {
- len = insert_at(bb, 0, &bad);
- bb->count++;
- added++;
- goto update_sectors;
- }
- prev = prev_badblocks(bb, &bad, hint);
- /* start before all badblocks */
- if (prev < 0) {
- if (!badblocks_full(bb)) {
- /* insert on the first */
- if (bad.len > (BB_OFFSET(p[0]) - bad.start))
- bad.len = BB_OFFSET(p[0]) - bad.start;
- len = insert_at(bb, 0, &bad);
- bb->count++;
- added++;
- hint = 0;
- goto update_sectors;
- }
- /* No sapce, try to merge */
- if (overlap_behind(bb, &bad, 0)) {
- if (can_merge_behind(bb, &bad, 0)) {
- len = behind_merge(bb, &bad, 0);
- added++;
- } else {
- len = BB_OFFSET(p[0]) - s;
- space_desired = 1;
- }
- hint = 0;
- goto update_sectors;
- }
- /* no table space and give up */
- goto out;
- }
- /* in case p[prev-1] can be merged with p[prev] */
- if (can_combine_front(bb, prev, &bad)) {
- front_combine(bb, prev);
- bb->count--;
- added++;
- hint = prev;
- goto update_sectors;
- }
- if (overlap_front(bb, prev, &bad)) {
- if (can_merge_front(bb, prev, &bad)) {
- len = front_merge(bb, prev, &bad);
- added++;
- } else {
- int extra = 0;
- if (!can_front_overwrite(bb, prev, &bad, &extra)) {
- len = min_t(sector_t,
- BB_END(p[prev]) - s, sectors);
- hint = prev;
- goto update_sectors;
- }
- len = front_overwrite(bb, prev, &bad, extra);
- added++;
- bb->count += extra;
- if (can_combine_front(bb, prev, &bad)) {
- front_combine(bb, prev);
- bb->count--;
- }
- }
- hint = prev;
- goto update_sectors;
- }
- if (can_merge_front(bb, prev, &bad)) {
- len = front_merge(bb, prev, &bad);
- added++;
- hint = prev;
- goto update_sectors;
- }
- /* if no space in table, still try to merge in the covered range */
- if (badblocks_full(bb)) {
- /* skip the cannot-merge range */
- if (((prev + 1) < bb->count) &&
- overlap_behind(bb, &bad, prev + 1) &&
- ((s + sectors) >= BB_END(p[prev + 1]))) {
- len = BB_END(p[prev + 1]) - s;
- hint = prev + 1;
- goto update_sectors;
- }
- /* no retry any more */
- len = sectors;
- space_desired = 1;
- hint = -1;
- goto update_sectors;
- }
- /* cannot merge and there is space in bad table */
- if ((prev + 1) < bb->count &&
- overlap_behind(bb, &bad, prev + 1))
- bad.len = min_t(sector_t,
- bad.len, BB_OFFSET(p[prev + 1]) - bad.start);
- len = insert_at(bb, prev + 1, &bad);
- bb->count++;
- added++;
- hint = prev + 1;
- update_sectors:
- s += len;
- sectors -= len;
- if (sectors > 0)
- goto re_insert;
- WARN_ON(sectors < 0);
- /*
- * Check whether the following already set range can be
- * merged. (prev < 0) condition is not handled here,
- * because it's already complicated enough.
- */
- if (prev >= 0 &&
- (prev + 1) < bb->count &&
- BB_END(p[prev]) == BB_OFFSET(p[prev + 1]) &&
- (BB_LEN(p[prev]) + BB_LEN(p[prev + 1])) <= BB_MAX_LEN &&
- BB_ACK(p[prev]) == BB_ACK(p[prev + 1])) {
- p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
- BB_LEN(p[prev]) + BB_LEN(p[prev + 1]),
- BB_ACK(p[prev]));
- if ((prev + 2) < bb->count)
- memmove(p + prev + 1, p + prev + 2,
- (bb->count - (prev + 2)) * 8);
- bb->count--;
- }
- if (space_desired && !badblocks_full(bb)) {
- s = orig_start;
- sectors = orig_len;
- space_desired = 0;
- if (retried++ < 3)
- goto re_insert;
- }
- out:
- if (added) {
- set_changed(bb);
- if (!acknowledged)
- bb->unacked_exist = 1;
- else
- badblocks_update_acked(bb);
- }
- write_sequnlock_irqrestore(&bb->lock, flags);
- if (!added)
- rv = 1;
- return rv;
- }
- /*
- * Clear the bad block range from bad block table which is front overlapped
- * with the clearing range. The return value is how many sectors from an
- * already set bad block range are cleared. If the whole bad block range is
- * covered by the clearing range and fully cleared, 'delete' is set as 1 for
- * the caller to reduce bb->count.
- */
- static int front_clear(struct badblocks *bb, int prev,
- struct badblocks_context *bad, int *deleted)
- {
- sector_t sectors = bad->len;
- sector_t s = bad->start;
- u64 *p = bb->page;
- int cleared = 0;
- *deleted = 0;
- if (s == BB_OFFSET(p[prev])) {
- if (BB_LEN(p[prev]) > sectors) {
- p[prev] = BB_MAKE(BB_OFFSET(p[prev]) + sectors,
- BB_LEN(p[prev]) - sectors,
- BB_ACK(p[prev]));
- cleared = sectors;
- } else {
- /* BB_LEN(p[prev]) <= sectors */
- cleared = BB_LEN(p[prev]);
- if ((prev + 1) < bb->count)
- memmove(p + prev, p + prev + 1,
- (bb->count - prev - 1) * 8);
- *deleted = 1;
- }
- } else if (s > BB_OFFSET(p[prev])) {
- if (BB_END(p[prev]) <= (s + sectors)) {
- cleared = BB_END(p[prev]) - s;
- p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
- s - BB_OFFSET(p[prev]),
- BB_ACK(p[prev]));
- } else {
- /* Splitting is handled in front_splitting_clear() */
- BUG();
- }
- }
- return cleared;
- }
- /*
- * Handle the condition that the clearing range hits middle of an already set
- * bad block range from bad block table. In this condition the existing bad
- * block range is split into two after the middle part is cleared.
- */
- static int front_splitting_clear(struct badblocks *bb, int prev,
- struct badblocks_context *bad)
- {
- u64 *p = bb->page;
- u64 end = BB_END(p[prev]);
- int ack = BB_ACK(p[prev]);
- sector_t sectors = bad->len;
- sector_t s = bad->start;
- p[prev] = BB_MAKE(BB_OFFSET(p[prev]),
- s - BB_OFFSET(p[prev]),
- ack);
- memmove(p + prev + 2, p + prev + 1, (bb->count - prev - 1) * 8);
- p[prev + 1] = BB_MAKE(s + sectors, end - s - sectors, ack);
- return sectors;
- }
- /* Do the exact work to clear bad block range from the bad block table */
- static int _badblocks_clear(struct badblocks *bb, sector_t s, int sectors)
- {
- struct badblocks_context bad;
- int prev = -1, hint = -1;
- int len = 0, cleared = 0;
- int rv = 0;
- u64 *p;
- if (bb->shift < 0)
- /* badblocks are disabled */
- return 1;
- if (sectors == 0)
- /* Invalid sectors number */
- return 1;
- if (bb->shift) {
- sector_t target;
- /* When clearing we round the start up and the end down.
- * This should not matter as the shift should align with
- * the block size and no rounding should ever be needed.
- * However it is better the think a block is bad when it
- * isn't than to think a block is not bad when it is.
- */
- target = s + sectors;
- roundup(s, bb->shift);
- rounddown(target, bb->shift);
- sectors = target - s;
- }
- write_seqlock_irq(&bb->lock);
- bad.ack = true;
- p = bb->page;
- re_clear:
- bad.start = s;
- bad.len = sectors;
- if (badblocks_empty(bb)) {
- len = sectors;
- cleared++;
- goto update_sectors;
- }
- prev = prev_badblocks(bb, &bad, hint);
- /* Start before all badblocks */
- if (prev < 0) {
- if (overlap_behind(bb, &bad, 0)) {
- len = BB_OFFSET(p[0]) - s;
- hint = 0;
- } else {
- len = sectors;
- }
- /*
- * Both situations are to clear non-bad range,
- * should be treated as successful
- */
- cleared++;
- goto update_sectors;
- }
- /* Start after all badblocks */
- if ((prev + 1) >= bb->count && !overlap_front(bb, prev, &bad)) {
- len = sectors;
- cleared++;
- goto update_sectors;
- }
- /* Clear will split a bad record but the table is full */
- if (badblocks_full(bb) && (BB_OFFSET(p[prev]) < bad.start) &&
- (BB_END(p[prev]) > (bad.start + sectors))) {
- len = sectors;
- goto update_sectors;
- }
- if (overlap_front(bb, prev, &bad)) {
- if ((BB_OFFSET(p[prev]) < bad.start) &&
- (BB_END(p[prev]) > (bad.start + bad.len))) {
- /* Splitting */
- if ((bb->count + 1) < MAX_BADBLOCKS) {
- len = front_splitting_clear(bb, prev, &bad);
- bb->count += 1;
- cleared++;
- } else {
- /* No space to split, give up */
- len = sectors;
- }
- } else {
- int deleted = 0;
- len = front_clear(bb, prev, &bad, &deleted);
- bb->count -= deleted;
- cleared++;
- hint = prev;
- }
- goto update_sectors;
- }
- /* Not front overlap, but behind overlap */
- if ((prev + 1) < bb->count && overlap_behind(bb, &bad, prev + 1)) {
- len = BB_OFFSET(p[prev + 1]) - bad.start;
- hint = prev + 1;
- /* Clear non-bad range should be treated as successful */
- cleared++;
- goto update_sectors;
- }
- /* Not cover any badblocks range in the table */
- len = sectors;
- /* Clear non-bad range should be treated as successful */
- cleared++;
- update_sectors:
- s += len;
- sectors -= len;
- if (sectors > 0)
- goto re_clear;
- WARN_ON(sectors < 0);
- if (cleared) {
- badblocks_update_acked(bb);
- set_changed(bb);
- }
- write_sequnlock_irq(&bb->lock);
- if (!cleared)
- rv = 1;
- return rv;
- }
- /* Do the exact work to check bad blocks range from the bad block table */
- static int _badblocks_check(struct badblocks *bb, sector_t s, int sectors,
- sector_t *first_bad, int *bad_sectors)
- {
- int unacked_badblocks, acked_badblocks;
- int prev = -1, hint = -1, set = 0;
- struct badblocks_context bad;
- unsigned int seq;
- int len, rv;
- u64 *p;
- WARN_ON(bb->shift < 0 || sectors == 0);
- if (bb->shift > 0) {
- sector_t target;
- /* round the start down, and the end up */
- target = s + sectors;
- rounddown(s, bb->shift);
- roundup(target, bb->shift);
- sectors = target - s;
- }
- retry:
- seq = read_seqbegin(&bb->lock);
- p = bb->page;
- unacked_badblocks = 0;
- acked_badblocks = 0;
- re_check:
- bad.start = s;
- bad.len = sectors;
- if (badblocks_empty(bb)) {
- len = sectors;
- goto update_sectors;
- }
- prev = prev_badblocks(bb, &bad, hint);
- /* start after all badblocks */
- if ((prev >= 0) &&
- ((prev + 1) >= bb->count) && !overlap_front(bb, prev, &bad)) {
- len = sectors;
- goto update_sectors;
- }
- /* Overlapped with front badblocks record */
- if ((prev >= 0) && overlap_front(bb, prev, &bad)) {
- if (BB_ACK(p[prev]))
- acked_badblocks++;
- else
- unacked_badblocks++;
- if (BB_END(p[prev]) >= (s + sectors))
- len = sectors;
- else
- len = BB_END(p[prev]) - s;
- if (set == 0) {
- *first_bad = BB_OFFSET(p[prev]);
- *bad_sectors = BB_LEN(p[prev]);
- set = 1;
- }
- goto update_sectors;
- }
- /* Not front overlap, but behind overlap */
- if ((prev + 1) < bb->count && overlap_behind(bb, &bad, prev + 1)) {
- len = BB_OFFSET(p[prev + 1]) - bad.start;
- hint = prev + 1;
- goto update_sectors;
- }
- /* not cover any badblocks range in the table */
- len = sectors;
- update_sectors:
- s += len;
- sectors -= len;
- if (sectors > 0)
- goto re_check;
- WARN_ON(sectors < 0);
- if (unacked_badblocks > 0)
- rv = -1;
- else if (acked_badblocks > 0)
- rv = 1;
- else
- rv = 0;
- if (read_seqretry(&bb->lock, seq))
- goto retry;
- return rv;
- }
- /**
- * badblocks_check() - check a given range for bad sectors
- * @bb: the badblocks structure that holds all badblock information
- * @s: sector (start) at which to check for badblocks
- * @sectors: number of sectors to check for badblocks
- * @first_bad: pointer to store location of the first badblock
- * @bad_sectors: pointer to store number of badblocks after @first_bad
- *
- * We can record which blocks on each device are 'bad' and so just
- * fail those blocks, or that stripe, rather than the whole device.
- * Entries in the bad-block table are 64bits wide. This comprises:
- * Length of bad-range, in sectors: 0-511 for lengths 1-512
- * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
- * A 'shift' can be set so that larger blocks are tracked and
- * consequently larger devices can be covered.
- * 'Acknowledged' flag - 1 bit. - the most significant bit.
- *
- * Locking of the bad-block table uses a seqlock so badblocks_check
- * might need to retry if it is very unlucky.
- * We will sometimes want to check for bad blocks in a bi_end_io function,
- * so we use the write_seqlock_irq variant.
- *
- * When looking for a bad block we specify a range and want to
- * know if any block in the range is bad. So we binary-search
- * to the last range that starts at-or-before the given endpoint,
- * (or "before the sector after the target range")
- * then see if it ends after the given start.
- *
- * Return:
- * 0: there are no known bad blocks in the range
- * 1: there are known bad block which are all acknowledged
- * -1: there are bad blocks which have not yet been acknowledged in metadata.
- * plus the start/length of the first bad section we overlap.
- */
- int badblocks_check(struct badblocks *bb, sector_t s, int sectors,
- sector_t *first_bad, int *bad_sectors)
- {
- return _badblocks_check(bb, s, sectors, first_bad, bad_sectors);
- }
- EXPORT_SYMBOL_GPL(badblocks_check);
- /**
- * badblocks_set() - Add a range of bad blocks to the table.
- * @bb: the badblocks structure that holds all badblock information
- * @s: first sector to mark as bad
- * @sectors: number of sectors to mark as bad
- * @acknowledged: weather to mark the bad sectors as acknowledged
- *
- * This might extend the table, or might contract it if two adjacent ranges
- * can be merged. We binary-search to find the 'insertion' point, then
- * decide how best to handle it.
- *
- * Return:
- * 0: success
- * 1: failed to set badblocks (out of space)
- */
- int badblocks_set(struct badblocks *bb, sector_t s, int sectors,
- int acknowledged)
- {
- return _badblocks_set(bb, s, sectors, acknowledged);
- }
- EXPORT_SYMBOL_GPL(badblocks_set);
- /**
- * badblocks_clear() - Remove a range of bad blocks to the table.
- * @bb: the badblocks structure that holds all badblock information
- * @s: first sector to mark as bad
- * @sectors: number of sectors to mark as bad
- *
- * This may involve extending the table if we spilt a region,
- * but it must not fail. So if the table becomes full, we just
- * drop the remove request.
- *
- * Return:
- * 0: success
- * 1: failed to clear badblocks
- */
- int badblocks_clear(struct badblocks *bb, sector_t s, int sectors)
- {
- return _badblocks_clear(bb, s, sectors);
- }
- EXPORT_SYMBOL_GPL(badblocks_clear);
- /**
- * ack_all_badblocks() - Acknowledge all bad blocks in a list.
- * @bb: the badblocks structure that holds all badblock information
- *
- * This only succeeds if ->changed is clear. It is used by
- * in-kernel metadata updates
- */
- void ack_all_badblocks(struct badblocks *bb)
- {
- if (bb->page == NULL || bb->changed)
- /* no point even trying */
- return;
- write_seqlock_irq(&bb->lock);
- if (bb->changed == 0 && bb->unacked_exist) {
- u64 *p = bb->page;
- int i;
- for (i = 0; i < bb->count ; i++) {
- if (!BB_ACK(p[i])) {
- sector_t start = BB_OFFSET(p[i]);
- int len = BB_LEN(p[i]);
- p[i] = BB_MAKE(start, len, 1);
- }
- }
- bb->unacked_exist = 0;
- }
- write_sequnlock_irq(&bb->lock);
- }
- EXPORT_SYMBOL_GPL(ack_all_badblocks);
- /**
- * badblocks_show() - sysfs access to bad-blocks list
- * @bb: the badblocks structure that holds all badblock information
- * @page: buffer received from sysfs
- * @unack: weather to show unacknowledged badblocks
- *
- * Return:
- * Length of returned data
- */
- ssize_t badblocks_show(struct badblocks *bb, char *page, int unack)
- {
- size_t len;
- int i;
- u64 *p = bb->page;
- unsigned seq;
- if (bb->shift < 0)
- return 0;
- retry:
- seq = read_seqbegin(&bb->lock);
- len = 0;
- i = 0;
- while (len < PAGE_SIZE && i < bb->count) {
- sector_t s = BB_OFFSET(p[i]);
- unsigned int length = BB_LEN(p[i]);
- int ack = BB_ACK(p[i]);
- i++;
- if (unack && ack)
- continue;
- len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
- (unsigned long long)s << bb->shift,
- length << bb->shift);
- }
- if (unack && len == 0)
- bb->unacked_exist = 0;
- if (read_seqretry(&bb->lock, seq))
- goto retry;
- return len;
- }
- EXPORT_SYMBOL_GPL(badblocks_show);
- /**
- * badblocks_store() - sysfs access to bad-blocks list
- * @bb: the badblocks structure that holds all badblock information
- * @page: buffer received from sysfs
- * @len: length of data received from sysfs
- * @unack: weather to show unacknowledged badblocks
- *
- * Return:
- * Length of the buffer processed or -ve error.
- */
- ssize_t badblocks_store(struct badblocks *bb, const char *page, size_t len,
- int unack)
- {
- unsigned long long sector;
- int length;
- char newline;
- switch (sscanf(page, "%llu %d%c", §or, &length, &newline)) {
- case 3:
- if (newline != '\n')
- return -EINVAL;
- fallthrough;
- case 2:
- if (length <= 0)
- return -EINVAL;
- break;
- default:
- return -EINVAL;
- }
- if (badblocks_set(bb, sector, length, !unack))
- return -ENOSPC;
- else
- return len;
- }
- EXPORT_SYMBOL_GPL(badblocks_store);
- static int __badblocks_init(struct device *dev, struct badblocks *bb,
- int enable)
- {
- bb->dev = dev;
- bb->count = 0;
- if (enable)
- bb->shift = 0;
- else
- bb->shift = -1;
- if (dev)
- bb->page = devm_kzalloc(dev, PAGE_SIZE, GFP_KERNEL);
- else
- bb->page = kzalloc(PAGE_SIZE, GFP_KERNEL);
- if (!bb->page) {
- bb->shift = -1;
- return -ENOMEM;
- }
- seqlock_init(&bb->lock);
- return 0;
- }
- /**
- * badblocks_init() - initialize the badblocks structure
- * @bb: the badblocks structure that holds all badblock information
- * @enable: weather to enable badblocks accounting
- *
- * Return:
- * 0: success
- * -ve errno: on error
- */
- int badblocks_init(struct badblocks *bb, int enable)
- {
- return __badblocks_init(NULL, bb, enable);
- }
- EXPORT_SYMBOL_GPL(badblocks_init);
- int devm_init_badblocks(struct device *dev, struct badblocks *bb)
- {
- if (!bb)
- return -EINVAL;
- return __badblocks_init(dev, bb, 1);
- }
- EXPORT_SYMBOL_GPL(devm_init_badblocks);
- /**
- * badblocks_exit() - free the badblocks structure
- * @bb: the badblocks structure that holds all badblock information
- */
- void badblocks_exit(struct badblocks *bb)
- {
- if (!bb)
- return;
- if (bb->dev)
- devm_kfree(bb->dev, bb->page);
- else
- kfree(bb->page);
- bb->page = NULL;
- }
- EXPORT_SYMBOL_GPL(badblocks_exit);
|