x509_public_key.c 6.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /* Instantiate a public key crypto key from an X.509 Certificate
  3. *
  4. * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
  5. * Written by David Howells (dhowells@redhat.com)
  6. */
  7. #define pr_fmt(fmt) "X.509: "fmt
  8. #include <crypto/hash.h>
  9. #include <keys/asymmetric-parser.h>
  10. #include <keys/asymmetric-subtype.h>
  11. #include <keys/system_keyring.h>
  12. #include <linux/module.h>
  13. #include <linux/kernel.h>
  14. #include <linux/slab.h>
  15. #include <linux/string.h>
  16. #include "asymmetric_keys.h"
  17. #include "x509_parser.h"
  18. /*
  19. * Set up the signature parameters in an X.509 certificate. This involves
  20. * digesting the signed data and extracting the signature.
  21. */
  22. int x509_get_sig_params(struct x509_certificate *cert)
  23. {
  24. struct public_key_signature *sig = cert->sig;
  25. struct crypto_shash *tfm;
  26. struct shash_desc *desc;
  27. size_t desc_size;
  28. int ret;
  29. pr_devel("==>%s()\n", __func__);
  30. sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
  31. if (!sig->s)
  32. return -ENOMEM;
  33. sig->s_size = cert->raw_sig_size;
  34. /* Allocate the hashing algorithm we're going to need and find out how
  35. * big the hash operational data will be.
  36. */
  37. tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
  38. if (IS_ERR(tfm)) {
  39. if (PTR_ERR(tfm) == -ENOENT) {
  40. cert->unsupported_sig = true;
  41. return 0;
  42. }
  43. return PTR_ERR(tfm);
  44. }
  45. desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
  46. sig->digest_size = crypto_shash_digestsize(tfm);
  47. ret = -ENOMEM;
  48. sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
  49. if (!sig->digest)
  50. goto error;
  51. desc = kzalloc(desc_size, GFP_KERNEL);
  52. if (!desc)
  53. goto error;
  54. desc->tfm = tfm;
  55. ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size,
  56. sig->digest);
  57. if (ret < 0)
  58. goto error_2;
  59. ret = is_hash_blacklisted(sig->digest, sig->digest_size,
  60. BLACKLIST_HASH_X509_TBS);
  61. if (ret == -EKEYREJECTED) {
  62. pr_err("Cert %*phN is blacklisted\n",
  63. sig->digest_size, sig->digest);
  64. cert->blacklisted = true;
  65. ret = 0;
  66. }
  67. error_2:
  68. kfree(desc);
  69. error:
  70. crypto_free_shash(tfm);
  71. pr_devel("<==%s() = %d\n", __func__, ret);
  72. return ret;
  73. }
  74. /*
  75. * Check for self-signedness in an X.509 cert and if found, check the signature
  76. * immediately if we can.
  77. */
  78. int x509_check_for_self_signed(struct x509_certificate *cert)
  79. {
  80. int ret = 0;
  81. pr_devel("==>%s()\n", __func__);
  82. if (cert->raw_subject_size != cert->raw_issuer_size ||
  83. memcmp(cert->raw_subject, cert->raw_issuer,
  84. cert->raw_issuer_size) != 0)
  85. goto not_self_signed;
  86. if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
  87. /* If the AKID is present it may have one or two parts. If
  88. * both are supplied, both must match.
  89. */
  90. bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
  91. bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
  92. if (!a && !b)
  93. goto not_self_signed;
  94. ret = -EKEYREJECTED;
  95. if (((a && !b) || (b && !a)) &&
  96. cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
  97. goto out;
  98. }
  99. if (cert->unsupported_sig) {
  100. ret = 0;
  101. goto out;
  102. }
  103. ret = public_key_verify_signature(cert->pub, cert->sig);
  104. if (ret < 0) {
  105. if (ret == -ENOPKG) {
  106. cert->unsupported_sig = true;
  107. ret = 0;
  108. }
  109. goto out;
  110. }
  111. pr_devel("Cert Self-signature verified");
  112. cert->self_signed = true;
  113. out:
  114. pr_devel("<==%s() = %d\n", __func__, ret);
  115. return ret;
  116. not_self_signed:
  117. pr_devel("<==%s() = 0 [not]\n", __func__);
  118. return 0;
  119. }
  120. /*
  121. * Attempt to parse a data blob for a key as an X509 certificate.
  122. */
  123. static int x509_key_preparse(struct key_preparsed_payload *prep)
  124. {
  125. struct x509_certificate *cert __free(x509_free_certificate);
  126. struct asymmetric_key_ids *kids __free(kfree) = NULL;
  127. char *p, *desc __free(kfree) = NULL;
  128. const char *q;
  129. size_t srlen, sulen;
  130. cert = x509_cert_parse(prep->data, prep->datalen);
  131. if (IS_ERR(cert))
  132. return PTR_ERR(cert);
  133. pr_devel("Cert Issuer: %s\n", cert->issuer);
  134. pr_devel("Cert Subject: %s\n", cert->subject);
  135. pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
  136. pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
  137. cert->pub->id_type = "X509";
  138. if (cert->unsupported_sig) {
  139. public_key_signature_free(cert->sig);
  140. cert->sig = NULL;
  141. } else {
  142. pr_devel("Cert Signature: %s + %s\n",
  143. cert->sig->pkey_algo, cert->sig->hash_algo);
  144. }
  145. /* Don't permit addition of blacklisted keys */
  146. if (cert->blacklisted)
  147. return -EKEYREJECTED;
  148. /* Propose a description */
  149. sulen = strlen(cert->subject);
  150. if (cert->raw_skid) {
  151. srlen = cert->raw_skid_size;
  152. q = cert->raw_skid;
  153. } else {
  154. srlen = cert->raw_serial_size;
  155. q = cert->raw_serial;
  156. }
  157. desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
  158. if (!desc)
  159. return -ENOMEM;
  160. p = memcpy(desc, cert->subject, sulen);
  161. p += sulen;
  162. *p++ = ':';
  163. *p++ = ' ';
  164. p = bin2hex(p, q, srlen);
  165. *p = 0;
  166. kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
  167. if (!kids)
  168. return -ENOMEM;
  169. kids->id[0] = cert->id;
  170. kids->id[1] = cert->skid;
  171. kids->id[2] = asymmetric_key_generate_id(cert->raw_subject,
  172. cert->raw_subject_size,
  173. "", 0);
  174. if (IS_ERR(kids->id[2]))
  175. return PTR_ERR(kids->id[2]);
  176. /* We're pinning the module by being linked against it */
  177. __module_get(public_key_subtype.owner);
  178. prep->payload.data[asym_subtype] = &public_key_subtype;
  179. prep->payload.data[asym_key_ids] = kids;
  180. prep->payload.data[asym_crypto] = cert->pub;
  181. prep->payload.data[asym_auth] = cert->sig;
  182. prep->description = desc;
  183. prep->quotalen = 100;
  184. /* We've finished with the certificate */
  185. cert->pub = NULL;
  186. cert->id = NULL;
  187. cert->skid = NULL;
  188. cert->sig = NULL;
  189. desc = NULL;
  190. kids = NULL;
  191. return 0;
  192. }
  193. static struct asymmetric_key_parser x509_key_parser = {
  194. .owner = THIS_MODULE,
  195. .name = "x509",
  196. .parse = x509_key_preparse,
  197. };
  198. /*
  199. * Module stuff
  200. */
  201. static int __init x509_key_init(void)
  202. {
  203. return register_asymmetric_key_parser(&x509_key_parser);
  204. }
  205. static void __exit x509_key_exit(void)
  206. {
  207. unregister_asymmetric_key_parser(&x509_key_parser);
  208. }
  209. module_init(x509_key_init);
  210. module_exit(x509_key_exit);
  211. MODULE_DESCRIPTION("X.509 certificate parser");
  212. MODULE_AUTHOR("Red Hat, Inc.");
  213. MODULE_LICENSE("GPL");