nicstar.c 73 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * nicstar.c
  4. *
  5. * Device driver supporting CBR for IDT 77201/77211 "NICStAR" based cards.
  6. *
  7. * IMPORTANT: The included file nicstarmac.c was NOT WRITTEN BY ME.
  8. * It was taken from the frle-0.22 device driver.
  9. * As the file doesn't have a copyright notice, in the file
  10. * nicstarmac.copyright I put the copyright notice from the
  11. * frle-0.22 device driver.
  12. * Some code is based on the nicstar driver by M. Welsh.
  13. *
  14. * Author: Rui Prior (rprior@inescn.pt)
  15. * PowerPC support by Jay Talbott (jay_talbott@mcg.mot.com) April 1999
  16. *
  17. *
  18. * (C) INESC 1999
  19. */
  20. /*
  21. * IMPORTANT INFORMATION
  22. *
  23. * There are currently three types of spinlocks:
  24. *
  25. * 1 - Per card interrupt spinlock (to protect structures and such)
  26. * 2 - Per SCQ scq spinlock
  27. * 3 - Per card resource spinlock (to access registers, etc.)
  28. *
  29. * These must NEVER be grabbed in reverse order.
  30. *
  31. */
  32. /* Header files */
  33. #include <linux/module.h>
  34. #include <linux/kernel.h>
  35. #include <linux/skbuff.h>
  36. #include <linux/atmdev.h>
  37. #include <linux/atm.h>
  38. #include <linux/pci.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/types.h>
  41. #include <linux/string.h>
  42. #include <linux/delay.h>
  43. #include <linux/init.h>
  44. #include <linux/sched.h>
  45. #include <linux/timer.h>
  46. #include <linux/interrupt.h>
  47. #include <linux/bitops.h>
  48. #include <linux/slab.h>
  49. #include <linux/idr.h>
  50. #include <asm/io.h>
  51. #include <linux/uaccess.h>
  52. #include <linux/atomic.h>
  53. #include <linux/etherdevice.h>
  54. #include "nicstar.h"
  55. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  56. #include "suni.h"
  57. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  58. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  59. #include "idt77105.h"
  60. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  61. /* Additional code */
  62. #include "nicstarmac.c"
  63. /* Configurable parameters */
  64. #undef PHY_LOOPBACK
  65. #undef TX_DEBUG
  66. #undef RX_DEBUG
  67. #undef GENERAL_DEBUG
  68. #undef EXTRA_DEBUG
  69. /* Do not touch these */
  70. #ifdef TX_DEBUG
  71. #define TXPRINTK(args...) printk(args)
  72. #else
  73. #define TXPRINTK(args...)
  74. #endif /* TX_DEBUG */
  75. #ifdef RX_DEBUG
  76. #define RXPRINTK(args...) printk(args)
  77. #else
  78. #define RXPRINTK(args...)
  79. #endif /* RX_DEBUG */
  80. #ifdef GENERAL_DEBUG
  81. #define PRINTK(args...) printk(args)
  82. #else
  83. #define PRINTK(args...) do {} while (0)
  84. #endif /* GENERAL_DEBUG */
  85. #ifdef EXTRA_DEBUG
  86. #define XPRINTK(args...) printk(args)
  87. #else
  88. #define XPRINTK(args...)
  89. #endif /* EXTRA_DEBUG */
  90. /* Macros */
  91. #define CMD_BUSY(card) (readl((card)->membase + STAT) & NS_STAT_CMDBZ)
  92. #define NS_DELAY mdelay(1)
  93. #define PTR_DIFF(a, b) ((u32)((unsigned long)(a) - (unsigned long)(b)))
  94. #ifndef ATM_SKB
  95. #define ATM_SKB(s) (&(s)->atm)
  96. #endif
  97. #define scq_virt_to_bus(scq, p) \
  98. (scq->dma + ((unsigned long)(p) - (unsigned long)(scq)->org))
  99. /* Function declarations */
  100. static u32 ns_read_sram(ns_dev * card, u32 sram_address);
  101. static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
  102. int count);
  103. static int ns_init_card(int i, struct pci_dev *pcidev);
  104. static void ns_init_card_error(ns_dev * card, int error);
  105. static scq_info *get_scq(ns_dev *card, int size, u32 scd);
  106. static void free_scq(ns_dev *card, scq_info * scq, struct atm_vcc *vcc);
  107. static void push_rxbufs(ns_dev *, struct sk_buff *);
  108. static irqreturn_t ns_irq_handler(int irq, void *dev_id);
  109. static int ns_open(struct atm_vcc *vcc);
  110. static void ns_close(struct atm_vcc *vcc);
  111. static void fill_tst(ns_dev * card, int n, vc_map * vc);
  112. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb);
  113. static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb);
  114. static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
  115. struct sk_buff *skb, bool may_sleep);
  116. static void process_tsq(ns_dev * card);
  117. static void drain_scq(ns_dev * card, scq_info * scq, int pos);
  118. static void process_rsq(ns_dev * card);
  119. static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe);
  120. static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb);
  121. static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count);
  122. static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb);
  123. static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb);
  124. static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb);
  125. static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page);
  126. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg);
  127. #ifdef EXTRA_DEBUG
  128. static void which_list(ns_dev * card, struct sk_buff *skb);
  129. #endif
  130. static void ns_poll(struct timer_list *unused);
  131. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  132. unsigned long addr);
  133. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr);
  134. /* Global variables */
  135. static struct ns_dev *cards[NS_MAX_CARDS];
  136. static unsigned num_cards;
  137. static const struct atmdev_ops atm_ops = {
  138. .open = ns_open,
  139. .close = ns_close,
  140. .ioctl = ns_ioctl,
  141. .send = ns_send,
  142. .send_bh = ns_send_bh,
  143. .phy_put = ns_phy_put,
  144. .phy_get = ns_phy_get,
  145. .proc_read = ns_proc_read,
  146. .owner = THIS_MODULE,
  147. };
  148. static struct timer_list ns_timer;
  149. static char *mac[NS_MAX_CARDS];
  150. module_param_array(mac, charp, NULL, 0);
  151. MODULE_DESCRIPTION("ATM NIC driver for IDT 77201/77211 \"NICStAR\" and Fore ForeRunnerLE.");
  152. MODULE_LICENSE("GPL");
  153. /* Functions */
  154. static int nicstar_init_one(struct pci_dev *pcidev,
  155. const struct pci_device_id *ent)
  156. {
  157. static int index = -1;
  158. unsigned int error;
  159. index++;
  160. cards[index] = NULL;
  161. error = ns_init_card(index, pcidev);
  162. if (error) {
  163. cards[index--] = NULL; /* don't increment index */
  164. goto err_out;
  165. }
  166. return 0;
  167. err_out:
  168. return -ENODEV;
  169. }
  170. static void nicstar_remove_one(struct pci_dev *pcidev)
  171. {
  172. int i, j;
  173. ns_dev *card = pci_get_drvdata(pcidev);
  174. struct sk_buff *hb;
  175. struct sk_buff *iovb;
  176. struct sk_buff *lb;
  177. struct sk_buff *sb;
  178. i = card->index;
  179. if (cards[i] == NULL)
  180. return;
  181. if (card->atmdev->phy && card->atmdev->phy->stop)
  182. card->atmdev->phy->stop(card->atmdev);
  183. /* Stop everything */
  184. writel(0x00000000, card->membase + CFG);
  185. /* De-register device */
  186. atm_dev_deregister(card->atmdev);
  187. /* Disable PCI device */
  188. pci_disable_device(pcidev);
  189. /* Free up resources */
  190. j = 0;
  191. PRINTK("nicstar%d: freeing %d huge buffers.\n", i, card->hbpool.count);
  192. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL) {
  193. dev_kfree_skb_any(hb);
  194. j++;
  195. }
  196. PRINTK("nicstar%d: %d huge buffers freed.\n", i, j);
  197. j = 0;
  198. PRINTK("nicstar%d: freeing %d iovec buffers.\n", i,
  199. card->iovpool.count);
  200. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL) {
  201. dev_kfree_skb_any(iovb);
  202. j++;
  203. }
  204. PRINTK("nicstar%d: %d iovec buffers freed.\n", i, j);
  205. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  206. dev_kfree_skb_any(lb);
  207. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  208. dev_kfree_skb_any(sb);
  209. free_scq(card, card->scq0, NULL);
  210. for (j = 0; j < NS_FRSCD_NUM; j++) {
  211. if (card->scd2vc[j] != NULL)
  212. free_scq(card, card->scd2vc[j]->scq, card->scd2vc[j]->tx_vcc);
  213. }
  214. idr_destroy(&card->idr);
  215. dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
  216. card->rsq.org, card->rsq.dma);
  217. dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
  218. card->tsq.org, card->tsq.dma);
  219. free_irq(card->pcidev->irq, card);
  220. iounmap(card->membase);
  221. kfree(card);
  222. }
  223. static const struct pci_device_id nicstar_pci_tbl[] = {
  224. { PCI_VDEVICE(IDT, PCI_DEVICE_ID_IDT_IDT77201), 0 },
  225. {0,} /* terminate list */
  226. };
  227. MODULE_DEVICE_TABLE(pci, nicstar_pci_tbl);
  228. static struct pci_driver nicstar_driver = {
  229. .name = "nicstar",
  230. .id_table = nicstar_pci_tbl,
  231. .probe = nicstar_init_one,
  232. .remove = nicstar_remove_one,
  233. };
  234. static int __init nicstar_init(void)
  235. {
  236. unsigned error = 0; /* Initialized to remove compile warning */
  237. XPRINTK("nicstar: nicstar_init() called.\n");
  238. error = pci_register_driver(&nicstar_driver);
  239. TXPRINTK("nicstar: TX debug enabled.\n");
  240. RXPRINTK("nicstar: RX debug enabled.\n");
  241. PRINTK("nicstar: General debug enabled.\n");
  242. #ifdef PHY_LOOPBACK
  243. printk("nicstar: using PHY loopback.\n");
  244. #endif /* PHY_LOOPBACK */
  245. XPRINTK("nicstar: nicstar_init() returned.\n");
  246. if (!error) {
  247. timer_setup(&ns_timer, ns_poll, 0);
  248. ns_timer.expires = jiffies + NS_POLL_PERIOD;
  249. add_timer(&ns_timer);
  250. }
  251. return error;
  252. }
  253. static void __exit nicstar_cleanup(void)
  254. {
  255. XPRINTK("nicstar: nicstar_cleanup() called.\n");
  256. del_timer_sync(&ns_timer);
  257. pci_unregister_driver(&nicstar_driver);
  258. XPRINTK("nicstar: nicstar_cleanup() returned.\n");
  259. }
  260. static u32 ns_read_sram(ns_dev * card, u32 sram_address)
  261. {
  262. unsigned long flags;
  263. u32 data;
  264. sram_address <<= 2;
  265. sram_address &= 0x0007FFFC; /* address must be dword aligned */
  266. sram_address |= 0x50000000; /* SRAM read command */
  267. spin_lock_irqsave(&card->res_lock, flags);
  268. while (CMD_BUSY(card)) ;
  269. writel(sram_address, card->membase + CMD);
  270. while (CMD_BUSY(card)) ;
  271. data = readl(card->membase + DR0);
  272. spin_unlock_irqrestore(&card->res_lock, flags);
  273. return data;
  274. }
  275. static void ns_write_sram(ns_dev * card, u32 sram_address, u32 * value,
  276. int count)
  277. {
  278. unsigned long flags;
  279. int i, c;
  280. count--; /* count range now is 0..3 instead of 1..4 */
  281. c = count;
  282. c <<= 2; /* to use increments of 4 */
  283. spin_lock_irqsave(&card->res_lock, flags);
  284. while (CMD_BUSY(card)) ;
  285. for (i = 0; i <= c; i += 4)
  286. writel(*(value++), card->membase + i);
  287. /* Note: DR# registers are the first 4 dwords in nicstar's memspace,
  288. so card->membase + DR0 == card->membase */
  289. sram_address <<= 2;
  290. sram_address &= 0x0007FFFC;
  291. sram_address |= (0x40000000 | count);
  292. writel(sram_address, card->membase + CMD);
  293. spin_unlock_irqrestore(&card->res_lock, flags);
  294. }
  295. static int ns_init_card(int i, struct pci_dev *pcidev)
  296. {
  297. int j;
  298. struct ns_dev *card = NULL;
  299. unsigned char pci_latency;
  300. unsigned error;
  301. u32 data;
  302. u32 u32d[4];
  303. u32 ns_cfg_rctsize;
  304. int bcount;
  305. unsigned long membase;
  306. error = 0;
  307. if (pci_enable_device(pcidev)) {
  308. printk("nicstar%d: can't enable PCI device\n", i);
  309. error = 2;
  310. ns_init_card_error(card, error);
  311. return error;
  312. }
  313. if (dma_set_mask_and_coherent(&pcidev->dev, DMA_BIT_MASK(32)) != 0) {
  314. printk(KERN_WARNING
  315. "nicstar%d: No suitable DMA available.\n", i);
  316. error = 2;
  317. ns_init_card_error(card, error);
  318. return error;
  319. }
  320. card = kmalloc(sizeof(*card), GFP_KERNEL);
  321. if (!card) {
  322. printk
  323. ("nicstar%d: can't allocate memory for device structure.\n",
  324. i);
  325. error = 2;
  326. ns_init_card_error(card, error);
  327. return error;
  328. }
  329. cards[i] = card;
  330. spin_lock_init(&card->int_lock);
  331. spin_lock_init(&card->res_lock);
  332. pci_set_drvdata(pcidev, card);
  333. card->index = i;
  334. card->atmdev = NULL;
  335. card->pcidev = pcidev;
  336. membase = pci_resource_start(pcidev, 1);
  337. card->membase = ioremap(membase, NS_IOREMAP_SIZE);
  338. if (!card->membase) {
  339. printk("nicstar%d: can't ioremap() membase.\n", i);
  340. error = 3;
  341. ns_init_card_error(card, error);
  342. return error;
  343. }
  344. PRINTK("nicstar%d: membase at 0x%p.\n", i, card->membase);
  345. pci_set_master(pcidev);
  346. if (pci_read_config_byte(pcidev, PCI_LATENCY_TIMER, &pci_latency) != 0) {
  347. printk("nicstar%d: can't read PCI latency timer.\n", i);
  348. error = 6;
  349. ns_init_card_error(card, error);
  350. return error;
  351. }
  352. #ifdef NS_PCI_LATENCY
  353. if (pci_latency < NS_PCI_LATENCY) {
  354. PRINTK("nicstar%d: setting PCI latency timer to %d.\n", i,
  355. NS_PCI_LATENCY);
  356. for (j = 1; j < 4; j++) {
  357. if (pci_write_config_byte
  358. (pcidev, PCI_LATENCY_TIMER, NS_PCI_LATENCY) != 0)
  359. break;
  360. }
  361. if (j == 4) {
  362. printk
  363. ("nicstar%d: can't set PCI latency timer to %d.\n",
  364. i, NS_PCI_LATENCY);
  365. error = 7;
  366. ns_init_card_error(card, error);
  367. return error;
  368. }
  369. }
  370. #endif /* NS_PCI_LATENCY */
  371. /* Clear timer overflow */
  372. data = readl(card->membase + STAT);
  373. if (data & NS_STAT_TMROF)
  374. writel(NS_STAT_TMROF, card->membase + STAT);
  375. /* Software reset */
  376. writel(NS_CFG_SWRST, card->membase + CFG);
  377. NS_DELAY;
  378. writel(0x00000000, card->membase + CFG);
  379. /* PHY reset */
  380. writel(0x00000008, card->membase + GP);
  381. NS_DELAY;
  382. writel(0x00000001, card->membase + GP);
  383. NS_DELAY;
  384. while (CMD_BUSY(card)) ;
  385. writel(NS_CMD_WRITE_UTILITY | 0x00000100, card->membase + CMD); /* Sync UTOPIA with SAR clock */
  386. NS_DELAY;
  387. /* Detect PHY type */
  388. while (CMD_BUSY(card)) ;
  389. writel(NS_CMD_READ_UTILITY | 0x00000200, card->membase + CMD);
  390. while (CMD_BUSY(card)) ;
  391. data = readl(card->membase + DR0);
  392. switch (data) {
  393. case 0x00000009:
  394. printk("nicstar%d: PHY seems to be 25 Mbps.\n", i);
  395. card->max_pcr = ATM_25_PCR;
  396. while (CMD_BUSY(card)) ;
  397. writel(0x00000008, card->membase + DR0);
  398. writel(NS_CMD_WRITE_UTILITY | 0x00000200, card->membase + CMD);
  399. /* Clear an eventual pending interrupt */
  400. writel(NS_STAT_SFBQF, card->membase + STAT);
  401. #ifdef PHY_LOOPBACK
  402. while (CMD_BUSY(card)) ;
  403. writel(0x00000022, card->membase + DR0);
  404. writel(NS_CMD_WRITE_UTILITY | 0x00000202, card->membase + CMD);
  405. #endif /* PHY_LOOPBACK */
  406. break;
  407. case 0x00000030:
  408. case 0x00000031:
  409. printk("nicstar%d: PHY seems to be 155 Mbps.\n", i);
  410. card->max_pcr = ATM_OC3_PCR;
  411. #ifdef PHY_LOOPBACK
  412. while (CMD_BUSY(card)) ;
  413. writel(0x00000002, card->membase + DR0);
  414. writel(NS_CMD_WRITE_UTILITY | 0x00000205, card->membase + CMD);
  415. #endif /* PHY_LOOPBACK */
  416. break;
  417. default:
  418. printk("nicstar%d: unknown PHY type (0x%08X).\n", i, data);
  419. error = 8;
  420. ns_init_card_error(card, error);
  421. return error;
  422. }
  423. writel(0x00000000, card->membase + GP);
  424. /* Determine SRAM size */
  425. data = 0x76543210;
  426. ns_write_sram(card, 0x1C003, &data, 1);
  427. data = 0x89ABCDEF;
  428. ns_write_sram(card, 0x14003, &data, 1);
  429. if (ns_read_sram(card, 0x14003) == 0x89ABCDEF &&
  430. ns_read_sram(card, 0x1C003) == 0x76543210)
  431. card->sram_size = 128;
  432. else
  433. card->sram_size = 32;
  434. PRINTK("nicstar%d: %dK x 32bit SRAM size.\n", i, card->sram_size);
  435. card->rct_size = NS_MAX_RCTSIZE;
  436. #if (NS_MAX_RCTSIZE == 4096)
  437. if (card->sram_size == 128)
  438. printk
  439. ("nicstar%d: limiting maximum VCI. See NS_MAX_RCTSIZE in nicstar.h\n",
  440. i);
  441. #elif (NS_MAX_RCTSIZE == 16384)
  442. if (card->sram_size == 32) {
  443. printk
  444. ("nicstar%d: wasting memory. See NS_MAX_RCTSIZE in nicstar.h\n",
  445. i);
  446. card->rct_size = 4096;
  447. }
  448. #else
  449. #error NS_MAX_RCTSIZE must be either 4096 or 16384 in nicstar.c
  450. #endif
  451. card->vpibits = NS_VPIBITS;
  452. if (card->rct_size == 4096)
  453. card->vcibits = 12 - NS_VPIBITS;
  454. else /* card->rct_size == 16384 */
  455. card->vcibits = 14 - NS_VPIBITS;
  456. /* Initialize the nicstar eeprom/eprom stuff, for the MAC addr */
  457. if (mac[i] == NULL)
  458. nicstar_init_eprom(card->membase);
  459. /* Set the VPI/VCI MSb mask to zero so we can receive OAM cells */
  460. writel(0x00000000, card->membase + VPM);
  461. card->intcnt = 0;
  462. if (request_irq
  463. (pcidev->irq, &ns_irq_handler, IRQF_SHARED, "nicstar", card) != 0) {
  464. pr_err("nicstar%d: can't allocate IRQ %d.\n", i, pcidev->irq);
  465. error = 9;
  466. ns_init_card_error(card, error);
  467. return error;
  468. }
  469. /* Initialize TSQ */
  470. card->tsq.org = dma_alloc_coherent(&card->pcidev->dev,
  471. NS_TSQSIZE + NS_TSQ_ALIGNMENT,
  472. &card->tsq.dma, GFP_KERNEL);
  473. if (card->tsq.org == NULL) {
  474. printk("nicstar%d: can't allocate TSQ.\n", i);
  475. error = 10;
  476. ns_init_card_error(card, error);
  477. return error;
  478. }
  479. card->tsq.base = PTR_ALIGN(card->tsq.org, NS_TSQ_ALIGNMENT);
  480. card->tsq.next = card->tsq.base;
  481. card->tsq.last = card->tsq.base + (NS_TSQ_NUM_ENTRIES - 1);
  482. for (j = 0; j < NS_TSQ_NUM_ENTRIES; j++)
  483. ns_tsi_init(card->tsq.base + j);
  484. writel(0x00000000, card->membase + TSQH);
  485. writel(ALIGN(card->tsq.dma, NS_TSQ_ALIGNMENT), card->membase + TSQB);
  486. PRINTK("nicstar%d: TSQ base at 0x%p.\n", i, card->tsq.base);
  487. /* Initialize RSQ */
  488. card->rsq.org = dma_alloc_coherent(&card->pcidev->dev,
  489. NS_RSQSIZE + NS_RSQ_ALIGNMENT,
  490. &card->rsq.dma, GFP_KERNEL);
  491. if (card->rsq.org == NULL) {
  492. printk("nicstar%d: can't allocate RSQ.\n", i);
  493. error = 11;
  494. ns_init_card_error(card, error);
  495. return error;
  496. }
  497. card->rsq.base = PTR_ALIGN(card->rsq.org, NS_RSQ_ALIGNMENT);
  498. card->rsq.next = card->rsq.base;
  499. card->rsq.last = card->rsq.base + (NS_RSQ_NUM_ENTRIES - 1);
  500. for (j = 0; j < NS_RSQ_NUM_ENTRIES; j++)
  501. ns_rsqe_init(card->rsq.base + j);
  502. writel(0x00000000, card->membase + RSQH);
  503. writel(ALIGN(card->rsq.dma, NS_RSQ_ALIGNMENT), card->membase + RSQB);
  504. PRINTK("nicstar%d: RSQ base at 0x%p.\n", i, card->rsq.base);
  505. /* Initialize SCQ0, the only VBR SCQ used */
  506. card->scq1 = NULL;
  507. card->scq2 = NULL;
  508. card->scq0 = get_scq(card, VBR_SCQSIZE, NS_VRSCD0);
  509. if (card->scq0 == NULL) {
  510. printk("nicstar%d: can't get SCQ0.\n", i);
  511. error = 12;
  512. ns_init_card_error(card, error);
  513. return error;
  514. }
  515. u32d[0] = scq_virt_to_bus(card->scq0, card->scq0->base);
  516. u32d[1] = (u32) 0x00000000;
  517. u32d[2] = (u32) 0xffffffff;
  518. u32d[3] = (u32) 0x00000000;
  519. ns_write_sram(card, NS_VRSCD0, u32d, 4);
  520. ns_write_sram(card, NS_VRSCD1, u32d, 4); /* These last two won't be used */
  521. ns_write_sram(card, NS_VRSCD2, u32d, 4); /* but are initialized, just in case... */
  522. card->scq0->scd = NS_VRSCD0;
  523. PRINTK("nicstar%d: VBR-SCQ0 base at 0x%p.\n", i, card->scq0->base);
  524. /* Initialize TSTs */
  525. card->tst_addr = NS_TST0;
  526. card->tst_free_entries = NS_TST_NUM_ENTRIES;
  527. data = NS_TST_OPCODE_VARIABLE;
  528. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  529. ns_write_sram(card, NS_TST0 + j, &data, 1);
  530. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST0);
  531. ns_write_sram(card, NS_TST0 + NS_TST_NUM_ENTRIES, &data, 1);
  532. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  533. ns_write_sram(card, NS_TST1 + j, &data, 1);
  534. data = ns_tste_make(NS_TST_OPCODE_END, NS_TST1);
  535. ns_write_sram(card, NS_TST1 + NS_TST_NUM_ENTRIES, &data, 1);
  536. for (j = 0; j < NS_TST_NUM_ENTRIES; j++)
  537. card->tste2vc[j] = NULL;
  538. writel(NS_TST0 << 2, card->membase + TSTB);
  539. /* Initialize RCT. AAL type is set on opening the VC. */
  540. #ifdef RCQ_SUPPORT
  541. u32d[0] = NS_RCTE_RAWCELLINTEN;
  542. #else
  543. u32d[0] = 0x00000000;
  544. #endif /* RCQ_SUPPORT */
  545. u32d[1] = 0x00000000;
  546. u32d[2] = 0x00000000;
  547. u32d[3] = 0xFFFFFFFF;
  548. for (j = 0; j < card->rct_size; j++)
  549. ns_write_sram(card, j * 4, u32d, 4);
  550. memset(card->vcmap, 0, sizeof(card->vcmap));
  551. for (j = 0; j < NS_FRSCD_NUM; j++)
  552. card->scd2vc[j] = NULL;
  553. /* Initialize buffer levels */
  554. card->sbnr.min = MIN_SB;
  555. card->sbnr.init = NUM_SB;
  556. card->sbnr.max = MAX_SB;
  557. card->lbnr.min = MIN_LB;
  558. card->lbnr.init = NUM_LB;
  559. card->lbnr.max = MAX_LB;
  560. card->iovnr.min = MIN_IOVB;
  561. card->iovnr.init = NUM_IOVB;
  562. card->iovnr.max = MAX_IOVB;
  563. card->hbnr.min = MIN_HB;
  564. card->hbnr.init = NUM_HB;
  565. card->hbnr.max = MAX_HB;
  566. card->sm_handle = NULL;
  567. card->sm_addr = 0x00000000;
  568. card->lg_handle = NULL;
  569. card->lg_addr = 0x00000000;
  570. card->efbie = 1; /* To prevent push_rxbufs from enabling the interrupt */
  571. idr_init(&card->idr);
  572. /* Pre-allocate some huge buffers */
  573. skb_queue_head_init(&card->hbpool.queue);
  574. card->hbpool.count = 0;
  575. for (j = 0; j < NUM_HB; j++) {
  576. struct sk_buff *hb;
  577. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  578. if (hb == NULL) {
  579. printk
  580. ("nicstar%d: can't allocate %dth of %d huge buffers.\n",
  581. i, j, NUM_HB);
  582. error = 13;
  583. ns_init_card_error(card, error);
  584. return error;
  585. }
  586. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  587. skb_queue_tail(&card->hbpool.queue, hb);
  588. card->hbpool.count++;
  589. }
  590. /* Allocate large buffers */
  591. skb_queue_head_init(&card->lbpool.queue);
  592. card->lbpool.count = 0; /* Not used */
  593. for (j = 0; j < NUM_LB; j++) {
  594. struct sk_buff *lb;
  595. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  596. if (lb == NULL) {
  597. printk
  598. ("nicstar%d: can't allocate %dth of %d large buffers.\n",
  599. i, j, NUM_LB);
  600. error = 14;
  601. ns_init_card_error(card, error);
  602. return error;
  603. }
  604. NS_PRV_BUFTYPE(lb) = BUF_LG;
  605. skb_queue_tail(&card->lbpool.queue, lb);
  606. skb_reserve(lb, NS_SMBUFSIZE);
  607. push_rxbufs(card, lb);
  608. /* Due to the implementation of push_rxbufs() this is 1, not 0 */
  609. if (j == 1) {
  610. card->rcbuf = lb;
  611. card->rawcell = (struct ns_rcqe *) lb->data;
  612. card->rawch = NS_PRV_DMA(lb);
  613. }
  614. }
  615. /* Test for strange behaviour which leads to crashes */
  616. if ((bcount =
  617. ns_stat_lfbqc_get(readl(card->membase + STAT))) < card->lbnr.min) {
  618. printk
  619. ("nicstar%d: Strange... Just allocated %d large buffers and lfbqc = %d.\n",
  620. i, j, bcount);
  621. error = 14;
  622. ns_init_card_error(card, error);
  623. return error;
  624. }
  625. /* Allocate small buffers */
  626. skb_queue_head_init(&card->sbpool.queue);
  627. card->sbpool.count = 0; /* Not used */
  628. for (j = 0; j < NUM_SB; j++) {
  629. struct sk_buff *sb;
  630. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  631. if (sb == NULL) {
  632. printk
  633. ("nicstar%d: can't allocate %dth of %d small buffers.\n",
  634. i, j, NUM_SB);
  635. error = 15;
  636. ns_init_card_error(card, error);
  637. return error;
  638. }
  639. NS_PRV_BUFTYPE(sb) = BUF_SM;
  640. skb_queue_tail(&card->sbpool.queue, sb);
  641. skb_reserve(sb, NS_AAL0_HEADER);
  642. push_rxbufs(card, sb);
  643. }
  644. /* Test for strange behaviour which leads to crashes */
  645. if ((bcount =
  646. ns_stat_sfbqc_get(readl(card->membase + STAT))) < card->sbnr.min) {
  647. printk
  648. ("nicstar%d: Strange... Just allocated %d small buffers and sfbqc = %d.\n",
  649. i, j, bcount);
  650. error = 15;
  651. ns_init_card_error(card, error);
  652. return error;
  653. }
  654. /* Allocate iovec buffers */
  655. skb_queue_head_init(&card->iovpool.queue);
  656. card->iovpool.count = 0;
  657. for (j = 0; j < NUM_IOVB; j++) {
  658. struct sk_buff *iovb;
  659. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  660. if (iovb == NULL) {
  661. printk
  662. ("nicstar%d: can't allocate %dth of %d iovec buffers.\n",
  663. i, j, NUM_IOVB);
  664. error = 16;
  665. ns_init_card_error(card, error);
  666. return error;
  667. }
  668. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  669. skb_queue_tail(&card->iovpool.queue, iovb);
  670. card->iovpool.count++;
  671. }
  672. /* Configure NICStAR */
  673. if (card->rct_size == 4096)
  674. ns_cfg_rctsize = NS_CFG_RCTSIZE_4096_ENTRIES;
  675. else /* (card->rct_size == 16384) */
  676. ns_cfg_rctsize = NS_CFG_RCTSIZE_16384_ENTRIES;
  677. card->efbie = 1;
  678. /* Register device */
  679. card->atmdev = atm_dev_register("nicstar", &card->pcidev->dev, &atm_ops,
  680. -1, NULL);
  681. if (card->atmdev == NULL) {
  682. printk("nicstar%d: can't register device.\n", i);
  683. error = 17;
  684. ns_init_card_error(card, error);
  685. return error;
  686. }
  687. if (mac[i] == NULL || !mac_pton(mac[i], card->atmdev->esi)) {
  688. nicstar_read_eprom(card->membase, NICSTAR_EPROM_MAC_ADDR_OFFSET,
  689. card->atmdev->esi, 6);
  690. if (ether_addr_equal(card->atmdev->esi, "\x00\x00\x00\x00\x00\x00")) {
  691. nicstar_read_eprom(card->membase,
  692. NICSTAR_EPROM_MAC_ADDR_OFFSET_ALT,
  693. card->atmdev->esi, 6);
  694. }
  695. }
  696. printk("nicstar%d: MAC address %pM\n", i, card->atmdev->esi);
  697. card->atmdev->dev_data = card;
  698. card->atmdev->ci_range.vpi_bits = card->vpibits;
  699. card->atmdev->ci_range.vci_bits = card->vcibits;
  700. card->atmdev->link_rate = card->max_pcr;
  701. card->atmdev->phy = NULL;
  702. #ifdef CONFIG_ATM_NICSTAR_USE_SUNI
  703. if (card->max_pcr == ATM_OC3_PCR)
  704. suni_init(card->atmdev);
  705. #endif /* CONFIG_ATM_NICSTAR_USE_SUNI */
  706. #ifdef CONFIG_ATM_NICSTAR_USE_IDT77105
  707. if (card->max_pcr == ATM_25_PCR)
  708. idt77105_init(card->atmdev);
  709. #endif /* CONFIG_ATM_NICSTAR_USE_IDT77105 */
  710. if (card->atmdev->phy && card->atmdev->phy->start)
  711. card->atmdev->phy->start(card->atmdev);
  712. writel(NS_CFG_RXPATH | NS_CFG_SMBUFSIZE | NS_CFG_LGBUFSIZE | NS_CFG_EFBIE | NS_CFG_RSQSIZE | NS_CFG_VPIBITS | ns_cfg_rctsize | NS_CFG_RXINT_NODELAY | NS_CFG_RAWIE | /* Only enabled if RCQ_SUPPORT */
  713. NS_CFG_RSQAFIE | NS_CFG_TXEN | NS_CFG_TXIE | NS_CFG_TSQFIE_OPT | /* Only enabled if ENABLE_TSQFIE */
  714. NS_CFG_PHYIE, card->membase + CFG);
  715. num_cards++;
  716. return error;
  717. }
  718. static void ns_init_card_error(ns_dev *card, int error)
  719. {
  720. if (error >= 17) {
  721. writel(0x00000000, card->membase + CFG);
  722. }
  723. if (error >= 16) {
  724. struct sk_buff *iovb;
  725. while ((iovb = skb_dequeue(&card->iovpool.queue)) != NULL)
  726. dev_kfree_skb_any(iovb);
  727. }
  728. if (error >= 15) {
  729. struct sk_buff *sb;
  730. while ((sb = skb_dequeue(&card->sbpool.queue)) != NULL)
  731. dev_kfree_skb_any(sb);
  732. free_scq(card, card->scq0, NULL);
  733. }
  734. if (error >= 14) {
  735. struct sk_buff *lb;
  736. while ((lb = skb_dequeue(&card->lbpool.queue)) != NULL)
  737. dev_kfree_skb_any(lb);
  738. }
  739. if (error >= 13) {
  740. struct sk_buff *hb;
  741. while ((hb = skb_dequeue(&card->hbpool.queue)) != NULL)
  742. dev_kfree_skb_any(hb);
  743. }
  744. if (error >= 12) {
  745. dma_free_coherent(&card->pcidev->dev, NS_RSQSIZE + NS_RSQ_ALIGNMENT,
  746. card->rsq.org, card->rsq.dma);
  747. }
  748. if (error >= 11) {
  749. dma_free_coherent(&card->pcidev->dev, NS_TSQSIZE + NS_TSQ_ALIGNMENT,
  750. card->tsq.org, card->tsq.dma);
  751. }
  752. if (error >= 10) {
  753. free_irq(card->pcidev->irq, card);
  754. }
  755. if (error >= 4) {
  756. iounmap(card->membase);
  757. }
  758. if (error >= 3) {
  759. pci_disable_device(card->pcidev);
  760. kfree(card);
  761. }
  762. }
  763. static scq_info *get_scq(ns_dev *card, int size, u32 scd)
  764. {
  765. scq_info *scq;
  766. if (size != VBR_SCQSIZE && size != CBR_SCQSIZE)
  767. return NULL;
  768. scq = kmalloc(sizeof(*scq), GFP_KERNEL);
  769. if (!scq)
  770. return NULL;
  771. scq->org = dma_alloc_coherent(&card->pcidev->dev,
  772. 2 * size, &scq->dma, GFP_KERNEL);
  773. if (!scq->org) {
  774. kfree(scq);
  775. return NULL;
  776. }
  777. scq->skb = kcalloc(size / NS_SCQE_SIZE, sizeof(*scq->skb),
  778. GFP_KERNEL);
  779. if (!scq->skb) {
  780. dma_free_coherent(&card->pcidev->dev,
  781. 2 * size, scq->org, scq->dma);
  782. kfree(scq);
  783. return NULL;
  784. }
  785. scq->num_entries = size / NS_SCQE_SIZE;
  786. scq->base = PTR_ALIGN(scq->org, size);
  787. scq->next = scq->base;
  788. scq->last = scq->base + (scq->num_entries - 1);
  789. scq->tail = scq->last;
  790. scq->scd = scd;
  791. scq->tbd_count = 0;
  792. init_waitqueue_head(&scq->scqfull_waitq);
  793. scq->full = 0;
  794. spin_lock_init(&scq->lock);
  795. return scq;
  796. }
  797. /* For variable rate SCQ vcc must be NULL */
  798. static void free_scq(ns_dev *card, scq_info *scq, struct atm_vcc *vcc)
  799. {
  800. int i;
  801. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES)
  802. for (i = 0; i < scq->num_entries; i++) {
  803. if (scq->skb[i] != NULL) {
  804. vcc = ATM_SKB(scq->skb[i])->vcc;
  805. if (vcc->pop != NULL)
  806. vcc->pop(vcc, scq->skb[i]);
  807. else
  808. dev_kfree_skb_any(scq->skb[i]);
  809. }
  810. } else { /* vcc must be != NULL */
  811. if (vcc == NULL) {
  812. printk
  813. ("nicstar: free_scq() called with vcc == NULL for fixed rate scq.");
  814. for (i = 0; i < scq->num_entries; i++)
  815. dev_kfree_skb_any(scq->skb[i]);
  816. } else
  817. for (i = 0; i < scq->num_entries; i++) {
  818. if (scq->skb[i] != NULL) {
  819. if (vcc->pop != NULL)
  820. vcc->pop(vcc, scq->skb[i]);
  821. else
  822. dev_kfree_skb_any(scq->skb[i]);
  823. }
  824. }
  825. }
  826. kfree(scq->skb);
  827. dma_free_coherent(&card->pcidev->dev,
  828. 2 * (scq->num_entries == VBR_SCQ_NUM_ENTRIES ?
  829. VBR_SCQSIZE : CBR_SCQSIZE),
  830. scq->org, scq->dma);
  831. kfree(scq);
  832. }
  833. /* The handles passed must be pointers to the sk_buff containing the small
  834. or large buffer(s) cast to u32. */
  835. static void push_rxbufs(ns_dev * card, struct sk_buff *skb)
  836. {
  837. struct sk_buff *handle1, *handle2;
  838. int id1, id2;
  839. u32 addr1, addr2;
  840. u32 stat;
  841. unsigned long flags;
  842. /* *BARF* */
  843. handle2 = NULL;
  844. addr2 = 0;
  845. handle1 = skb;
  846. addr1 = dma_map_single(&card->pcidev->dev,
  847. skb->data,
  848. (NS_PRV_BUFTYPE(skb) == BUF_SM
  849. ? NS_SMSKBSIZE : NS_LGSKBSIZE),
  850. DMA_TO_DEVICE);
  851. NS_PRV_DMA(skb) = addr1; /* save so we can unmap later */
  852. #ifdef GENERAL_DEBUG
  853. if (!addr1)
  854. printk("nicstar%d: push_rxbufs called with addr1 = 0.\n",
  855. card->index);
  856. #endif /* GENERAL_DEBUG */
  857. stat = readl(card->membase + STAT);
  858. card->sbfqc = ns_stat_sfbqc_get(stat);
  859. card->lbfqc = ns_stat_lfbqc_get(stat);
  860. if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
  861. if (!addr2) {
  862. if (card->sm_addr) {
  863. addr2 = card->sm_addr;
  864. handle2 = card->sm_handle;
  865. card->sm_addr = 0x00000000;
  866. card->sm_handle = NULL;
  867. } else { /* (!sm_addr) */
  868. card->sm_addr = addr1;
  869. card->sm_handle = handle1;
  870. }
  871. }
  872. } else { /* buf_type == BUF_LG */
  873. if (!addr2) {
  874. if (card->lg_addr) {
  875. addr2 = card->lg_addr;
  876. handle2 = card->lg_handle;
  877. card->lg_addr = 0x00000000;
  878. card->lg_handle = NULL;
  879. } else { /* (!lg_addr) */
  880. card->lg_addr = addr1;
  881. card->lg_handle = handle1;
  882. }
  883. }
  884. }
  885. if (addr2) {
  886. if (NS_PRV_BUFTYPE(skb) == BUF_SM) {
  887. if (card->sbfqc >= card->sbnr.max) {
  888. skb_unlink(handle1, &card->sbpool.queue);
  889. dev_kfree_skb_any(handle1);
  890. skb_unlink(handle2, &card->sbpool.queue);
  891. dev_kfree_skb_any(handle2);
  892. return;
  893. } else
  894. card->sbfqc += 2;
  895. } else { /* (buf_type == BUF_LG) */
  896. if (card->lbfqc >= card->lbnr.max) {
  897. skb_unlink(handle1, &card->lbpool.queue);
  898. dev_kfree_skb_any(handle1);
  899. skb_unlink(handle2, &card->lbpool.queue);
  900. dev_kfree_skb_any(handle2);
  901. return;
  902. } else
  903. card->lbfqc += 2;
  904. }
  905. id1 = idr_alloc(&card->idr, handle1, 0, 0, GFP_ATOMIC);
  906. if (id1 < 0)
  907. goto out;
  908. id2 = idr_alloc(&card->idr, handle2, 0, 0, GFP_ATOMIC);
  909. if (id2 < 0)
  910. goto out;
  911. spin_lock_irqsave(&card->res_lock, flags);
  912. while (CMD_BUSY(card)) ;
  913. writel(addr2, card->membase + DR3);
  914. writel(id2, card->membase + DR2);
  915. writel(addr1, card->membase + DR1);
  916. writel(id1, card->membase + DR0);
  917. writel(NS_CMD_WRITE_FREEBUFQ | NS_PRV_BUFTYPE(skb),
  918. card->membase + CMD);
  919. spin_unlock_irqrestore(&card->res_lock, flags);
  920. XPRINTK("nicstar%d: Pushing %s buffers at 0x%x and 0x%x.\n",
  921. card->index,
  922. (NS_PRV_BUFTYPE(skb) == BUF_SM ? "small" : "large"),
  923. addr1, addr2);
  924. }
  925. if (!card->efbie && card->sbfqc >= card->sbnr.min &&
  926. card->lbfqc >= card->lbnr.min) {
  927. card->efbie = 1;
  928. writel((readl(card->membase + CFG) | NS_CFG_EFBIE),
  929. card->membase + CFG);
  930. }
  931. out:
  932. return;
  933. }
  934. static irqreturn_t ns_irq_handler(int irq, void *dev_id)
  935. {
  936. u32 stat_r;
  937. ns_dev *card;
  938. struct atm_dev *dev;
  939. unsigned long flags;
  940. card = (ns_dev *) dev_id;
  941. dev = card->atmdev;
  942. card->intcnt++;
  943. PRINTK("nicstar%d: NICStAR generated an interrupt\n", card->index);
  944. spin_lock_irqsave(&card->int_lock, flags);
  945. stat_r = readl(card->membase + STAT);
  946. /* Transmit Status Indicator has been written to T. S. Queue */
  947. if (stat_r & NS_STAT_TSIF) {
  948. TXPRINTK("nicstar%d: TSI interrupt\n", card->index);
  949. process_tsq(card);
  950. writel(NS_STAT_TSIF, card->membase + STAT);
  951. }
  952. /* Incomplete CS-PDU has been transmitted */
  953. if (stat_r & NS_STAT_TXICP) {
  954. writel(NS_STAT_TXICP, card->membase + STAT);
  955. TXPRINTK("nicstar%d: Incomplete CS-PDU transmitted.\n",
  956. card->index);
  957. }
  958. /* Transmit Status Queue 7/8 full */
  959. if (stat_r & NS_STAT_TSQF) {
  960. writel(NS_STAT_TSQF, card->membase + STAT);
  961. PRINTK("nicstar%d: TSQ full.\n", card->index);
  962. process_tsq(card);
  963. }
  964. /* Timer overflow */
  965. if (stat_r & NS_STAT_TMROF) {
  966. writel(NS_STAT_TMROF, card->membase + STAT);
  967. PRINTK("nicstar%d: Timer overflow.\n", card->index);
  968. }
  969. /* PHY device interrupt signal active */
  970. if (stat_r & NS_STAT_PHYI) {
  971. writel(NS_STAT_PHYI, card->membase + STAT);
  972. PRINTK("nicstar%d: PHY interrupt.\n", card->index);
  973. if (dev->phy && dev->phy->interrupt) {
  974. dev->phy->interrupt(dev);
  975. }
  976. }
  977. /* Small Buffer Queue is full */
  978. if (stat_r & NS_STAT_SFBQF) {
  979. writel(NS_STAT_SFBQF, card->membase + STAT);
  980. printk("nicstar%d: Small free buffer queue is full.\n",
  981. card->index);
  982. }
  983. /* Large Buffer Queue is full */
  984. if (stat_r & NS_STAT_LFBQF) {
  985. writel(NS_STAT_LFBQF, card->membase + STAT);
  986. printk("nicstar%d: Large free buffer queue is full.\n",
  987. card->index);
  988. }
  989. /* Receive Status Queue is full */
  990. if (stat_r & NS_STAT_RSQF) {
  991. writel(NS_STAT_RSQF, card->membase + STAT);
  992. printk("nicstar%d: RSQ full.\n", card->index);
  993. process_rsq(card);
  994. }
  995. /* Complete CS-PDU received */
  996. if (stat_r & NS_STAT_EOPDU) {
  997. RXPRINTK("nicstar%d: End of CS-PDU received.\n", card->index);
  998. process_rsq(card);
  999. writel(NS_STAT_EOPDU, card->membase + STAT);
  1000. }
  1001. /* Raw cell received */
  1002. if (stat_r & NS_STAT_RAWCF) {
  1003. writel(NS_STAT_RAWCF, card->membase + STAT);
  1004. #ifndef RCQ_SUPPORT
  1005. printk("nicstar%d: Raw cell received and no support yet...\n",
  1006. card->index);
  1007. #endif /* RCQ_SUPPORT */
  1008. /* NOTE: the following procedure may keep a raw cell pending until the
  1009. next interrupt. As this preliminary support is only meant to
  1010. avoid buffer leakage, this is not an issue. */
  1011. while (readl(card->membase + RAWCT) != card->rawch) {
  1012. if (ns_rcqe_islast(card->rawcell)) {
  1013. struct sk_buff *oldbuf;
  1014. oldbuf = card->rcbuf;
  1015. card->rcbuf = idr_find(&card->idr,
  1016. ns_rcqe_nextbufhandle(card->rawcell));
  1017. card->rawch = NS_PRV_DMA(card->rcbuf);
  1018. card->rawcell = (struct ns_rcqe *)
  1019. card->rcbuf->data;
  1020. recycle_rx_buf(card, oldbuf);
  1021. } else {
  1022. card->rawch += NS_RCQE_SIZE;
  1023. card->rawcell++;
  1024. }
  1025. }
  1026. }
  1027. /* Small buffer queue is empty */
  1028. if (stat_r & NS_STAT_SFBQE) {
  1029. int i;
  1030. struct sk_buff *sb;
  1031. writel(NS_STAT_SFBQE, card->membase + STAT);
  1032. printk("nicstar%d: Small free buffer queue empty.\n",
  1033. card->index);
  1034. for (i = 0; i < card->sbnr.min; i++) {
  1035. sb = dev_alloc_skb(NS_SMSKBSIZE);
  1036. if (sb == NULL) {
  1037. writel(readl(card->membase + CFG) &
  1038. ~NS_CFG_EFBIE, card->membase + CFG);
  1039. card->efbie = 0;
  1040. break;
  1041. }
  1042. NS_PRV_BUFTYPE(sb) = BUF_SM;
  1043. skb_queue_tail(&card->sbpool.queue, sb);
  1044. skb_reserve(sb, NS_AAL0_HEADER);
  1045. push_rxbufs(card, sb);
  1046. }
  1047. card->sbfqc = i;
  1048. process_rsq(card);
  1049. }
  1050. /* Large buffer queue empty */
  1051. if (stat_r & NS_STAT_LFBQE) {
  1052. int i;
  1053. struct sk_buff *lb;
  1054. writel(NS_STAT_LFBQE, card->membase + STAT);
  1055. printk("nicstar%d: Large free buffer queue empty.\n",
  1056. card->index);
  1057. for (i = 0; i < card->lbnr.min; i++) {
  1058. lb = dev_alloc_skb(NS_LGSKBSIZE);
  1059. if (lb == NULL) {
  1060. writel(readl(card->membase + CFG) &
  1061. ~NS_CFG_EFBIE, card->membase + CFG);
  1062. card->efbie = 0;
  1063. break;
  1064. }
  1065. NS_PRV_BUFTYPE(lb) = BUF_LG;
  1066. skb_queue_tail(&card->lbpool.queue, lb);
  1067. skb_reserve(lb, NS_SMBUFSIZE);
  1068. push_rxbufs(card, lb);
  1069. }
  1070. card->lbfqc = i;
  1071. process_rsq(card);
  1072. }
  1073. /* Receive Status Queue is 7/8 full */
  1074. if (stat_r & NS_STAT_RSQAF) {
  1075. writel(NS_STAT_RSQAF, card->membase + STAT);
  1076. RXPRINTK("nicstar%d: RSQ almost full.\n", card->index);
  1077. process_rsq(card);
  1078. }
  1079. spin_unlock_irqrestore(&card->int_lock, flags);
  1080. PRINTK("nicstar%d: end of interrupt service\n", card->index);
  1081. return IRQ_HANDLED;
  1082. }
  1083. static int ns_open(struct atm_vcc *vcc)
  1084. {
  1085. ns_dev *card;
  1086. vc_map *vc;
  1087. unsigned long tmpl, modl;
  1088. int tcr, tcra; /* target cell rate, and absolute value */
  1089. int n = 0; /* Number of entries in the TST. Initialized to remove
  1090. the compiler warning. */
  1091. u32 u32d[4];
  1092. int frscdi = 0; /* Index of the SCD. Initialized to remove the compiler
  1093. warning. How I wish compilers were clever enough to
  1094. tell which variables can truly be used
  1095. uninitialized... */
  1096. int inuse; /* tx or rx vc already in use by another vcc */
  1097. short vpi = vcc->vpi;
  1098. int vci = vcc->vci;
  1099. card = (ns_dev *) vcc->dev->dev_data;
  1100. PRINTK("nicstar%d: opening vpi.vci %d.%d \n", card->index, (int)vpi,
  1101. vci);
  1102. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
  1103. PRINTK("nicstar%d: unsupported AAL.\n", card->index);
  1104. return -EINVAL;
  1105. }
  1106. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1107. vcc->dev_data = vc;
  1108. inuse = 0;
  1109. if (vcc->qos.txtp.traffic_class != ATM_NONE && vc->tx)
  1110. inuse = 1;
  1111. if (vcc->qos.rxtp.traffic_class != ATM_NONE && vc->rx)
  1112. inuse += 2;
  1113. if (inuse) {
  1114. printk("nicstar%d: %s vci already in use.\n", card->index,
  1115. inuse == 1 ? "tx" : inuse == 2 ? "rx" : "tx and rx");
  1116. return -EINVAL;
  1117. }
  1118. set_bit(ATM_VF_ADDR, &vcc->flags);
  1119. /* NOTE: You are not allowed to modify an open connection's QOS. To change
  1120. that, remove the ATM_VF_PARTIAL flag checking. There may be other changes
  1121. needed to do that. */
  1122. if (!test_bit(ATM_VF_PARTIAL, &vcc->flags)) {
  1123. scq_info *scq;
  1124. set_bit(ATM_VF_PARTIAL, &vcc->flags);
  1125. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1126. /* Check requested cell rate and availability of SCD */
  1127. if (vcc->qos.txtp.max_pcr == 0 && vcc->qos.txtp.pcr == 0
  1128. && vcc->qos.txtp.min_pcr == 0) {
  1129. PRINTK
  1130. ("nicstar%d: trying to open a CBR vc with cell rate = 0 \n",
  1131. card->index);
  1132. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1133. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1134. return -EINVAL;
  1135. }
  1136. tcr = atm_pcr_goal(&(vcc->qos.txtp));
  1137. tcra = tcr >= 0 ? tcr : -tcr;
  1138. PRINTK("nicstar%d: target cell rate = %d.\n",
  1139. card->index, vcc->qos.txtp.max_pcr);
  1140. tmpl =
  1141. (unsigned long)tcra *(unsigned long)
  1142. NS_TST_NUM_ENTRIES;
  1143. modl = tmpl % card->max_pcr;
  1144. n = (int)(tmpl / card->max_pcr);
  1145. if (tcr > 0) {
  1146. if (modl > 0)
  1147. n++;
  1148. } else if (tcr == 0) {
  1149. if ((n =
  1150. (card->tst_free_entries -
  1151. NS_TST_RESERVED)) <= 0) {
  1152. PRINTK
  1153. ("nicstar%d: no CBR bandwidth free.\n",
  1154. card->index);
  1155. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1156. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1157. return -EINVAL;
  1158. }
  1159. }
  1160. if (n == 0) {
  1161. printk
  1162. ("nicstar%d: selected bandwidth < granularity.\n",
  1163. card->index);
  1164. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1165. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1166. return -EINVAL;
  1167. }
  1168. if (n > (card->tst_free_entries - NS_TST_RESERVED)) {
  1169. PRINTK
  1170. ("nicstar%d: not enough free CBR bandwidth.\n",
  1171. card->index);
  1172. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1173. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1174. return -EINVAL;
  1175. } else
  1176. card->tst_free_entries -= n;
  1177. XPRINTK("nicstar%d: writing %d tst entries.\n",
  1178. card->index, n);
  1179. for (frscdi = 0; frscdi < NS_FRSCD_NUM; frscdi++) {
  1180. if (card->scd2vc[frscdi] == NULL) {
  1181. card->scd2vc[frscdi] = vc;
  1182. break;
  1183. }
  1184. }
  1185. if (frscdi == NS_FRSCD_NUM) {
  1186. PRINTK
  1187. ("nicstar%d: no SCD available for CBR channel.\n",
  1188. card->index);
  1189. card->tst_free_entries += n;
  1190. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1191. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1192. return -EBUSY;
  1193. }
  1194. vc->cbr_scd = NS_FRSCD + frscdi * NS_FRSCD_SIZE;
  1195. scq = get_scq(card, CBR_SCQSIZE, vc->cbr_scd);
  1196. if (scq == NULL) {
  1197. PRINTK("nicstar%d: can't get fixed rate SCQ.\n",
  1198. card->index);
  1199. card->scd2vc[frscdi] = NULL;
  1200. card->tst_free_entries += n;
  1201. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1202. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1203. return -ENOMEM;
  1204. }
  1205. vc->scq = scq;
  1206. u32d[0] = scq_virt_to_bus(scq, scq->base);
  1207. u32d[1] = (u32) 0x00000000;
  1208. u32d[2] = (u32) 0xffffffff;
  1209. u32d[3] = (u32) 0x00000000;
  1210. ns_write_sram(card, vc->cbr_scd, u32d, 4);
  1211. fill_tst(card, n, vc);
  1212. } else if (vcc->qos.txtp.traffic_class == ATM_UBR) {
  1213. vc->cbr_scd = 0x00000000;
  1214. vc->scq = card->scq0;
  1215. }
  1216. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1217. vc->tx = 1;
  1218. vc->tx_vcc = vcc;
  1219. vc->tbd_count = 0;
  1220. }
  1221. if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
  1222. u32 status;
  1223. vc->rx = 1;
  1224. vc->rx_vcc = vcc;
  1225. vc->rx_iov = NULL;
  1226. /* Open the connection in hardware */
  1227. if (vcc->qos.aal == ATM_AAL5)
  1228. status = NS_RCTE_AAL5 | NS_RCTE_CONNECTOPEN;
  1229. else /* vcc->qos.aal == ATM_AAL0 */
  1230. status = NS_RCTE_AAL0 | NS_RCTE_CONNECTOPEN;
  1231. #ifdef RCQ_SUPPORT
  1232. status |= NS_RCTE_RAWCELLINTEN;
  1233. #endif /* RCQ_SUPPORT */
  1234. ns_write_sram(card,
  1235. NS_RCT +
  1236. (vpi << card->vcibits | vci) *
  1237. NS_RCT_ENTRY_SIZE, &status, 1);
  1238. }
  1239. }
  1240. set_bit(ATM_VF_READY, &vcc->flags);
  1241. return 0;
  1242. }
  1243. static void ns_close(struct atm_vcc *vcc)
  1244. {
  1245. vc_map *vc;
  1246. ns_dev *card;
  1247. u32 data;
  1248. int i;
  1249. vc = vcc->dev_data;
  1250. card = vcc->dev->dev_data;
  1251. PRINTK("nicstar%d: closing vpi.vci %d.%d \n", card->index,
  1252. (int)vcc->vpi, vcc->vci);
  1253. clear_bit(ATM_VF_READY, &vcc->flags);
  1254. if (vcc->qos.rxtp.traffic_class != ATM_NONE) {
  1255. u32 addr;
  1256. unsigned long flags;
  1257. addr =
  1258. NS_RCT +
  1259. (vcc->vpi << card->vcibits | vcc->vci) * NS_RCT_ENTRY_SIZE;
  1260. spin_lock_irqsave(&card->res_lock, flags);
  1261. while (CMD_BUSY(card)) ;
  1262. writel(NS_CMD_CLOSE_CONNECTION | addr << 2,
  1263. card->membase + CMD);
  1264. spin_unlock_irqrestore(&card->res_lock, flags);
  1265. vc->rx = 0;
  1266. if (vc->rx_iov != NULL) {
  1267. struct sk_buff *iovb;
  1268. u32 stat;
  1269. stat = readl(card->membase + STAT);
  1270. card->sbfqc = ns_stat_sfbqc_get(stat);
  1271. card->lbfqc = ns_stat_lfbqc_get(stat);
  1272. PRINTK
  1273. ("nicstar%d: closing a VC with pending rx buffers.\n",
  1274. card->index);
  1275. iovb = vc->rx_iov;
  1276. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1277. NS_PRV_IOVCNT(iovb));
  1278. NS_PRV_IOVCNT(iovb) = 0;
  1279. spin_lock_irqsave(&card->int_lock, flags);
  1280. recycle_iov_buf(card, iovb);
  1281. spin_unlock_irqrestore(&card->int_lock, flags);
  1282. vc->rx_iov = NULL;
  1283. }
  1284. }
  1285. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1286. vc->tx = 0;
  1287. }
  1288. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1289. unsigned long flags;
  1290. ns_scqe *scqep;
  1291. scq_info *scq;
  1292. scq = vc->scq;
  1293. for (;;) {
  1294. spin_lock_irqsave(&scq->lock, flags);
  1295. scqep = scq->next;
  1296. if (scqep == scq->base)
  1297. scqep = scq->last;
  1298. else
  1299. scqep--;
  1300. if (scqep == scq->tail) {
  1301. spin_unlock_irqrestore(&scq->lock, flags);
  1302. break;
  1303. }
  1304. /* If the last entry is not a TSR, place one in the SCQ in order to
  1305. be able to completely drain it and then close. */
  1306. if (!ns_scqe_is_tsr(scqep) && scq->tail != scq->next) {
  1307. ns_scqe tsr;
  1308. u32 scdi, scqi;
  1309. u32 data;
  1310. int index;
  1311. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1312. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1313. scqi = scq->next - scq->base;
  1314. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1315. tsr.word_3 = 0x00000000;
  1316. tsr.word_4 = 0x00000000;
  1317. *scq->next = tsr;
  1318. index = (int)scqi;
  1319. scq->skb[index] = NULL;
  1320. if (scq->next == scq->last)
  1321. scq->next = scq->base;
  1322. else
  1323. scq->next++;
  1324. data = scq_virt_to_bus(scq, scq->next);
  1325. ns_write_sram(card, scq->scd, &data, 1);
  1326. }
  1327. spin_unlock_irqrestore(&scq->lock, flags);
  1328. schedule();
  1329. }
  1330. /* Free all TST entries */
  1331. data = NS_TST_OPCODE_VARIABLE;
  1332. for (i = 0; i < NS_TST_NUM_ENTRIES; i++) {
  1333. if (card->tste2vc[i] == vc) {
  1334. ns_write_sram(card, card->tst_addr + i, &data,
  1335. 1);
  1336. card->tste2vc[i] = NULL;
  1337. card->tst_free_entries++;
  1338. }
  1339. }
  1340. card->scd2vc[(vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE] = NULL;
  1341. free_scq(card, vc->scq, vcc);
  1342. }
  1343. /* remove all references to vcc before deleting it */
  1344. if (vcc->qos.txtp.traffic_class != ATM_NONE) {
  1345. unsigned long flags;
  1346. scq_info *scq = card->scq0;
  1347. spin_lock_irqsave(&scq->lock, flags);
  1348. for (i = 0; i < scq->num_entries; i++) {
  1349. if (scq->skb[i] && ATM_SKB(scq->skb[i])->vcc == vcc) {
  1350. ATM_SKB(scq->skb[i])->vcc = NULL;
  1351. atm_return(vcc, scq->skb[i]->truesize);
  1352. PRINTK
  1353. ("nicstar: deleted pending vcc mapping\n");
  1354. }
  1355. }
  1356. spin_unlock_irqrestore(&scq->lock, flags);
  1357. }
  1358. vcc->dev_data = NULL;
  1359. clear_bit(ATM_VF_PARTIAL, &vcc->flags);
  1360. clear_bit(ATM_VF_ADDR, &vcc->flags);
  1361. #ifdef RX_DEBUG
  1362. {
  1363. u32 stat, cfg;
  1364. stat = readl(card->membase + STAT);
  1365. cfg = readl(card->membase + CFG);
  1366. printk("STAT = 0x%08X CFG = 0x%08X \n", stat, cfg);
  1367. printk
  1368. ("TSQ: base = 0x%p next = 0x%p last = 0x%p TSQT = 0x%08X \n",
  1369. card->tsq.base, card->tsq.next,
  1370. card->tsq.last, readl(card->membase + TSQT));
  1371. printk
  1372. ("RSQ: base = 0x%p next = 0x%p last = 0x%p RSQT = 0x%08X \n",
  1373. card->rsq.base, card->rsq.next,
  1374. card->rsq.last, readl(card->membase + RSQT));
  1375. printk("Empty free buffer queue interrupt %s \n",
  1376. card->efbie ? "enabled" : "disabled");
  1377. printk("SBCNT = %d count = %d LBCNT = %d count = %d \n",
  1378. ns_stat_sfbqc_get(stat), card->sbpool.count,
  1379. ns_stat_lfbqc_get(stat), card->lbpool.count);
  1380. printk("hbpool.count = %d iovpool.count = %d \n",
  1381. card->hbpool.count, card->iovpool.count);
  1382. }
  1383. #endif /* RX_DEBUG */
  1384. }
  1385. static void fill_tst(ns_dev * card, int n, vc_map * vc)
  1386. {
  1387. u32 new_tst;
  1388. unsigned long cl;
  1389. int e, r;
  1390. u32 data;
  1391. /* It would be very complicated to keep the two TSTs synchronized while
  1392. assuring that writes are only made to the inactive TST. So, for now I
  1393. will use only one TST. If problems occur, I will change this again */
  1394. new_tst = card->tst_addr;
  1395. /* Fill procedure */
  1396. for (e = 0; e < NS_TST_NUM_ENTRIES; e++) {
  1397. if (card->tste2vc[e] == NULL)
  1398. break;
  1399. }
  1400. if (e == NS_TST_NUM_ENTRIES) {
  1401. printk("nicstar%d: No free TST entries found. \n", card->index);
  1402. return;
  1403. }
  1404. r = n;
  1405. cl = NS_TST_NUM_ENTRIES;
  1406. data = ns_tste_make(NS_TST_OPCODE_FIXED, vc->cbr_scd);
  1407. while (r > 0) {
  1408. if (cl >= NS_TST_NUM_ENTRIES && card->tste2vc[e] == NULL) {
  1409. card->tste2vc[e] = vc;
  1410. ns_write_sram(card, new_tst + e, &data, 1);
  1411. cl -= NS_TST_NUM_ENTRIES;
  1412. r--;
  1413. }
  1414. if (++e == NS_TST_NUM_ENTRIES) {
  1415. e = 0;
  1416. }
  1417. cl += n;
  1418. }
  1419. /* End of fill procedure */
  1420. data = ns_tste_make(NS_TST_OPCODE_END, new_tst);
  1421. ns_write_sram(card, new_tst + NS_TST_NUM_ENTRIES, &data, 1);
  1422. ns_write_sram(card, card->tst_addr + NS_TST_NUM_ENTRIES, &data, 1);
  1423. card->tst_addr = new_tst;
  1424. }
  1425. static int _ns_send(struct atm_vcc *vcc, struct sk_buff *skb, bool may_sleep)
  1426. {
  1427. ns_dev *card;
  1428. vc_map *vc;
  1429. scq_info *scq;
  1430. unsigned long buflen;
  1431. ns_scqe scqe;
  1432. u32 flags; /* TBD flags, not CPU flags */
  1433. card = vcc->dev->dev_data;
  1434. TXPRINTK("nicstar%d: ns_send() called.\n", card->index);
  1435. if ((vc = (vc_map *) vcc->dev_data) == NULL) {
  1436. printk("nicstar%d: vcc->dev_data == NULL on ns_send().\n",
  1437. card->index);
  1438. atomic_inc(&vcc->stats->tx_err);
  1439. dev_kfree_skb_any(skb);
  1440. return -EINVAL;
  1441. }
  1442. if (!vc->tx) {
  1443. printk("nicstar%d: Trying to transmit on a non-tx VC.\n",
  1444. card->index);
  1445. atomic_inc(&vcc->stats->tx_err);
  1446. dev_kfree_skb_any(skb);
  1447. return -EINVAL;
  1448. }
  1449. if (vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0) {
  1450. printk("nicstar%d: Only AAL0 and AAL5 are supported.\n",
  1451. card->index);
  1452. atomic_inc(&vcc->stats->tx_err);
  1453. dev_kfree_skb_any(skb);
  1454. return -EINVAL;
  1455. }
  1456. if (skb_shinfo(skb)->nr_frags != 0) {
  1457. printk("nicstar%d: No scatter-gather yet.\n", card->index);
  1458. atomic_inc(&vcc->stats->tx_err);
  1459. dev_kfree_skb_any(skb);
  1460. return -EINVAL;
  1461. }
  1462. ATM_SKB(skb)->vcc = vcc;
  1463. NS_PRV_DMA(skb) = dma_map_single(&card->pcidev->dev, skb->data,
  1464. skb->len, DMA_TO_DEVICE);
  1465. if (vcc->qos.aal == ATM_AAL5) {
  1466. buflen = (skb->len + 47 + 8) / 48 * 48; /* Multiple of 48 */
  1467. flags = NS_TBD_AAL5;
  1468. scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb));
  1469. scqe.word_3 = cpu_to_le32(skb->len);
  1470. scqe.word_4 =
  1471. ns_tbd_mkword_4(0, (u32) vcc->vpi, (u32) vcc->vci, 0,
  1472. ATM_SKB(skb)->
  1473. atm_options & ATM_ATMOPT_CLP ? 1 : 0);
  1474. flags |= NS_TBD_EOPDU;
  1475. } else { /* (vcc->qos.aal == ATM_AAL0) */
  1476. buflen = ATM_CELL_PAYLOAD; /* i.e., 48 bytes */
  1477. flags = NS_TBD_AAL0;
  1478. scqe.word_2 = cpu_to_le32(NS_PRV_DMA(skb) + NS_AAL0_HEADER);
  1479. scqe.word_3 = cpu_to_le32(0x00000000);
  1480. if (*skb->data & 0x02) /* Payload type 1 - end of pdu */
  1481. flags |= NS_TBD_EOPDU;
  1482. scqe.word_4 =
  1483. cpu_to_le32(*((u32 *) skb->data) & ~NS_TBD_VC_MASK);
  1484. /* Force the VPI/VCI to be the same as in VCC struct */
  1485. scqe.word_4 |=
  1486. cpu_to_le32((((u32) vcc->
  1487. vpi) << NS_TBD_VPI_SHIFT | ((u32) vcc->
  1488. vci) <<
  1489. NS_TBD_VCI_SHIFT) & NS_TBD_VC_MASK);
  1490. }
  1491. if (vcc->qos.txtp.traffic_class == ATM_CBR) {
  1492. scqe.word_1 = ns_tbd_mkword_1_novbr(flags, (u32) buflen);
  1493. scq = ((vc_map *) vcc->dev_data)->scq;
  1494. } else {
  1495. scqe.word_1 =
  1496. ns_tbd_mkword_1(flags, (u32) 1, (u32) 1, (u32) buflen);
  1497. scq = card->scq0;
  1498. }
  1499. if (push_scqe(card, vc, scq, &scqe, skb, may_sleep) != 0) {
  1500. atomic_inc(&vcc->stats->tx_err);
  1501. dma_unmap_single(&card->pcidev->dev, NS_PRV_DMA(skb), skb->len,
  1502. DMA_TO_DEVICE);
  1503. dev_kfree_skb_any(skb);
  1504. return -EIO;
  1505. }
  1506. atomic_inc(&vcc->stats->tx);
  1507. return 0;
  1508. }
  1509. static int ns_send(struct atm_vcc *vcc, struct sk_buff *skb)
  1510. {
  1511. return _ns_send(vcc, skb, true);
  1512. }
  1513. static int ns_send_bh(struct atm_vcc *vcc, struct sk_buff *skb)
  1514. {
  1515. return _ns_send(vcc, skb, false);
  1516. }
  1517. static int push_scqe(ns_dev * card, vc_map * vc, scq_info * scq, ns_scqe * tbd,
  1518. struct sk_buff *skb, bool may_sleep)
  1519. {
  1520. unsigned long flags;
  1521. ns_scqe tsr;
  1522. u32 scdi, scqi;
  1523. int scq_is_vbr;
  1524. u32 data;
  1525. int index;
  1526. spin_lock_irqsave(&scq->lock, flags);
  1527. while (scq->tail == scq->next) {
  1528. if (!may_sleep) {
  1529. spin_unlock_irqrestore(&scq->lock, flags);
  1530. printk("nicstar%d: Error pushing TBD.\n", card->index);
  1531. return 1;
  1532. }
  1533. scq->full = 1;
  1534. wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
  1535. scq->tail != scq->next,
  1536. scq->lock,
  1537. SCQFULL_TIMEOUT);
  1538. if (scq->full) {
  1539. spin_unlock_irqrestore(&scq->lock, flags);
  1540. printk("nicstar%d: Timeout pushing TBD.\n",
  1541. card->index);
  1542. return 1;
  1543. }
  1544. }
  1545. *scq->next = *tbd;
  1546. index = (int)(scq->next - scq->base);
  1547. scq->skb[index] = skb;
  1548. XPRINTK("nicstar%d: sending skb at 0x%p (pos %d).\n",
  1549. card->index, skb, index);
  1550. XPRINTK("nicstar%d: TBD written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
  1551. card->index, le32_to_cpu(tbd->word_1), le32_to_cpu(tbd->word_2),
  1552. le32_to_cpu(tbd->word_3), le32_to_cpu(tbd->word_4),
  1553. scq->next);
  1554. if (scq->next == scq->last)
  1555. scq->next = scq->base;
  1556. else
  1557. scq->next++;
  1558. vc->tbd_count++;
  1559. if (scq->num_entries == VBR_SCQ_NUM_ENTRIES) {
  1560. scq->tbd_count++;
  1561. scq_is_vbr = 1;
  1562. } else
  1563. scq_is_vbr = 0;
  1564. if (vc->tbd_count >= MAX_TBD_PER_VC
  1565. || scq->tbd_count >= MAX_TBD_PER_SCQ) {
  1566. int has_run = 0;
  1567. while (scq->tail == scq->next) {
  1568. if (!may_sleep) {
  1569. data = scq_virt_to_bus(scq, scq->next);
  1570. ns_write_sram(card, scq->scd, &data, 1);
  1571. spin_unlock_irqrestore(&scq->lock, flags);
  1572. printk("nicstar%d: Error pushing TSR.\n",
  1573. card->index);
  1574. return 0;
  1575. }
  1576. scq->full = 1;
  1577. if (has_run++)
  1578. break;
  1579. wait_event_interruptible_lock_irq_timeout(scq->scqfull_waitq,
  1580. scq->tail != scq->next,
  1581. scq->lock,
  1582. SCQFULL_TIMEOUT);
  1583. }
  1584. if (!scq->full) {
  1585. tsr.word_1 = ns_tsr_mkword_1(NS_TSR_INTENABLE);
  1586. if (scq_is_vbr)
  1587. scdi = NS_TSR_SCDISVBR;
  1588. else
  1589. scdi = (vc->cbr_scd - NS_FRSCD) / NS_FRSCD_SIZE;
  1590. scqi = scq->next - scq->base;
  1591. tsr.word_2 = ns_tsr_mkword_2(scdi, scqi);
  1592. tsr.word_3 = 0x00000000;
  1593. tsr.word_4 = 0x00000000;
  1594. *scq->next = tsr;
  1595. index = (int)scqi;
  1596. scq->skb[index] = NULL;
  1597. XPRINTK
  1598. ("nicstar%d: TSR written:\n0x%x\n0x%x\n0x%x\n0x%x\n at 0x%p.\n",
  1599. card->index, le32_to_cpu(tsr.word_1),
  1600. le32_to_cpu(tsr.word_2), le32_to_cpu(tsr.word_3),
  1601. le32_to_cpu(tsr.word_4), scq->next);
  1602. if (scq->next == scq->last)
  1603. scq->next = scq->base;
  1604. else
  1605. scq->next++;
  1606. vc->tbd_count = 0;
  1607. scq->tbd_count = 0;
  1608. } else
  1609. PRINTK("nicstar%d: Timeout pushing TSR.\n",
  1610. card->index);
  1611. }
  1612. data = scq_virt_to_bus(scq, scq->next);
  1613. ns_write_sram(card, scq->scd, &data, 1);
  1614. spin_unlock_irqrestore(&scq->lock, flags);
  1615. return 0;
  1616. }
  1617. static void process_tsq(ns_dev * card)
  1618. {
  1619. u32 scdi;
  1620. scq_info *scq;
  1621. ns_tsi *previous = NULL, *one_ahead, *two_ahead;
  1622. int serviced_entries; /* flag indicating at least on entry was serviced */
  1623. serviced_entries = 0;
  1624. if (card->tsq.next == card->tsq.last)
  1625. one_ahead = card->tsq.base;
  1626. else
  1627. one_ahead = card->tsq.next + 1;
  1628. if (one_ahead == card->tsq.last)
  1629. two_ahead = card->tsq.base;
  1630. else
  1631. two_ahead = one_ahead + 1;
  1632. while (!ns_tsi_isempty(card->tsq.next) || !ns_tsi_isempty(one_ahead) ||
  1633. !ns_tsi_isempty(two_ahead))
  1634. /* At most two empty, as stated in the 77201 errata */
  1635. {
  1636. serviced_entries = 1;
  1637. /* Skip the one or two possible empty entries */
  1638. while (ns_tsi_isempty(card->tsq.next)) {
  1639. if (card->tsq.next == card->tsq.last)
  1640. card->tsq.next = card->tsq.base;
  1641. else
  1642. card->tsq.next++;
  1643. }
  1644. if (!ns_tsi_tmrof(card->tsq.next)) {
  1645. scdi = ns_tsi_getscdindex(card->tsq.next);
  1646. if (scdi == NS_TSI_SCDISVBR)
  1647. scq = card->scq0;
  1648. else {
  1649. if (card->scd2vc[scdi] == NULL) {
  1650. printk
  1651. ("nicstar%d: could not find VC from SCD index.\n",
  1652. card->index);
  1653. ns_tsi_init(card->tsq.next);
  1654. return;
  1655. }
  1656. scq = card->scd2vc[scdi]->scq;
  1657. }
  1658. drain_scq(card, scq, ns_tsi_getscqpos(card->tsq.next));
  1659. scq->full = 0;
  1660. wake_up_interruptible(&(scq->scqfull_waitq));
  1661. }
  1662. ns_tsi_init(card->tsq.next);
  1663. previous = card->tsq.next;
  1664. if (card->tsq.next == card->tsq.last)
  1665. card->tsq.next = card->tsq.base;
  1666. else
  1667. card->tsq.next++;
  1668. if (card->tsq.next == card->tsq.last)
  1669. one_ahead = card->tsq.base;
  1670. else
  1671. one_ahead = card->tsq.next + 1;
  1672. if (one_ahead == card->tsq.last)
  1673. two_ahead = card->tsq.base;
  1674. else
  1675. two_ahead = one_ahead + 1;
  1676. }
  1677. if (serviced_entries)
  1678. writel(PTR_DIFF(previous, card->tsq.base),
  1679. card->membase + TSQH);
  1680. }
  1681. static void drain_scq(ns_dev * card, scq_info * scq, int pos)
  1682. {
  1683. struct atm_vcc *vcc;
  1684. struct sk_buff *skb;
  1685. int i;
  1686. unsigned long flags;
  1687. XPRINTK("nicstar%d: drain_scq() called, scq at 0x%p, pos %d.\n",
  1688. card->index, scq, pos);
  1689. if (pos >= scq->num_entries) {
  1690. printk("nicstar%d: Bad index on drain_scq().\n", card->index);
  1691. return;
  1692. }
  1693. spin_lock_irqsave(&scq->lock, flags);
  1694. i = (int)(scq->tail - scq->base);
  1695. if (++i == scq->num_entries)
  1696. i = 0;
  1697. while (i != pos) {
  1698. skb = scq->skb[i];
  1699. XPRINTK("nicstar%d: freeing skb at 0x%p (index %d).\n",
  1700. card->index, skb, i);
  1701. if (skb != NULL) {
  1702. dma_unmap_single(&card->pcidev->dev,
  1703. NS_PRV_DMA(skb),
  1704. skb->len,
  1705. DMA_TO_DEVICE);
  1706. vcc = ATM_SKB(skb)->vcc;
  1707. if (vcc && vcc->pop != NULL) {
  1708. vcc->pop(vcc, skb);
  1709. } else {
  1710. dev_kfree_skb_irq(skb);
  1711. }
  1712. scq->skb[i] = NULL;
  1713. }
  1714. if (++i == scq->num_entries)
  1715. i = 0;
  1716. }
  1717. scq->tail = scq->base + pos;
  1718. spin_unlock_irqrestore(&scq->lock, flags);
  1719. }
  1720. static void process_rsq(ns_dev * card)
  1721. {
  1722. ns_rsqe *previous;
  1723. if (!ns_rsqe_valid(card->rsq.next))
  1724. return;
  1725. do {
  1726. dequeue_rx(card, card->rsq.next);
  1727. ns_rsqe_init(card->rsq.next);
  1728. previous = card->rsq.next;
  1729. if (card->rsq.next == card->rsq.last)
  1730. card->rsq.next = card->rsq.base;
  1731. else
  1732. card->rsq.next++;
  1733. } while (ns_rsqe_valid(card->rsq.next));
  1734. writel(PTR_DIFF(previous, card->rsq.base), card->membase + RSQH);
  1735. }
  1736. static void dequeue_rx(ns_dev * card, ns_rsqe * rsqe)
  1737. {
  1738. u32 vpi, vci;
  1739. vc_map *vc;
  1740. struct sk_buff *iovb;
  1741. struct iovec *iov;
  1742. struct atm_vcc *vcc;
  1743. struct sk_buff *skb;
  1744. unsigned short aal5_len;
  1745. int len;
  1746. u32 stat;
  1747. u32 id;
  1748. stat = readl(card->membase + STAT);
  1749. card->sbfqc = ns_stat_sfbqc_get(stat);
  1750. card->lbfqc = ns_stat_lfbqc_get(stat);
  1751. id = le32_to_cpu(rsqe->buffer_handle);
  1752. skb = idr_remove(&card->idr, id);
  1753. if (!skb) {
  1754. RXPRINTK(KERN_ERR
  1755. "nicstar%d: skb not found!\n", card->index);
  1756. return;
  1757. }
  1758. dma_sync_single_for_cpu(&card->pcidev->dev,
  1759. NS_PRV_DMA(skb),
  1760. (NS_PRV_BUFTYPE(skb) == BUF_SM
  1761. ? NS_SMSKBSIZE : NS_LGSKBSIZE),
  1762. DMA_FROM_DEVICE);
  1763. dma_unmap_single(&card->pcidev->dev,
  1764. NS_PRV_DMA(skb),
  1765. (NS_PRV_BUFTYPE(skb) == BUF_SM
  1766. ? NS_SMSKBSIZE : NS_LGSKBSIZE),
  1767. DMA_FROM_DEVICE);
  1768. vpi = ns_rsqe_vpi(rsqe);
  1769. vci = ns_rsqe_vci(rsqe);
  1770. if (vpi >= 1UL << card->vpibits || vci >= 1UL << card->vcibits) {
  1771. printk("nicstar%d: SDU received for out-of-range vc %d.%d.\n",
  1772. card->index, vpi, vci);
  1773. recycle_rx_buf(card, skb);
  1774. return;
  1775. }
  1776. vc = &(card->vcmap[vpi << card->vcibits | vci]);
  1777. if (!vc->rx) {
  1778. RXPRINTK("nicstar%d: SDU received on non-rx vc %d.%d.\n",
  1779. card->index, vpi, vci);
  1780. recycle_rx_buf(card, skb);
  1781. return;
  1782. }
  1783. vcc = vc->rx_vcc;
  1784. if (vcc->qos.aal == ATM_AAL0) {
  1785. struct sk_buff *sb;
  1786. unsigned char *cell;
  1787. int i;
  1788. cell = skb->data;
  1789. for (i = ns_rsqe_cellcount(rsqe); i; i--) {
  1790. sb = dev_alloc_skb(NS_SMSKBSIZE);
  1791. if (!sb) {
  1792. printk
  1793. ("nicstar%d: Can't allocate buffers for aal0.\n",
  1794. card->index);
  1795. atomic_add(i, &vcc->stats->rx_drop);
  1796. break;
  1797. }
  1798. if (!atm_charge(vcc, sb->truesize)) {
  1799. RXPRINTK
  1800. ("nicstar%d: atm_charge() dropped aal0 packets.\n",
  1801. card->index);
  1802. atomic_add(i - 1, &vcc->stats->rx_drop); /* already increased by 1 */
  1803. dev_kfree_skb_any(sb);
  1804. break;
  1805. }
  1806. /* Rebuild the header */
  1807. *((u32 *) sb->data) = le32_to_cpu(rsqe->word_1) << 4 |
  1808. (ns_rsqe_clp(rsqe) ? 0x00000001 : 0x00000000);
  1809. if (i == 1 && ns_rsqe_eopdu(rsqe))
  1810. *((u32 *) sb->data) |= 0x00000002;
  1811. skb_put(sb, NS_AAL0_HEADER);
  1812. memcpy(skb_tail_pointer(sb), cell, ATM_CELL_PAYLOAD);
  1813. skb_put(sb, ATM_CELL_PAYLOAD);
  1814. ATM_SKB(sb)->vcc = vcc;
  1815. __net_timestamp(sb);
  1816. vcc->push(vcc, sb);
  1817. atomic_inc(&vcc->stats->rx);
  1818. cell += ATM_CELL_PAYLOAD;
  1819. }
  1820. recycle_rx_buf(card, skb);
  1821. return;
  1822. }
  1823. /* To reach this point, the AAL layer can only be AAL5 */
  1824. if ((iovb = vc->rx_iov) == NULL) {
  1825. iovb = skb_dequeue(&(card->iovpool.queue));
  1826. if (iovb == NULL) { /* No buffers in the queue */
  1827. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC);
  1828. if (iovb == NULL) {
  1829. printk("nicstar%d: Out of iovec buffers.\n",
  1830. card->index);
  1831. atomic_inc(&vcc->stats->rx_drop);
  1832. recycle_rx_buf(card, skb);
  1833. return;
  1834. }
  1835. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  1836. } else if (--card->iovpool.count < card->iovnr.min) {
  1837. struct sk_buff *new_iovb;
  1838. if ((new_iovb =
  1839. alloc_skb(NS_IOVBUFSIZE, GFP_ATOMIC)) != NULL) {
  1840. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  1841. skb_queue_tail(&card->iovpool.queue, new_iovb);
  1842. card->iovpool.count++;
  1843. }
  1844. }
  1845. vc->rx_iov = iovb;
  1846. NS_PRV_IOVCNT(iovb) = 0;
  1847. iovb->len = 0;
  1848. iovb->data = iovb->head;
  1849. skb_reset_tail_pointer(iovb);
  1850. /* IMPORTANT: a pointer to the sk_buff containing the small or large
  1851. buffer is stored as iovec base, NOT a pointer to the
  1852. small or large buffer itself. */
  1853. } else if (NS_PRV_IOVCNT(iovb) >= NS_MAX_IOVECS) {
  1854. printk("nicstar%d: received too big AAL5 SDU.\n", card->index);
  1855. atomic_inc(&vcc->stats->rx_err);
  1856. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1857. NS_MAX_IOVECS);
  1858. NS_PRV_IOVCNT(iovb) = 0;
  1859. iovb->len = 0;
  1860. iovb->data = iovb->head;
  1861. skb_reset_tail_pointer(iovb);
  1862. }
  1863. iov = &((struct iovec *)iovb->data)[NS_PRV_IOVCNT(iovb)++];
  1864. iov->iov_base = (void *)skb;
  1865. iov->iov_len = ns_rsqe_cellcount(rsqe) * 48;
  1866. iovb->len += iov->iov_len;
  1867. #ifdef EXTRA_DEBUG
  1868. if (NS_PRV_IOVCNT(iovb) == 1) {
  1869. if (NS_PRV_BUFTYPE(skb) != BUF_SM) {
  1870. printk
  1871. ("nicstar%d: Expected a small buffer, and this is not one.\n",
  1872. card->index);
  1873. which_list(card, skb);
  1874. atomic_inc(&vcc->stats->rx_err);
  1875. recycle_rx_buf(card, skb);
  1876. vc->rx_iov = NULL;
  1877. recycle_iov_buf(card, iovb);
  1878. return;
  1879. }
  1880. } else { /* NS_PRV_IOVCNT(iovb) >= 2 */
  1881. if (NS_PRV_BUFTYPE(skb) != BUF_LG) {
  1882. printk
  1883. ("nicstar%d: Expected a large buffer, and this is not one.\n",
  1884. card->index);
  1885. which_list(card, skb);
  1886. atomic_inc(&vcc->stats->rx_err);
  1887. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1888. NS_PRV_IOVCNT(iovb));
  1889. vc->rx_iov = NULL;
  1890. recycle_iov_buf(card, iovb);
  1891. return;
  1892. }
  1893. }
  1894. #endif /* EXTRA_DEBUG */
  1895. if (ns_rsqe_eopdu(rsqe)) {
  1896. /* This works correctly regardless of the endianness of the host */
  1897. unsigned char *L1L2 = (unsigned char *)
  1898. (skb->data + iov->iov_len - 6);
  1899. aal5_len = L1L2[0] << 8 | L1L2[1];
  1900. len = (aal5_len == 0x0000) ? 0x10000 : aal5_len;
  1901. if (ns_rsqe_crcerr(rsqe) ||
  1902. len + 8 > iovb->len || len + (47 + 8) < iovb->len) {
  1903. printk("nicstar%d: AAL5 CRC error", card->index);
  1904. if (len + 8 > iovb->len || len + (47 + 8) < iovb->len)
  1905. printk(" - PDU size mismatch.\n");
  1906. else
  1907. printk(".\n");
  1908. atomic_inc(&vcc->stats->rx_err);
  1909. recycle_iovec_rx_bufs(card, (struct iovec *)iovb->data,
  1910. NS_PRV_IOVCNT(iovb));
  1911. vc->rx_iov = NULL;
  1912. recycle_iov_buf(card, iovb);
  1913. return;
  1914. }
  1915. /* By this point we (hopefully) have a complete SDU without errors. */
  1916. if (NS_PRV_IOVCNT(iovb) == 1) { /* Just a small buffer */
  1917. /* skb points to a small buffer */
  1918. if (!atm_charge(vcc, skb->truesize)) {
  1919. push_rxbufs(card, skb);
  1920. atomic_inc(&vcc->stats->rx_drop);
  1921. } else {
  1922. skb_put(skb, len);
  1923. dequeue_sm_buf(card, skb);
  1924. ATM_SKB(skb)->vcc = vcc;
  1925. __net_timestamp(skb);
  1926. vcc->push(vcc, skb);
  1927. atomic_inc(&vcc->stats->rx);
  1928. }
  1929. } else if (NS_PRV_IOVCNT(iovb) == 2) { /* One small plus one large buffer */
  1930. struct sk_buff *sb;
  1931. sb = (struct sk_buff *)(iov - 1)->iov_base;
  1932. /* skb points to a large buffer */
  1933. if (len <= NS_SMBUFSIZE) {
  1934. if (!atm_charge(vcc, sb->truesize)) {
  1935. push_rxbufs(card, sb);
  1936. atomic_inc(&vcc->stats->rx_drop);
  1937. } else {
  1938. skb_put(sb, len);
  1939. dequeue_sm_buf(card, sb);
  1940. ATM_SKB(sb)->vcc = vcc;
  1941. __net_timestamp(sb);
  1942. vcc->push(vcc, sb);
  1943. atomic_inc(&vcc->stats->rx);
  1944. }
  1945. push_rxbufs(card, skb);
  1946. } else { /* len > NS_SMBUFSIZE, the usual case */
  1947. if (!atm_charge(vcc, skb->truesize)) {
  1948. push_rxbufs(card, skb);
  1949. atomic_inc(&vcc->stats->rx_drop);
  1950. } else {
  1951. dequeue_lg_buf(card, skb);
  1952. skb_push(skb, NS_SMBUFSIZE);
  1953. skb_copy_from_linear_data(sb, skb->data,
  1954. NS_SMBUFSIZE);
  1955. skb_put(skb, len - NS_SMBUFSIZE);
  1956. ATM_SKB(skb)->vcc = vcc;
  1957. __net_timestamp(skb);
  1958. vcc->push(vcc, skb);
  1959. atomic_inc(&vcc->stats->rx);
  1960. }
  1961. push_rxbufs(card, sb);
  1962. }
  1963. } else { /* Must push a huge buffer */
  1964. struct sk_buff *hb, *sb, *lb;
  1965. int remaining, tocopy;
  1966. int j;
  1967. hb = skb_dequeue(&(card->hbpool.queue));
  1968. if (hb == NULL) { /* No buffers in the queue */
  1969. hb = dev_alloc_skb(NS_HBUFSIZE);
  1970. if (hb == NULL) {
  1971. printk
  1972. ("nicstar%d: Out of huge buffers.\n",
  1973. card->index);
  1974. atomic_inc(&vcc->stats->rx_drop);
  1975. recycle_iovec_rx_bufs(card,
  1976. (struct iovec *)
  1977. iovb->data,
  1978. NS_PRV_IOVCNT(iovb));
  1979. vc->rx_iov = NULL;
  1980. recycle_iov_buf(card, iovb);
  1981. return;
  1982. } else if (card->hbpool.count < card->hbnr.min) {
  1983. struct sk_buff *new_hb;
  1984. if ((new_hb =
  1985. dev_alloc_skb(NS_HBUFSIZE)) !=
  1986. NULL) {
  1987. skb_queue_tail(&card->hbpool.
  1988. queue, new_hb);
  1989. card->hbpool.count++;
  1990. }
  1991. }
  1992. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  1993. } else if (--card->hbpool.count < card->hbnr.min) {
  1994. struct sk_buff *new_hb;
  1995. if ((new_hb =
  1996. dev_alloc_skb(NS_HBUFSIZE)) != NULL) {
  1997. NS_PRV_BUFTYPE(new_hb) = BUF_NONE;
  1998. skb_queue_tail(&card->hbpool.queue,
  1999. new_hb);
  2000. card->hbpool.count++;
  2001. }
  2002. if (card->hbpool.count < card->hbnr.min) {
  2003. if ((new_hb =
  2004. dev_alloc_skb(NS_HBUFSIZE)) !=
  2005. NULL) {
  2006. NS_PRV_BUFTYPE(new_hb) =
  2007. BUF_NONE;
  2008. skb_queue_tail(&card->hbpool.
  2009. queue, new_hb);
  2010. card->hbpool.count++;
  2011. }
  2012. }
  2013. }
  2014. iov = (struct iovec *)iovb->data;
  2015. if (!atm_charge(vcc, hb->truesize)) {
  2016. recycle_iovec_rx_bufs(card, iov,
  2017. NS_PRV_IOVCNT(iovb));
  2018. if (card->hbpool.count < card->hbnr.max) {
  2019. skb_queue_tail(&card->hbpool.queue, hb);
  2020. card->hbpool.count++;
  2021. } else
  2022. dev_kfree_skb_any(hb);
  2023. atomic_inc(&vcc->stats->rx_drop);
  2024. } else {
  2025. /* Copy the small buffer to the huge buffer */
  2026. sb = (struct sk_buff *)iov->iov_base;
  2027. skb_copy_from_linear_data(sb, hb->data,
  2028. iov->iov_len);
  2029. skb_put(hb, iov->iov_len);
  2030. remaining = len - iov->iov_len;
  2031. iov++;
  2032. /* Free the small buffer */
  2033. push_rxbufs(card, sb);
  2034. /* Copy all large buffers to the huge buffer and free them */
  2035. for (j = 1; j < NS_PRV_IOVCNT(iovb); j++) {
  2036. lb = (struct sk_buff *)iov->iov_base;
  2037. tocopy =
  2038. min_t(int, remaining, iov->iov_len);
  2039. skb_copy_from_linear_data(lb,
  2040. skb_tail_pointer
  2041. (hb), tocopy);
  2042. skb_put(hb, tocopy);
  2043. iov++;
  2044. remaining -= tocopy;
  2045. push_rxbufs(card, lb);
  2046. }
  2047. #ifdef EXTRA_DEBUG
  2048. if (remaining != 0 || hb->len != len)
  2049. printk
  2050. ("nicstar%d: Huge buffer len mismatch.\n",
  2051. card->index);
  2052. #endif /* EXTRA_DEBUG */
  2053. ATM_SKB(hb)->vcc = vcc;
  2054. __net_timestamp(hb);
  2055. vcc->push(vcc, hb);
  2056. atomic_inc(&vcc->stats->rx);
  2057. }
  2058. }
  2059. vc->rx_iov = NULL;
  2060. recycle_iov_buf(card, iovb);
  2061. }
  2062. }
  2063. static void recycle_rx_buf(ns_dev * card, struct sk_buff *skb)
  2064. {
  2065. if (unlikely(NS_PRV_BUFTYPE(skb) == BUF_NONE)) {
  2066. printk("nicstar%d: What kind of rx buffer is this?\n",
  2067. card->index);
  2068. dev_kfree_skb_any(skb);
  2069. } else
  2070. push_rxbufs(card, skb);
  2071. }
  2072. static void recycle_iovec_rx_bufs(ns_dev * card, struct iovec *iov, int count)
  2073. {
  2074. while (count-- > 0)
  2075. recycle_rx_buf(card, (struct sk_buff *)(iov++)->iov_base);
  2076. }
  2077. static void recycle_iov_buf(ns_dev * card, struct sk_buff *iovb)
  2078. {
  2079. if (card->iovpool.count < card->iovnr.max) {
  2080. skb_queue_tail(&card->iovpool.queue, iovb);
  2081. card->iovpool.count++;
  2082. } else
  2083. dev_kfree_skb_any(iovb);
  2084. }
  2085. static void dequeue_sm_buf(ns_dev * card, struct sk_buff *sb)
  2086. {
  2087. skb_unlink(sb, &card->sbpool.queue);
  2088. if (card->sbfqc < card->sbnr.init) {
  2089. struct sk_buff *new_sb;
  2090. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
  2091. NS_PRV_BUFTYPE(new_sb) = BUF_SM;
  2092. skb_queue_tail(&card->sbpool.queue, new_sb);
  2093. skb_reserve(new_sb, NS_AAL0_HEADER);
  2094. push_rxbufs(card, new_sb);
  2095. }
  2096. }
  2097. if (card->sbfqc < card->sbnr.init)
  2098. {
  2099. struct sk_buff *new_sb;
  2100. if ((new_sb = dev_alloc_skb(NS_SMSKBSIZE)) != NULL) {
  2101. NS_PRV_BUFTYPE(new_sb) = BUF_SM;
  2102. skb_queue_tail(&card->sbpool.queue, new_sb);
  2103. skb_reserve(new_sb, NS_AAL0_HEADER);
  2104. push_rxbufs(card, new_sb);
  2105. }
  2106. }
  2107. }
  2108. static void dequeue_lg_buf(ns_dev * card, struct sk_buff *lb)
  2109. {
  2110. skb_unlink(lb, &card->lbpool.queue);
  2111. if (card->lbfqc < card->lbnr.init) {
  2112. struct sk_buff *new_lb;
  2113. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
  2114. NS_PRV_BUFTYPE(new_lb) = BUF_LG;
  2115. skb_queue_tail(&card->lbpool.queue, new_lb);
  2116. skb_reserve(new_lb, NS_SMBUFSIZE);
  2117. push_rxbufs(card, new_lb);
  2118. }
  2119. }
  2120. if (card->lbfqc < card->lbnr.init)
  2121. {
  2122. struct sk_buff *new_lb;
  2123. if ((new_lb = dev_alloc_skb(NS_LGSKBSIZE)) != NULL) {
  2124. NS_PRV_BUFTYPE(new_lb) = BUF_LG;
  2125. skb_queue_tail(&card->lbpool.queue, new_lb);
  2126. skb_reserve(new_lb, NS_SMBUFSIZE);
  2127. push_rxbufs(card, new_lb);
  2128. }
  2129. }
  2130. }
  2131. static int ns_proc_read(struct atm_dev *dev, loff_t * pos, char *page)
  2132. {
  2133. u32 stat;
  2134. ns_dev *card;
  2135. int left;
  2136. left = (int)*pos;
  2137. card = (ns_dev *) dev->dev_data;
  2138. stat = readl(card->membase + STAT);
  2139. if (!left--)
  2140. return sprintf(page, "Pool count min init max \n");
  2141. if (!left--)
  2142. return sprintf(page, "Small %5d %5d %5d %5d \n",
  2143. ns_stat_sfbqc_get(stat), card->sbnr.min,
  2144. card->sbnr.init, card->sbnr.max);
  2145. if (!left--)
  2146. return sprintf(page, "Large %5d %5d %5d %5d \n",
  2147. ns_stat_lfbqc_get(stat), card->lbnr.min,
  2148. card->lbnr.init, card->lbnr.max);
  2149. if (!left--)
  2150. return sprintf(page, "Huge %5d %5d %5d %5d \n",
  2151. card->hbpool.count, card->hbnr.min,
  2152. card->hbnr.init, card->hbnr.max);
  2153. if (!left--)
  2154. return sprintf(page, "Iovec %5d %5d %5d %5d \n",
  2155. card->iovpool.count, card->iovnr.min,
  2156. card->iovnr.init, card->iovnr.max);
  2157. if (!left--) {
  2158. int retval;
  2159. retval =
  2160. sprintf(page, "Interrupt counter: %u \n", card->intcnt);
  2161. card->intcnt = 0;
  2162. return retval;
  2163. }
  2164. #if 0
  2165. /* Dump 25.6 Mbps PHY registers */
  2166. /* Now there's a 25.6 Mbps PHY driver this code isn't needed. I left it
  2167. here just in case it's needed for debugging. */
  2168. if (card->max_pcr == ATM_25_PCR && !left--) {
  2169. u32 phy_regs[4];
  2170. u32 i;
  2171. for (i = 0; i < 4; i++) {
  2172. while (CMD_BUSY(card)) ;
  2173. writel(NS_CMD_READ_UTILITY | 0x00000200 | i,
  2174. card->membase + CMD);
  2175. while (CMD_BUSY(card)) ;
  2176. phy_regs[i] = readl(card->membase + DR0) & 0x000000FF;
  2177. }
  2178. return sprintf(page, "PHY regs: 0x%02X 0x%02X 0x%02X 0x%02X \n",
  2179. phy_regs[0], phy_regs[1], phy_regs[2],
  2180. phy_regs[3]);
  2181. }
  2182. #endif /* 0 - Dump 25.6 Mbps PHY registers */
  2183. #if 0
  2184. /* Dump TST */
  2185. if (left-- < NS_TST_NUM_ENTRIES) {
  2186. if (card->tste2vc[left + 1] == NULL)
  2187. return sprintf(page, "%5d - VBR/UBR \n", left + 1);
  2188. else
  2189. return sprintf(page, "%5d - %d %d \n", left + 1,
  2190. card->tste2vc[left + 1]->tx_vcc->vpi,
  2191. card->tste2vc[left + 1]->tx_vcc->vci);
  2192. }
  2193. #endif /* 0 */
  2194. return 0;
  2195. }
  2196. static int ns_ioctl(struct atm_dev *dev, unsigned int cmd, void __user * arg)
  2197. {
  2198. ns_dev *card;
  2199. pool_levels pl;
  2200. long btype;
  2201. unsigned long flags;
  2202. card = dev->dev_data;
  2203. switch (cmd) {
  2204. case NS_GETPSTAT:
  2205. if (get_user
  2206. (pl.buftype, &((pool_levels __user *) arg)->buftype))
  2207. return -EFAULT;
  2208. switch (pl.buftype) {
  2209. case NS_BUFTYPE_SMALL:
  2210. pl.count =
  2211. ns_stat_sfbqc_get(readl(card->membase + STAT));
  2212. pl.level.min = card->sbnr.min;
  2213. pl.level.init = card->sbnr.init;
  2214. pl.level.max = card->sbnr.max;
  2215. break;
  2216. case NS_BUFTYPE_LARGE:
  2217. pl.count =
  2218. ns_stat_lfbqc_get(readl(card->membase + STAT));
  2219. pl.level.min = card->lbnr.min;
  2220. pl.level.init = card->lbnr.init;
  2221. pl.level.max = card->lbnr.max;
  2222. break;
  2223. case NS_BUFTYPE_HUGE:
  2224. pl.count = card->hbpool.count;
  2225. pl.level.min = card->hbnr.min;
  2226. pl.level.init = card->hbnr.init;
  2227. pl.level.max = card->hbnr.max;
  2228. break;
  2229. case NS_BUFTYPE_IOVEC:
  2230. pl.count = card->iovpool.count;
  2231. pl.level.min = card->iovnr.min;
  2232. pl.level.init = card->iovnr.init;
  2233. pl.level.max = card->iovnr.max;
  2234. break;
  2235. default:
  2236. return -ENOIOCTLCMD;
  2237. }
  2238. if (!copy_to_user((pool_levels __user *) arg, &pl, sizeof(pl)))
  2239. return (sizeof(pl));
  2240. else
  2241. return -EFAULT;
  2242. case NS_SETBUFLEV:
  2243. if (!capable(CAP_NET_ADMIN))
  2244. return -EPERM;
  2245. if (copy_from_user(&pl, (pool_levels __user *) arg, sizeof(pl)))
  2246. return -EFAULT;
  2247. if (pl.level.min >= pl.level.init
  2248. || pl.level.init >= pl.level.max)
  2249. return -EINVAL;
  2250. if (pl.level.min == 0)
  2251. return -EINVAL;
  2252. switch (pl.buftype) {
  2253. case NS_BUFTYPE_SMALL:
  2254. if (pl.level.max > TOP_SB)
  2255. return -EINVAL;
  2256. card->sbnr.min = pl.level.min;
  2257. card->sbnr.init = pl.level.init;
  2258. card->sbnr.max = pl.level.max;
  2259. break;
  2260. case NS_BUFTYPE_LARGE:
  2261. if (pl.level.max > TOP_LB)
  2262. return -EINVAL;
  2263. card->lbnr.min = pl.level.min;
  2264. card->lbnr.init = pl.level.init;
  2265. card->lbnr.max = pl.level.max;
  2266. break;
  2267. case NS_BUFTYPE_HUGE:
  2268. if (pl.level.max > TOP_HB)
  2269. return -EINVAL;
  2270. card->hbnr.min = pl.level.min;
  2271. card->hbnr.init = pl.level.init;
  2272. card->hbnr.max = pl.level.max;
  2273. break;
  2274. case NS_BUFTYPE_IOVEC:
  2275. if (pl.level.max > TOP_IOVB)
  2276. return -EINVAL;
  2277. card->iovnr.min = pl.level.min;
  2278. card->iovnr.init = pl.level.init;
  2279. card->iovnr.max = pl.level.max;
  2280. break;
  2281. default:
  2282. return -EINVAL;
  2283. }
  2284. return 0;
  2285. case NS_ADJBUFLEV:
  2286. if (!capable(CAP_NET_ADMIN))
  2287. return -EPERM;
  2288. btype = (long)arg; /* a long is the same size as a pointer or bigger */
  2289. switch (btype) {
  2290. case NS_BUFTYPE_SMALL:
  2291. while (card->sbfqc < card->sbnr.init) {
  2292. struct sk_buff *sb;
  2293. sb = __dev_alloc_skb(NS_SMSKBSIZE, GFP_KERNEL);
  2294. if (sb == NULL)
  2295. return -ENOMEM;
  2296. NS_PRV_BUFTYPE(sb) = BUF_SM;
  2297. skb_queue_tail(&card->sbpool.queue, sb);
  2298. skb_reserve(sb, NS_AAL0_HEADER);
  2299. push_rxbufs(card, sb);
  2300. }
  2301. break;
  2302. case NS_BUFTYPE_LARGE:
  2303. while (card->lbfqc < card->lbnr.init) {
  2304. struct sk_buff *lb;
  2305. lb = __dev_alloc_skb(NS_LGSKBSIZE, GFP_KERNEL);
  2306. if (lb == NULL)
  2307. return -ENOMEM;
  2308. NS_PRV_BUFTYPE(lb) = BUF_LG;
  2309. skb_queue_tail(&card->lbpool.queue, lb);
  2310. skb_reserve(lb, NS_SMBUFSIZE);
  2311. push_rxbufs(card, lb);
  2312. }
  2313. break;
  2314. case NS_BUFTYPE_HUGE:
  2315. while (card->hbpool.count > card->hbnr.init) {
  2316. struct sk_buff *hb;
  2317. spin_lock_irqsave(&card->int_lock, flags);
  2318. hb = skb_dequeue(&card->hbpool.queue);
  2319. card->hbpool.count--;
  2320. spin_unlock_irqrestore(&card->int_lock, flags);
  2321. if (hb == NULL)
  2322. printk
  2323. ("nicstar%d: huge buffer count inconsistent.\n",
  2324. card->index);
  2325. else
  2326. dev_kfree_skb_any(hb);
  2327. }
  2328. while (card->hbpool.count < card->hbnr.init) {
  2329. struct sk_buff *hb;
  2330. hb = __dev_alloc_skb(NS_HBUFSIZE, GFP_KERNEL);
  2331. if (hb == NULL)
  2332. return -ENOMEM;
  2333. NS_PRV_BUFTYPE(hb) = BUF_NONE;
  2334. spin_lock_irqsave(&card->int_lock, flags);
  2335. skb_queue_tail(&card->hbpool.queue, hb);
  2336. card->hbpool.count++;
  2337. spin_unlock_irqrestore(&card->int_lock, flags);
  2338. }
  2339. break;
  2340. case NS_BUFTYPE_IOVEC:
  2341. while (card->iovpool.count > card->iovnr.init) {
  2342. struct sk_buff *iovb;
  2343. spin_lock_irqsave(&card->int_lock, flags);
  2344. iovb = skb_dequeue(&card->iovpool.queue);
  2345. card->iovpool.count--;
  2346. spin_unlock_irqrestore(&card->int_lock, flags);
  2347. if (iovb == NULL)
  2348. printk
  2349. ("nicstar%d: iovec buffer count inconsistent.\n",
  2350. card->index);
  2351. else
  2352. dev_kfree_skb_any(iovb);
  2353. }
  2354. while (card->iovpool.count < card->iovnr.init) {
  2355. struct sk_buff *iovb;
  2356. iovb = alloc_skb(NS_IOVBUFSIZE, GFP_KERNEL);
  2357. if (iovb == NULL)
  2358. return -ENOMEM;
  2359. NS_PRV_BUFTYPE(iovb) = BUF_NONE;
  2360. spin_lock_irqsave(&card->int_lock, flags);
  2361. skb_queue_tail(&card->iovpool.queue, iovb);
  2362. card->iovpool.count++;
  2363. spin_unlock_irqrestore(&card->int_lock, flags);
  2364. }
  2365. break;
  2366. default:
  2367. return -EINVAL;
  2368. }
  2369. return 0;
  2370. default:
  2371. if (dev->phy && dev->phy->ioctl) {
  2372. return dev->phy->ioctl(dev, cmd, arg);
  2373. } else {
  2374. printk("nicstar%d: %s == NULL \n", card->index,
  2375. dev->phy ? "dev->phy->ioctl" : "dev->phy");
  2376. return -ENOIOCTLCMD;
  2377. }
  2378. }
  2379. }
  2380. #ifdef EXTRA_DEBUG
  2381. static void which_list(ns_dev * card, struct sk_buff *skb)
  2382. {
  2383. printk("skb buf_type: 0x%08x\n", NS_PRV_BUFTYPE(skb));
  2384. }
  2385. #endif /* EXTRA_DEBUG */
  2386. static void ns_poll(struct timer_list *unused)
  2387. {
  2388. int i;
  2389. ns_dev *card;
  2390. unsigned long flags;
  2391. u32 stat_r, stat_w;
  2392. PRINTK("nicstar: Entering ns_poll().\n");
  2393. for (i = 0; i < num_cards; i++) {
  2394. card = cards[i];
  2395. if (!spin_trylock_irqsave(&card->int_lock, flags)) {
  2396. /* Probably it isn't worth spinning */
  2397. continue;
  2398. }
  2399. stat_w = 0;
  2400. stat_r = readl(card->membase + STAT);
  2401. if (stat_r & NS_STAT_TSIF)
  2402. stat_w |= NS_STAT_TSIF;
  2403. if (stat_r & NS_STAT_EOPDU)
  2404. stat_w |= NS_STAT_EOPDU;
  2405. process_tsq(card);
  2406. process_rsq(card);
  2407. writel(stat_w, card->membase + STAT);
  2408. spin_unlock_irqrestore(&card->int_lock, flags);
  2409. }
  2410. mod_timer(&ns_timer, jiffies + NS_POLL_PERIOD);
  2411. PRINTK("nicstar: Leaving ns_poll().\n");
  2412. }
  2413. static void ns_phy_put(struct atm_dev *dev, unsigned char value,
  2414. unsigned long addr)
  2415. {
  2416. ns_dev *card;
  2417. unsigned long flags;
  2418. card = dev->dev_data;
  2419. spin_lock_irqsave(&card->res_lock, flags);
  2420. while (CMD_BUSY(card)) ;
  2421. writel((u32) value, card->membase + DR0);
  2422. writel(NS_CMD_WRITE_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2423. card->membase + CMD);
  2424. spin_unlock_irqrestore(&card->res_lock, flags);
  2425. }
  2426. static unsigned char ns_phy_get(struct atm_dev *dev, unsigned long addr)
  2427. {
  2428. ns_dev *card;
  2429. unsigned long flags;
  2430. u32 data;
  2431. card = dev->dev_data;
  2432. spin_lock_irqsave(&card->res_lock, flags);
  2433. while (CMD_BUSY(card)) ;
  2434. writel(NS_CMD_READ_UTILITY | 0x00000200 | (addr & 0x000000FF),
  2435. card->membase + CMD);
  2436. while (CMD_BUSY(card)) ;
  2437. data = readl(card->membase + DR0) & 0x000000FF;
  2438. spin_unlock_irqrestore(&card->res_lock, flags);
  2439. return (unsigned char)data;
  2440. }
  2441. module_init(nicstar_init);
  2442. module_exit(nicstar_cleanup);