brd.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Ram backed block device driver.
  4. *
  5. * Copyright (C) 2007 Nick Piggin
  6. * Copyright (C) 2007 Novell Inc.
  7. *
  8. * Parts derived from drivers/block/rd.c, and drivers/block/loop.c, copyright
  9. * of their respective owners.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/initrd.h>
  13. #include <linux/module.h>
  14. #include <linux/moduleparam.h>
  15. #include <linux/major.h>
  16. #include <linux/blkdev.h>
  17. #include <linux/bio.h>
  18. #include <linux/highmem.h>
  19. #include <linux/mutex.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/xarray.h>
  22. #include <linux/fs.h>
  23. #include <linux/slab.h>
  24. #include <linux/backing-dev.h>
  25. #include <linux/debugfs.h>
  26. #include <linux/uaccess.h>
  27. /*
  28. * Each block ramdisk device has a xarray brd_pages of pages that stores
  29. * the pages containing the block device's contents.
  30. */
  31. struct brd_device {
  32. int brd_number;
  33. struct gendisk *brd_disk;
  34. struct list_head brd_list;
  35. /*
  36. * Backing store of pages. This is the contents of the block device.
  37. */
  38. struct xarray brd_pages;
  39. u64 brd_nr_pages;
  40. };
  41. /*
  42. * Look up and return a brd's page for a given sector.
  43. */
  44. static struct page *brd_lookup_page(struct brd_device *brd, sector_t sector)
  45. {
  46. return xa_load(&brd->brd_pages, sector >> PAGE_SECTORS_SHIFT);
  47. }
  48. /*
  49. * Insert a new page for a given sector, if one does not already exist.
  50. */
  51. static int brd_insert_page(struct brd_device *brd, sector_t sector, gfp_t gfp)
  52. {
  53. pgoff_t idx = sector >> PAGE_SECTORS_SHIFT;
  54. struct page *page;
  55. int ret = 0;
  56. page = brd_lookup_page(brd, sector);
  57. if (page)
  58. return 0;
  59. page = alloc_page(gfp | __GFP_ZERO | __GFP_HIGHMEM);
  60. if (!page)
  61. return -ENOMEM;
  62. xa_lock(&brd->brd_pages);
  63. ret = __xa_insert(&brd->brd_pages, idx, page, gfp);
  64. if (!ret)
  65. brd->brd_nr_pages++;
  66. xa_unlock(&brd->brd_pages);
  67. if (ret < 0) {
  68. __free_page(page);
  69. if (ret == -EBUSY)
  70. ret = 0;
  71. }
  72. return ret;
  73. }
  74. /*
  75. * Free all backing store pages and xarray. This must only be called when
  76. * there are no other users of the device.
  77. */
  78. static void brd_free_pages(struct brd_device *brd)
  79. {
  80. struct page *page;
  81. pgoff_t idx;
  82. xa_for_each(&brd->brd_pages, idx, page) {
  83. __free_page(page);
  84. cond_resched();
  85. }
  86. xa_destroy(&brd->brd_pages);
  87. }
  88. /*
  89. * copy_to_brd_setup must be called before copy_to_brd. It may sleep.
  90. */
  91. static int copy_to_brd_setup(struct brd_device *brd, sector_t sector, size_t n,
  92. gfp_t gfp)
  93. {
  94. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  95. size_t copy;
  96. int ret;
  97. copy = min_t(size_t, n, PAGE_SIZE - offset);
  98. ret = brd_insert_page(brd, sector, gfp);
  99. if (ret)
  100. return ret;
  101. if (copy < n) {
  102. sector += copy >> SECTOR_SHIFT;
  103. ret = brd_insert_page(brd, sector, gfp);
  104. }
  105. return ret;
  106. }
  107. /*
  108. * Copy n bytes from src to the brd starting at sector. Does not sleep.
  109. */
  110. static void copy_to_brd(struct brd_device *brd, const void *src,
  111. sector_t sector, size_t n)
  112. {
  113. struct page *page;
  114. void *dst;
  115. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  116. size_t copy;
  117. copy = min_t(size_t, n, PAGE_SIZE - offset);
  118. page = brd_lookup_page(brd, sector);
  119. BUG_ON(!page);
  120. dst = kmap_atomic(page);
  121. memcpy(dst + offset, src, copy);
  122. kunmap_atomic(dst);
  123. if (copy < n) {
  124. src += copy;
  125. sector += copy >> SECTOR_SHIFT;
  126. copy = n - copy;
  127. page = brd_lookup_page(brd, sector);
  128. BUG_ON(!page);
  129. dst = kmap_atomic(page);
  130. memcpy(dst, src, copy);
  131. kunmap_atomic(dst);
  132. }
  133. }
  134. /*
  135. * Copy n bytes to dst from the brd starting at sector. Does not sleep.
  136. */
  137. static void copy_from_brd(void *dst, struct brd_device *brd,
  138. sector_t sector, size_t n)
  139. {
  140. struct page *page;
  141. void *src;
  142. unsigned int offset = (sector & (PAGE_SECTORS-1)) << SECTOR_SHIFT;
  143. size_t copy;
  144. copy = min_t(size_t, n, PAGE_SIZE - offset);
  145. page = brd_lookup_page(brd, sector);
  146. if (page) {
  147. src = kmap_atomic(page);
  148. memcpy(dst, src + offset, copy);
  149. kunmap_atomic(src);
  150. } else
  151. memset(dst, 0, copy);
  152. if (copy < n) {
  153. dst += copy;
  154. sector += copy >> SECTOR_SHIFT;
  155. copy = n - copy;
  156. page = brd_lookup_page(brd, sector);
  157. if (page) {
  158. src = kmap_atomic(page);
  159. memcpy(dst, src, copy);
  160. kunmap_atomic(src);
  161. } else
  162. memset(dst, 0, copy);
  163. }
  164. }
  165. /*
  166. * Process a single bvec of a bio.
  167. */
  168. static int brd_do_bvec(struct brd_device *brd, struct page *page,
  169. unsigned int len, unsigned int off, blk_opf_t opf,
  170. sector_t sector)
  171. {
  172. void *mem;
  173. int err = 0;
  174. if (op_is_write(opf)) {
  175. /*
  176. * Must use NOIO because we don't want to recurse back into the
  177. * block or filesystem layers from page reclaim.
  178. */
  179. gfp_t gfp = opf & REQ_NOWAIT ? GFP_NOWAIT : GFP_NOIO;
  180. err = copy_to_brd_setup(brd, sector, len, gfp);
  181. if (err)
  182. goto out;
  183. }
  184. mem = kmap_atomic(page);
  185. if (!op_is_write(opf)) {
  186. copy_from_brd(mem + off, brd, sector, len);
  187. flush_dcache_page(page);
  188. } else {
  189. flush_dcache_page(page);
  190. copy_to_brd(brd, mem + off, sector, len);
  191. }
  192. kunmap_atomic(mem);
  193. out:
  194. return err;
  195. }
  196. static void brd_do_discard(struct brd_device *brd, sector_t sector, u32 size)
  197. {
  198. sector_t aligned_sector = (sector + PAGE_SECTORS) & ~PAGE_SECTORS;
  199. struct page *page;
  200. size -= (aligned_sector - sector) * SECTOR_SIZE;
  201. xa_lock(&brd->brd_pages);
  202. while (size >= PAGE_SIZE && aligned_sector < rd_size * 2) {
  203. page = __xa_erase(&brd->brd_pages, aligned_sector >> PAGE_SECTORS_SHIFT);
  204. if (page) {
  205. __free_page(page);
  206. brd->brd_nr_pages--;
  207. }
  208. aligned_sector += PAGE_SECTORS;
  209. size -= PAGE_SIZE;
  210. }
  211. xa_unlock(&brd->brd_pages);
  212. }
  213. static void brd_submit_bio(struct bio *bio)
  214. {
  215. struct brd_device *brd = bio->bi_bdev->bd_disk->private_data;
  216. sector_t sector = bio->bi_iter.bi_sector;
  217. struct bio_vec bvec;
  218. struct bvec_iter iter;
  219. if (unlikely(op_is_discard(bio->bi_opf))) {
  220. brd_do_discard(brd, sector, bio->bi_iter.bi_size);
  221. bio_endio(bio);
  222. return;
  223. }
  224. bio_for_each_segment(bvec, bio, iter) {
  225. unsigned int len = bvec.bv_len;
  226. int err;
  227. /* Don't support un-aligned buffer */
  228. WARN_ON_ONCE((bvec.bv_offset & (SECTOR_SIZE - 1)) ||
  229. (len & (SECTOR_SIZE - 1)));
  230. err = brd_do_bvec(brd, bvec.bv_page, len, bvec.bv_offset,
  231. bio->bi_opf, sector);
  232. if (err) {
  233. if (err == -ENOMEM && bio->bi_opf & REQ_NOWAIT) {
  234. bio_wouldblock_error(bio);
  235. return;
  236. }
  237. bio_io_error(bio);
  238. return;
  239. }
  240. sector += len >> SECTOR_SHIFT;
  241. }
  242. bio_endio(bio);
  243. }
  244. static const struct block_device_operations brd_fops = {
  245. .owner = THIS_MODULE,
  246. .submit_bio = brd_submit_bio,
  247. };
  248. /*
  249. * And now the modules code and kernel interface.
  250. */
  251. static int rd_nr = CONFIG_BLK_DEV_RAM_COUNT;
  252. module_param(rd_nr, int, 0444);
  253. MODULE_PARM_DESC(rd_nr, "Maximum number of brd devices");
  254. unsigned long rd_size = CONFIG_BLK_DEV_RAM_SIZE;
  255. module_param(rd_size, ulong, 0444);
  256. MODULE_PARM_DESC(rd_size, "Size of each RAM disk in kbytes.");
  257. static int max_part = 1;
  258. module_param(max_part, int, 0444);
  259. MODULE_PARM_DESC(max_part, "Num Minors to reserve between devices");
  260. MODULE_DESCRIPTION("Ram backed block device driver");
  261. MODULE_LICENSE("GPL");
  262. MODULE_ALIAS_BLOCKDEV_MAJOR(RAMDISK_MAJOR);
  263. MODULE_ALIAS("rd");
  264. #ifndef MODULE
  265. /* Legacy boot options - nonmodular */
  266. static int __init ramdisk_size(char *str)
  267. {
  268. rd_size = simple_strtol(str, NULL, 0);
  269. return 1;
  270. }
  271. __setup("ramdisk_size=", ramdisk_size);
  272. #endif
  273. /*
  274. * The device scheme is derived from loop.c. Keep them in synch where possible
  275. * (should share code eventually).
  276. */
  277. static LIST_HEAD(brd_devices);
  278. static DEFINE_MUTEX(brd_devices_mutex);
  279. static struct dentry *brd_debugfs_dir;
  280. static struct brd_device *brd_find_or_alloc_device(int i)
  281. {
  282. struct brd_device *brd;
  283. mutex_lock(&brd_devices_mutex);
  284. list_for_each_entry(brd, &brd_devices, brd_list) {
  285. if (brd->brd_number == i) {
  286. mutex_unlock(&brd_devices_mutex);
  287. return ERR_PTR(-EEXIST);
  288. }
  289. }
  290. brd = kzalloc(sizeof(*brd), GFP_KERNEL);
  291. if (!brd) {
  292. mutex_unlock(&brd_devices_mutex);
  293. return ERR_PTR(-ENOMEM);
  294. }
  295. brd->brd_number = i;
  296. list_add_tail(&brd->brd_list, &brd_devices);
  297. mutex_unlock(&brd_devices_mutex);
  298. return brd;
  299. }
  300. static void brd_free_device(struct brd_device *brd)
  301. {
  302. mutex_lock(&brd_devices_mutex);
  303. list_del(&brd->brd_list);
  304. mutex_unlock(&brd_devices_mutex);
  305. kfree(brd);
  306. }
  307. static int brd_alloc(int i)
  308. {
  309. struct brd_device *brd;
  310. struct gendisk *disk;
  311. char buf[DISK_NAME_LEN];
  312. int err = -ENOMEM;
  313. struct queue_limits lim = {
  314. /*
  315. * This is so fdisk will align partitions on 4k, because of
  316. * direct_access API needing 4k alignment, returning a PFN
  317. * (This is only a problem on very small devices <= 4M,
  318. * otherwise fdisk will align on 1M. Regardless this call
  319. * is harmless)
  320. */
  321. .physical_block_size = PAGE_SIZE,
  322. .max_hw_discard_sectors = UINT_MAX,
  323. .max_discard_segments = 1,
  324. .discard_granularity = PAGE_SIZE,
  325. .features = BLK_FEAT_SYNCHRONOUS |
  326. BLK_FEAT_NOWAIT,
  327. };
  328. brd = brd_find_or_alloc_device(i);
  329. if (IS_ERR(brd))
  330. return PTR_ERR(brd);
  331. xa_init(&brd->brd_pages);
  332. snprintf(buf, DISK_NAME_LEN, "ram%d", i);
  333. if (!IS_ERR_OR_NULL(brd_debugfs_dir))
  334. debugfs_create_u64(buf, 0444, brd_debugfs_dir,
  335. &brd->brd_nr_pages);
  336. disk = brd->brd_disk = blk_alloc_disk(&lim, NUMA_NO_NODE);
  337. if (IS_ERR(disk)) {
  338. err = PTR_ERR(disk);
  339. goto out_free_dev;
  340. }
  341. disk->major = RAMDISK_MAJOR;
  342. disk->first_minor = i * max_part;
  343. disk->minors = max_part;
  344. disk->fops = &brd_fops;
  345. disk->private_data = brd;
  346. strscpy(disk->disk_name, buf, DISK_NAME_LEN);
  347. set_capacity(disk, rd_size * 2);
  348. err = add_disk(disk);
  349. if (err)
  350. goto out_cleanup_disk;
  351. return 0;
  352. out_cleanup_disk:
  353. put_disk(disk);
  354. out_free_dev:
  355. brd_free_device(brd);
  356. return err;
  357. }
  358. static void brd_probe(dev_t dev)
  359. {
  360. brd_alloc(MINOR(dev) / max_part);
  361. }
  362. static void brd_cleanup(void)
  363. {
  364. struct brd_device *brd, *next;
  365. debugfs_remove_recursive(brd_debugfs_dir);
  366. list_for_each_entry_safe(brd, next, &brd_devices, brd_list) {
  367. del_gendisk(brd->brd_disk);
  368. put_disk(brd->brd_disk);
  369. brd_free_pages(brd);
  370. brd_free_device(brd);
  371. }
  372. }
  373. static inline void brd_check_and_reset_par(void)
  374. {
  375. if (unlikely(!max_part))
  376. max_part = 1;
  377. /*
  378. * make sure 'max_part' can be divided exactly by (1U << MINORBITS),
  379. * otherwise, it is possiable to get same dev_t when adding partitions.
  380. */
  381. if ((1U << MINORBITS) % max_part != 0)
  382. max_part = 1UL << fls(max_part);
  383. if (max_part > DISK_MAX_PARTS) {
  384. pr_info("brd: max_part can't be larger than %d, reset max_part = %d.\n",
  385. DISK_MAX_PARTS, DISK_MAX_PARTS);
  386. max_part = DISK_MAX_PARTS;
  387. }
  388. }
  389. static int __init brd_init(void)
  390. {
  391. int err, i;
  392. /*
  393. * brd module now has a feature to instantiate underlying device
  394. * structure on-demand, provided that there is an access dev node.
  395. *
  396. * (1) if rd_nr is specified, create that many upfront. else
  397. * it defaults to CONFIG_BLK_DEV_RAM_COUNT
  398. * (2) User can further extend brd devices by create dev node themselves
  399. * and have kernel automatically instantiate actual device
  400. * on-demand. Example:
  401. * mknod /path/devnod_name b 1 X # 1 is the rd major
  402. * fdisk -l /path/devnod_name
  403. * If (X / max_part) was not already created it will be created
  404. * dynamically.
  405. */
  406. brd_check_and_reset_par();
  407. brd_debugfs_dir = debugfs_create_dir("ramdisk_pages", NULL);
  408. if (__register_blkdev(RAMDISK_MAJOR, "ramdisk", brd_probe)) {
  409. err = -EIO;
  410. goto out_free;
  411. }
  412. for (i = 0; i < rd_nr; i++)
  413. brd_alloc(i);
  414. pr_info("brd: module loaded\n");
  415. return 0;
  416. out_free:
  417. brd_cleanup();
  418. pr_info("brd: module NOT loaded !!!\n");
  419. return err;
  420. }
  421. static void __exit brd_exit(void)
  422. {
  423. unregister_blkdev(RAMDISK_MAJOR, "ramdisk");
  424. brd_cleanup();
  425. pr_info("brd: module unloaded\n");
  426. }
  427. module_init(brd_init);
  428. module_exit(brd_exit);