mediatek-cpufreq-hw.c 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (c) 2020 MediaTek Inc.
  4. */
  5. #include <linux/bitfield.h>
  6. #include <linux/cpufreq.h>
  7. #include <linux/energy_model.h>
  8. #include <linux/init.h>
  9. #include <linux/iopoll.h>
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/of.h>
  13. #include <linux/of_platform.h>
  14. #include <linux/platform_device.h>
  15. #include <linux/regulator/consumer.h>
  16. #include <linux/slab.h>
  17. #define LUT_MAX_ENTRIES 32U
  18. #define LUT_FREQ GENMASK(11, 0)
  19. #define LUT_ROW_SIZE 0x4
  20. #define CPUFREQ_HW_STATUS BIT(0)
  21. #define SVS_HW_STATUS BIT(1)
  22. #define POLL_USEC 1000
  23. #define TIMEOUT_USEC 300000
  24. enum {
  25. REG_FREQ_LUT_TABLE,
  26. REG_FREQ_ENABLE,
  27. REG_FREQ_PERF_STATE,
  28. REG_FREQ_HW_STATE,
  29. REG_EM_POWER_TBL,
  30. REG_FREQ_LATENCY,
  31. REG_ARRAY_SIZE,
  32. };
  33. struct mtk_cpufreq_data {
  34. struct cpufreq_frequency_table *table;
  35. void __iomem *reg_bases[REG_ARRAY_SIZE];
  36. struct resource *res;
  37. void __iomem *base;
  38. int nr_opp;
  39. };
  40. static const u16 cpufreq_mtk_offsets[REG_ARRAY_SIZE] = {
  41. [REG_FREQ_LUT_TABLE] = 0x0,
  42. [REG_FREQ_ENABLE] = 0x84,
  43. [REG_FREQ_PERF_STATE] = 0x88,
  44. [REG_FREQ_HW_STATE] = 0x8c,
  45. [REG_EM_POWER_TBL] = 0x90,
  46. [REG_FREQ_LATENCY] = 0x110,
  47. };
  48. static int __maybe_unused
  49. mtk_cpufreq_get_cpu_power(struct device *cpu_dev, unsigned long *uW,
  50. unsigned long *KHz)
  51. {
  52. struct mtk_cpufreq_data *data;
  53. struct cpufreq_policy *policy;
  54. int i;
  55. policy = cpufreq_cpu_get_raw(cpu_dev->id);
  56. if (!policy)
  57. return -EINVAL;
  58. data = policy->driver_data;
  59. for (i = 0; i < data->nr_opp; i++) {
  60. if (data->table[i].frequency < *KHz)
  61. break;
  62. }
  63. i--;
  64. *KHz = data->table[i].frequency;
  65. /* Provide micro-Watts value to the Energy Model */
  66. *uW = readl_relaxed(data->reg_bases[REG_EM_POWER_TBL] +
  67. i * LUT_ROW_SIZE);
  68. return 0;
  69. }
  70. static int mtk_cpufreq_hw_target_index(struct cpufreq_policy *policy,
  71. unsigned int index)
  72. {
  73. struct mtk_cpufreq_data *data = policy->driver_data;
  74. writel_relaxed(index, data->reg_bases[REG_FREQ_PERF_STATE]);
  75. return 0;
  76. }
  77. static unsigned int mtk_cpufreq_hw_get(unsigned int cpu)
  78. {
  79. struct mtk_cpufreq_data *data;
  80. struct cpufreq_policy *policy;
  81. unsigned int index;
  82. policy = cpufreq_cpu_get_raw(cpu);
  83. if (!policy)
  84. return 0;
  85. data = policy->driver_data;
  86. index = readl_relaxed(data->reg_bases[REG_FREQ_PERF_STATE]);
  87. index = min(index, LUT_MAX_ENTRIES - 1);
  88. return data->table[index].frequency;
  89. }
  90. static unsigned int mtk_cpufreq_hw_fast_switch(struct cpufreq_policy *policy,
  91. unsigned int target_freq)
  92. {
  93. struct mtk_cpufreq_data *data = policy->driver_data;
  94. unsigned int index;
  95. index = cpufreq_table_find_index_dl(policy, target_freq, false);
  96. writel_relaxed(index, data->reg_bases[REG_FREQ_PERF_STATE]);
  97. return policy->freq_table[index].frequency;
  98. }
  99. static int mtk_cpu_create_freq_table(struct platform_device *pdev,
  100. struct mtk_cpufreq_data *data)
  101. {
  102. struct device *dev = &pdev->dev;
  103. u32 temp, i, freq, prev_freq = 0;
  104. void __iomem *base_table;
  105. data->table = devm_kcalloc(dev, LUT_MAX_ENTRIES + 1,
  106. sizeof(*data->table), GFP_KERNEL);
  107. if (!data->table)
  108. return -ENOMEM;
  109. base_table = data->reg_bases[REG_FREQ_LUT_TABLE];
  110. for (i = 0; i < LUT_MAX_ENTRIES; i++) {
  111. temp = readl_relaxed(base_table + (i * LUT_ROW_SIZE));
  112. freq = FIELD_GET(LUT_FREQ, temp) * 1000;
  113. if (freq == prev_freq)
  114. break;
  115. data->table[i].frequency = freq;
  116. dev_dbg(dev, "index=%d freq=%d\n", i, data->table[i].frequency);
  117. prev_freq = freq;
  118. }
  119. data->table[i].frequency = CPUFREQ_TABLE_END;
  120. data->nr_opp = i;
  121. return 0;
  122. }
  123. static int mtk_cpu_resources_init(struct platform_device *pdev,
  124. struct cpufreq_policy *policy,
  125. const u16 *offsets)
  126. {
  127. struct mtk_cpufreq_data *data;
  128. struct device *dev = &pdev->dev;
  129. struct resource *res;
  130. struct of_phandle_args args;
  131. void __iomem *base;
  132. int ret, i;
  133. int index;
  134. data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
  135. if (!data)
  136. return -ENOMEM;
  137. ret = of_perf_domain_get_sharing_cpumask(policy->cpu, "performance-domains",
  138. "#performance-domain-cells",
  139. policy->cpus, &args);
  140. if (ret < 0)
  141. return ret;
  142. index = args.args[0];
  143. of_node_put(args.np);
  144. res = platform_get_resource(pdev, IORESOURCE_MEM, index);
  145. if (!res) {
  146. dev_err(dev, "failed to get mem resource %d\n", index);
  147. return -ENODEV;
  148. }
  149. if (!request_mem_region(res->start, resource_size(res), res->name)) {
  150. dev_err(dev, "failed to request resource %pR\n", res);
  151. return -EBUSY;
  152. }
  153. base = ioremap(res->start, resource_size(res));
  154. if (!base) {
  155. dev_err(dev, "failed to map resource %pR\n", res);
  156. ret = -ENOMEM;
  157. goto release_region;
  158. }
  159. data->base = base;
  160. data->res = res;
  161. for (i = REG_FREQ_LUT_TABLE; i < REG_ARRAY_SIZE; i++)
  162. data->reg_bases[i] = base + offsets[i];
  163. ret = mtk_cpu_create_freq_table(pdev, data);
  164. if (ret) {
  165. dev_info(dev, "Domain-%d failed to create freq table\n", index);
  166. return ret;
  167. }
  168. policy->freq_table = data->table;
  169. policy->driver_data = data;
  170. return 0;
  171. release_region:
  172. release_mem_region(res->start, resource_size(res));
  173. return ret;
  174. }
  175. static int mtk_cpufreq_hw_cpu_init(struct cpufreq_policy *policy)
  176. {
  177. struct platform_device *pdev = cpufreq_get_driver_data();
  178. int sig, pwr_hw = CPUFREQ_HW_STATUS | SVS_HW_STATUS;
  179. struct mtk_cpufreq_data *data;
  180. unsigned int latency;
  181. int ret;
  182. /* Get the bases of cpufreq for domains */
  183. ret = mtk_cpu_resources_init(pdev, policy, platform_get_drvdata(pdev));
  184. if (ret) {
  185. dev_info(&pdev->dev, "CPUFreq resource init failed\n");
  186. return ret;
  187. }
  188. data = policy->driver_data;
  189. latency = readl_relaxed(data->reg_bases[REG_FREQ_LATENCY]) * 1000;
  190. if (!latency)
  191. latency = CPUFREQ_ETERNAL;
  192. policy->cpuinfo.transition_latency = latency;
  193. policy->fast_switch_possible = true;
  194. /* HW should be in enabled state to proceed now */
  195. writel_relaxed(0x1, data->reg_bases[REG_FREQ_ENABLE]);
  196. if (readl_poll_timeout(data->reg_bases[REG_FREQ_HW_STATE], sig,
  197. (sig & pwr_hw) == pwr_hw, POLL_USEC,
  198. TIMEOUT_USEC)) {
  199. if (!(sig & CPUFREQ_HW_STATUS)) {
  200. pr_info("cpufreq hardware of CPU%d is not enabled\n",
  201. policy->cpu);
  202. return -ENODEV;
  203. }
  204. pr_info("SVS of CPU%d is not enabled\n", policy->cpu);
  205. }
  206. return 0;
  207. }
  208. static void mtk_cpufreq_hw_cpu_exit(struct cpufreq_policy *policy)
  209. {
  210. struct mtk_cpufreq_data *data = policy->driver_data;
  211. struct resource *res = data->res;
  212. void __iomem *base = data->base;
  213. /* HW should be in paused state now */
  214. writel_relaxed(0x0, data->reg_bases[REG_FREQ_ENABLE]);
  215. iounmap(base);
  216. release_mem_region(res->start, resource_size(res));
  217. }
  218. static void mtk_cpufreq_register_em(struct cpufreq_policy *policy)
  219. {
  220. struct em_data_callback em_cb = EM_DATA_CB(mtk_cpufreq_get_cpu_power);
  221. struct mtk_cpufreq_data *data = policy->driver_data;
  222. em_dev_register_perf_domain(get_cpu_device(policy->cpu), data->nr_opp,
  223. &em_cb, policy->cpus, true);
  224. }
  225. static struct cpufreq_driver cpufreq_mtk_hw_driver = {
  226. .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
  227. CPUFREQ_HAVE_GOVERNOR_PER_POLICY |
  228. CPUFREQ_IS_COOLING_DEV,
  229. .verify = cpufreq_generic_frequency_table_verify,
  230. .target_index = mtk_cpufreq_hw_target_index,
  231. .get = mtk_cpufreq_hw_get,
  232. .init = mtk_cpufreq_hw_cpu_init,
  233. .exit = mtk_cpufreq_hw_cpu_exit,
  234. .register_em = mtk_cpufreq_register_em,
  235. .fast_switch = mtk_cpufreq_hw_fast_switch,
  236. .name = "mtk-cpufreq-hw",
  237. .attr = cpufreq_generic_attr,
  238. };
  239. static int mtk_cpufreq_hw_driver_probe(struct platform_device *pdev)
  240. {
  241. const void *data;
  242. int ret, cpu;
  243. struct device *cpu_dev;
  244. struct regulator *cpu_reg;
  245. /* Make sure that all CPU supplies are available before proceeding. */
  246. for_each_possible_cpu(cpu) {
  247. cpu_dev = get_cpu_device(cpu);
  248. if (!cpu_dev)
  249. return dev_err_probe(&pdev->dev, -EPROBE_DEFER,
  250. "Failed to get cpu%d device\n", cpu);
  251. cpu_reg = devm_regulator_get(cpu_dev, "cpu");
  252. if (IS_ERR(cpu_reg))
  253. return dev_err_probe(&pdev->dev, PTR_ERR(cpu_reg),
  254. "CPU%d regulator get failed\n", cpu);
  255. }
  256. data = of_device_get_match_data(&pdev->dev);
  257. if (!data)
  258. return -EINVAL;
  259. platform_set_drvdata(pdev, (void *) data);
  260. cpufreq_mtk_hw_driver.driver_data = pdev;
  261. ret = cpufreq_register_driver(&cpufreq_mtk_hw_driver);
  262. if (ret)
  263. dev_err(&pdev->dev, "CPUFreq HW driver failed to register\n");
  264. return ret;
  265. }
  266. static void mtk_cpufreq_hw_driver_remove(struct platform_device *pdev)
  267. {
  268. cpufreq_unregister_driver(&cpufreq_mtk_hw_driver);
  269. }
  270. static const struct of_device_id mtk_cpufreq_hw_match[] = {
  271. { .compatible = "mediatek,cpufreq-hw", .data = &cpufreq_mtk_offsets },
  272. {}
  273. };
  274. MODULE_DEVICE_TABLE(of, mtk_cpufreq_hw_match);
  275. static struct platform_driver mtk_cpufreq_hw_driver = {
  276. .probe = mtk_cpufreq_hw_driver_probe,
  277. .remove_new = mtk_cpufreq_hw_driver_remove,
  278. .driver = {
  279. .name = "mtk-cpufreq-hw",
  280. .of_match_table = mtk_cpufreq_hw_match,
  281. },
  282. };
  283. module_platform_driver(mtk_cpufreq_hw_driver);
  284. MODULE_AUTHOR("Hector Yuan <hector.yuan@mediatek.com>");
  285. MODULE_DESCRIPTION("Mediatek cpufreq-hw driver");
  286. MODULE_LICENSE("GPL v2");