stm32-cryp.c 68 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) STMicroelectronics SA 2017
  4. * Author: Fabien Dessenne <fabien.dessenne@st.com>
  5. * Ux500 support taken from snippets in the old Ux500 cryp driver
  6. */
  7. #include <crypto/aes.h>
  8. #include <crypto/engine.h>
  9. #include <crypto/internal/aead.h>
  10. #include <crypto/internal/des.h>
  11. #include <crypto/internal/skcipher.h>
  12. #include <crypto/scatterwalk.h>
  13. #include <linux/bottom_half.h>
  14. #include <linux/clk.h>
  15. #include <linux/delay.h>
  16. #include <linux/dma-mapping.h>
  17. #include <linux/dmaengine.h>
  18. #include <linux/err.h>
  19. #include <linux/iopoll.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/of.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/pm_runtime.h>
  26. #include <linux/reset.h>
  27. #include <linux/string.h>
  28. #define DRIVER_NAME "stm32-cryp"
  29. /* Bit [0] encrypt / decrypt */
  30. #define FLG_ENCRYPT BIT(0)
  31. /* Bit [8..1] algo & operation mode */
  32. #define FLG_AES BIT(1)
  33. #define FLG_DES BIT(2)
  34. #define FLG_TDES BIT(3)
  35. #define FLG_ECB BIT(4)
  36. #define FLG_CBC BIT(5)
  37. #define FLG_CTR BIT(6)
  38. #define FLG_GCM BIT(7)
  39. #define FLG_CCM BIT(8)
  40. /* Mode mask = bits [15..0] */
  41. #define FLG_MODE_MASK GENMASK(15, 0)
  42. /* Bit [31..16] status */
  43. #define FLG_IN_OUT_DMA BIT(16)
  44. #define FLG_HEADER_DMA BIT(17)
  45. /* Registers */
  46. #define CRYP_CR 0x00000000
  47. #define CRYP_SR 0x00000004
  48. #define CRYP_DIN 0x00000008
  49. #define CRYP_DOUT 0x0000000C
  50. #define CRYP_DMACR 0x00000010
  51. #define CRYP_IMSCR 0x00000014
  52. #define CRYP_RISR 0x00000018
  53. #define CRYP_MISR 0x0000001C
  54. #define CRYP_K0LR 0x00000020
  55. #define CRYP_K0RR 0x00000024
  56. #define CRYP_K1LR 0x00000028
  57. #define CRYP_K1RR 0x0000002C
  58. #define CRYP_K2LR 0x00000030
  59. #define CRYP_K2RR 0x00000034
  60. #define CRYP_K3LR 0x00000038
  61. #define CRYP_K3RR 0x0000003C
  62. #define CRYP_IV0LR 0x00000040
  63. #define CRYP_IV0RR 0x00000044
  64. #define CRYP_IV1LR 0x00000048
  65. #define CRYP_IV1RR 0x0000004C
  66. #define CRYP_CSGCMCCM0R 0x00000050
  67. #define CRYP_CSGCM0R 0x00000070
  68. #define UX500_CRYP_CR 0x00000000
  69. #define UX500_CRYP_SR 0x00000004
  70. #define UX500_CRYP_DIN 0x00000008
  71. #define UX500_CRYP_DINSIZE 0x0000000C
  72. #define UX500_CRYP_DOUT 0x00000010
  73. #define UX500_CRYP_DOUSIZE 0x00000014
  74. #define UX500_CRYP_DMACR 0x00000018
  75. #define UX500_CRYP_IMSC 0x0000001C
  76. #define UX500_CRYP_RIS 0x00000020
  77. #define UX500_CRYP_MIS 0x00000024
  78. #define UX500_CRYP_K1L 0x00000028
  79. #define UX500_CRYP_K1R 0x0000002C
  80. #define UX500_CRYP_K2L 0x00000030
  81. #define UX500_CRYP_K2R 0x00000034
  82. #define UX500_CRYP_K3L 0x00000038
  83. #define UX500_CRYP_K3R 0x0000003C
  84. #define UX500_CRYP_K4L 0x00000040
  85. #define UX500_CRYP_K4R 0x00000044
  86. #define UX500_CRYP_IV0L 0x00000048
  87. #define UX500_CRYP_IV0R 0x0000004C
  88. #define UX500_CRYP_IV1L 0x00000050
  89. #define UX500_CRYP_IV1R 0x00000054
  90. /* Registers values */
  91. #define CR_DEC_NOT_ENC 0x00000004
  92. #define CR_TDES_ECB 0x00000000
  93. #define CR_TDES_CBC 0x00000008
  94. #define CR_DES_ECB 0x00000010
  95. #define CR_DES_CBC 0x00000018
  96. #define CR_AES_ECB 0x00000020
  97. #define CR_AES_CBC 0x00000028
  98. #define CR_AES_CTR 0x00000030
  99. #define CR_AES_KP 0x00000038 /* Not on Ux500 */
  100. #define CR_AES_XTS 0x00000038 /* Only on Ux500 */
  101. #define CR_AES_GCM 0x00080000
  102. #define CR_AES_CCM 0x00080008
  103. #define CR_AES_UNKNOWN 0xFFFFFFFF
  104. #define CR_ALGO_MASK 0x00080038
  105. #define CR_DATA32 0x00000000
  106. #define CR_DATA16 0x00000040
  107. #define CR_DATA8 0x00000080
  108. #define CR_DATA1 0x000000C0
  109. #define CR_KEY128 0x00000000
  110. #define CR_KEY192 0x00000100
  111. #define CR_KEY256 0x00000200
  112. #define CR_KEYRDEN 0x00000400 /* Only on Ux500 */
  113. #define CR_KSE 0x00000800 /* Only on Ux500 */
  114. #define CR_FFLUSH 0x00004000
  115. #define CR_CRYPEN 0x00008000
  116. #define CR_PH_INIT 0x00000000
  117. #define CR_PH_HEADER 0x00010000
  118. #define CR_PH_PAYLOAD 0x00020000
  119. #define CR_PH_FINAL 0x00030000
  120. #define CR_PH_MASK 0x00030000
  121. #define CR_NBPBL_SHIFT 20
  122. #define SR_IFNF BIT(1)
  123. #define SR_OFNE BIT(2)
  124. #define SR_BUSY BIT(8)
  125. #define DMACR_DIEN BIT(0)
  126. #define DMACR_DOEN BIT(1)
  127. #define IMSCR_IN BIT(0)
  128. #define IMSCR_OUT BIT(1)
  129. #define MISR_IN BIT(0)
  130. #define MISR_OUT BIT(1)
  131. /* Misc */
  132. #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
  133. #define GCM_CTR_INIT 2
  134. #define CRYP_AUTOSUSPEND_DELAY 50
  135. #define CRYP_DMA_BURST_REG 4
  136. enum stm32_dma_mode {
  137. NO_DMA,
  138. DMA_PLAIN_SG,
  139. DMA_NEED_SG_TRUNC
  140. };
  141. struct stm32_cryp_caps {
  142. bool aeads_support;
  143. bool linear_aes_key;
  144. bool kp_mode;
  145. bool iv_protection;
  146. bool swap_final;
  147. bool padding_wa;
  148. u32 cr;
  149. u32 sr;
  150. u32 din;
  151. u32 dout;
  152. u32 dmacr;
  153. u32 imsc;
  154. u32 mis;
  155. u32 k1l;
  156. u32 k1r;
  157. u32 k3r;
  158. u32 iv0l;
  159. u32 iv0r;
  160. u32 iv1l;
  161. u32 iv1r;
  162. };
  163. struct stm32_cryp_ctx {
  164. struct stm32_cryp *cryp;
  165. int keylen;
  166. __be32 key[AES_KEYSIZE_256 / sizeof(u32)];
  167. unsigned long flags;
  168. };
  169. struct stm32_cryp_reqctx {
  170. unsigned long mode;
  171. };
  172. struct stm32_cryp {
  173. struct list_head list;
  174. struct device *dev;
  175. void __iomem *regs;
  176. phys_addr_t phys_base;
  177. struct clk *clk;
  178. unsigned long flags;
  179. u32 irq_status;
  180. const struct stm32_cryp_caps *caps;
  181. struct stm32_cryp_ctx *ctx;
  182. struct crypto_engine *engine;
  183. struct skcipher_request *req;
  184. struct aead_request *areq;
  185. size_t authsize;
  186. size_t hw_blocksize;
  187. size_t payload_in;
  188. size_t header_in;
  189. size_t payload_out;
  190. /* DMA process fields */
  191. struct scatterlist *in_sg;
  192. struct scatterlist *header_sg;
  193. struct scatterlist *out_sg;
  194. size_t in_sg_len;
  195. size_t header_sg_len;
  196. size_t out_sg_len;
  197. struct completion dma_completion;
  198. struct dma_chan *dma_lch_in;
  199. struct dma_chan *dma_lch_out;
  200. enum stm32_dma_mode dma_mode;
  201. /* IT process fields */
  202. struct scatter_walk in_walk;
  203. struct scatter_walk out_walk;
  204. __be32 last_ctr[4];
  205. u32 gcm_ctr;
  206. };
  207. struct stm32_cryp_list {
  208. struct list_head dev_list;
  209. spinlock_t lock; /* protect dev_list */
  210. };
  211. static struct stm32_cryp_list cryp_list = {
  212. .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
  213. .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
  214. };
  215. static inline bool is_aes(struct stm32_cryp *cryp)
  216. {
  217. return cryp->flags & FLG_AES;
  218. }
  219. static inline bool is_des(struct stm32_cryp *cryp)
  220. {
  221. return cryp->flags & FLG_DES;
  222. }
  223. static inline bool is_tdes(struct stm32_cryp *cryp)
  224. {
  225. return cryp->flags & FLG_TDES;
  226. }
  227. static inline bool is_ecb(struct stm32_cryp *cryp)
  228. {
  229. return cryp->flags & FLG_ECB;
  230. }
  231. static inline bool is_cbc(struct stm32_cryp *cryp)
  232. {
  233. return cryp->flags & FLG_CBC;
  234. }
  235. static inline bool is_ctr(struct stm32_cryp *cryp)
  236. {
  237. return cryp->flags & FLG_CTR;
  238. }
  239. static inline bool is_gcm(struct stm32_cryp *cryp)
  240. {
  241. return cryp->flags & FLG_GCM;
  242. }
  243. static inline bool is_ccm(struct stm32_cryp *cryp)
  244. {
  245. return cryp->flags & FLG_CCM;
  246. }
  247. static inline bool is_encrypt(struct stm32_cryp *cryp)
  248. {
  249. return cryp->flags & FLG_ENCRYPT;
  250. }
  251. static inline bool is_decrypt(struct stm32_cryp *cryp)
  252. {
  253. return !is_encrypt(cryp);
  254. }
  255. static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
  256. {
  257. return readl_relaxed(cryp->regs + ofst);
  258. }
  259. static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
  260. {
  261. writel_relaxed(val, cryp->regs + ofst);
  262. }
  263. static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
  264. {
  265. u32 status;
  266. return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
  267. !(status & SR_BUSY), 10, 100000);
  268. }
  269. static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
  270. {
  271. writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
  272. cryp->regs + cryp->caps->cr);
  273. }
  274. static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
  275. {
  276. u32 status;
  277. return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
  278. !(status & CR_CRYPEN), 10, 100000);
  279. }
  280. static inline int stm32_cryp_wait_input(struct stm32_cryp *cryp)
  281. {
  282. u32 status;
  283. return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status,
  284. status & SR_IFNF, 1, 10);
  285. }
  286. static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
  287. {
  288. u32 status;
  289. return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status,
  290. status & SR_OFNE, 1, 10);
  291. }
  292. static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
  293. {
  294. writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
  295. cryp->regs + cryp->caps->cr);
  296. }
  297. static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
  298. {
  299. writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
  300. cryp->regs + cryp->caps->cr);
  301. }
  302. static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp);
  303. static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp);
  304. static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp);
  305. static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
  306. static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
  307. static int stm32_cryp_dma_start(struct stm32_cryp *cryp);
  308. static int stm32_cryp_it_start(struct stm32_cryp *cryp);
  309. static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
  310. {
  311. struct stm32_cryp *tmp, *cryp = NULL;
  312. spin_lock_bh(&cryp_list.lock);
  313. if (!ctx->cryp) {
  314. list_for_each_entry(tmp, &cryp_list.dev_list, list) {
  315. cryp = tmp;
  316. break;
  317. }
  318. ctx->cryp = cryp;
  319. } else {
  320. cryp = ctx->cryp;
  321. }
  322. spin_unlock_bh(&cryp_list.lock);
  323. return cryp;
  324. }
  325. static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
  326. {
  327. if (!iv)
  328. return;
  329. stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
  330. stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
  331. if (is_aes(cryp)) {
  332. stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
  333. stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
  334. }
  335. }
  336. static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
  337. {
  338. struct skcipher_request *req = cryp->req;
  339. __be32 *tmp = (void *)req->iv;
  340. if (!tmp)
  341. return;
  342. if (cryp->caps->iv_protection)
  343. stm32_cryp_key_read_enable(cryp);
  344. *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
  345. *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
  346. if (is_aes(cryp)) {
  347. *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
  348. *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
  349. }
  350. if (cryp->caps->iv_protection)
  351. stm32_cryp_key_read_disable(cryp);
  352. }
  353. /**
  354. * ux500_swap_bits_in_byte() - mirror the bits in a byte
  355. * @b: the byte to be mirrored
  356. *
  357. * The bits are swapped the following way:
  358. * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
  359. * nibble 2 (n2) bits 4-7.
  360. *
  361. * Nibble 1 (n1):
  362. * (The "old" (moved) bit is replaced with a zero)
  363. * 1. Move bit 6 and 7, 4 positions to the left.
  364. * 2. Move bit 3 and 5, 2 positions to the left.
  365. * 3. Move bit 1-4, 1 position to the left.
  366. *
  367. * Nibble 2 (n2):
  368. * 1. Move bit 0 and 1, 4 positions to the right.
  369. * 2. Move bit 2 and 4, 2 positions to the right.
  370. * 3. Move bit 3-6, 1 position to the right.
  371. *
  372. * Combine the two nibbles to a complete and swapped byte.
  373. */
  374. static inline u8 ux500_swap_bits_in_byte(u8 b)
  375. {
  376. #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
  377. #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
  378. right shift 2 */
  379. #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
  380. right shift 1 */
  381. #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
  382. #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
  383. left shift 2 */
  384. #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
  385. left shift 1 */
  386. u8 n1;
  387. u8 n2;
  388. /* Swap most significant nibble */
  389. /* Right shift 4, bits 6 and 7 */
  390. n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
  391. /* Right shift 2, bits 3 and 5 */
  392. n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
  393. /* Right shift 1, bits 1-4 */
  394. n1 = (n1 & R_SHIFT_1_MASK) >> 1;
  395. /* Swap least significant nibble */
  396. /* Left shift 4, bits 0 and 1 */
  397. n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
  398. /* Left shift 2, bits 2 and 4 */
  399. n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
  400. /* Left shift 1, bits 3-6 */
  401. n2 = (n2 & L_SHIFT_1_MASK) << 1;
  402. return n1 | n2;
  403. }
  404. /**
  405. * ux500_swizzle_key() - Shuffle around words and bits in the AES key
  406. * @in: key to swizzle
  407. * @out: swizzled key
  408. * @len: length of key, in bytes
  409. *
  410. * This "key swizzling procedure" is described in the examples in the
  411. * DB8500 design specification. There is no real description of why
  412. * the bits have been arranged like this in the hardware.
  413. */
  414. static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
  415. {
  416. int i = 0;
  417. int bpw = sizeof(u32);
  418. int j;
  419. int index = 0;
  420. j = len - bpw;
  421. while (j >= 0) {
  422. for (i = 0; i < bpw; i++) {
  423. index = len - j - bpw + i;
  424. out[j + i] =
  425. ux500_swap_bits_in_byte(in[index]);
  426. }
  427. j -= bpw;
  428. }
  429. }
  430. static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
  431. {
  432. unsigned int i;
  433. int r_id;
  434. if (is_des(c)) {
  435. stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
  436. stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
  437. return;
  438. }
  439. /*
  440. * On the Ux500 the AES key is considered as a single bit sequence
  441. * of 128, 192 or 256 bits length. It is written linearly into the
  442. * registers from K1L and down, and need to be processed to become
  443. * a proper big-endian bit sequence.
  444. */
  445. if (is_aes(c) && c->caps->linear_aes_key) {
  446. u32 tmpkey[8];
  447. ux500_swizzle_key((u8 *)c->ctx->key,
  448. (u8 *)tmpkey, c->ctx->keylen);
  449. r_id = c->caps->k1l;
  450. for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
  451. stm32_cryp_write(c, r_id, tmpkey[i]);
  452. return;
  453. }
  454. r_id = c->caps->k3r;
  455. for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
  456. stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
  457. }
  458. static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
  459. {
  460. if (is_aes(cryp) && is_ecb(cryp))
  461. return CR_AES_ECB;
  462. if (is_aes(cryp) && is_cbc(cryp))
  463. return CR_AES_CBC;
  464. if (is_aes(cryp) && is_ctr(cryp))
  465. return CR_AES_CTR;
  466. if (is_aes(cryp) && is_gcm(cryp))
  467. return CR_AES_GCM;
  468. if (is_aes(cryp) && is_ccm(cryp))
  469. return CR_AES_CCM;
  470. if (is_des(cryp) && is_ecb(cryp))
  471. return CR_DES_ECB;
  472. if (is_des(cryp) && is_cbc(cryp))
  473. return CR_DES_CBC;
  474. if (is_tdes(cryp) && is_ecb(cryp))
  475. return CR_TDES_ECB;
  476. if (is_tdes(cryp) && is_cbc(cryp))
  477. return CR_TDES_CBC;
  478. dev_err(cryp->dev, "Unknown mode\n");
  479. return CR_AES_UNKNOWN;
  480. }
  481. static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
  482. {
  483. return is_encrypt(cryp) ? cryp->areq->cryptlen :
  484. cryp->areq->cryptlen - cryp->authsize;
  485. }
  486. static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
  487. {
  488. int ret;
  489. __be32 iv[4];
  490. /* Phase 1 : init */
  491. memcpy(iv, cryp->areq->iv, 12);
  492. iv[3] = cpu_to_be32(GCM_CTR_INIT);
  493. cryp->gcm_ctr = GCM_CTR_INIT;
  494. stm32_cryp_hw_write_iv(cryp, iv);
  495. stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
  496. /* Wait for end of processing */
  497. ret = stm32_cryp_wait_enable(cryp);
  498. if (ret) {
  499. dev_err(cryp->dev, "Timeout (gcm init)\n");
  500. return ret;
  501. }
  502. /* Prepare next phase */
  503. if (cryp->areq->assoclen) {
  504. cfg |= CR_PH_HEADER;
  505. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  506. } else if (stm32_cryp_get_input_text_len(cryp)) {
  507. cfg |= CR_PH_PAYLOAD;
  508. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  509. }
  510. return 0;
  511. }
  512. static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
  513. {
  514. u32 cfg;
  515. int err;
  516. /* Check if whole header written */
  517. if (!cryp->header_in) {
  518. /* Wait for completion */
  519. err = stm32_cryp_wait_busy(cryp);
  520. if (err) {
  521. dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
  522. stm32_cryp_write(cryp, cryp->caps->imsc, 0);
  523. stm32_cryp_finish_req(cryp, err);
  524. return;
  525. }
  526. if (stm32_cryp_get_input_text_len(cryp)) {
  527. /* Phase 3 : payload */
  528. cfg = stm32_cryp_read(cryp, cryp->caps->cr);
  529. cfg &= ~CR_CRYPEN;
  530. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  531. cfg &= ~CR_PH_MASK;
  532. cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
  533. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  534. } else {
  535. /*
  536. * Phase 4 : tag.
  537. * Nothing to read, nothing to write, caller have to
  538. * end request
  539. */
  540. }
  541. }
  542. }
  543. static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
  544. {
  545. size_t written;
  546. size_t len;
  547. u32 alen = cryp->areq->assoclen;
  548. u32 block[AES_BLOCK_32] = {0};
  549. u8 *b8 = (u8 *)block;
  550. if (alen <= 65280) {
  551. /* Write first u32 of B1 */
  552. b8[0] = (alen >> 8) & 0xFF;
  553. b8[1] = alen & 0xFF;
  554. len = 2;
  555. } else {
  556. /* Build the two first u32 of B1 */
  557. b8[0] = 0xFF;
  558. b8[1] = 0xFE;
  559. b8[2] = (alen & 0xFF000000) >> 24;
  560. b8[3] = (alen & 0x00FF0000) >> 16;
  561. b8[4] = (alen & 0x0000FF00) >> 8;
  562. b8[5] = alen & 0x000000FF;
  563. len = 6;
  564. }
  565. written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
  566. scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
  567. writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
  568. cryp->header_in -= written;
  569. stm32_crypt_gcmccm_end_header(cryp);
  570. }
  571. static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
  572. {
  573. int ret;
  574. u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
  575. u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
  576. __be32 *bd;
  577. u32 *d;
  578. unsigned int i, textlen;
  579. /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
  580. memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
  581. memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
  582. iv[AES_BLOCK_SIZE - 1] = 1;
  583. stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
  584. /* Build B0 */
  585. memcpy(b0, iv, AES_BLOCK_SIZE);
  586. b0[0] |= (8 * ((cryp->authsize - 2) / 2));
  587. if (cryp->areq->assoclen)
  588. b0[0] |= 0x40;
  589. textlen = stm32_cryp_get_input_text_len(cryp);
  590. b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
  591. b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
  592. /* Enable HW */
  593. stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
  594. /* Write B0 */
  595. d = (u32 *)b0;
  596. bd = (__be32 *)b0;
  597. for (i = 0; i < AES_BLOCK_32; i++) {
  598. u32 xd = d[i];
  599. if (!cryp->caps->padding_wa)
  600. xd = be32_to_cpu(bd[i]);
  601. stm32_cryp_write(cryp, cryp->caps->din, xd);
  602. }
  603. /* Wait for end of processing */
  604. ret = stm32_cryp_wait_enable(cryp);
  605. if (ret) {
  606. dev_err(cryp->dev, "Timeout (ccm init)\n");
  607. return ret;
  608. }
  609. /* Prepare next phase */
  610. if (cryp->areq->assoclen) {
  611. cfg |= CR_PH_HEADER | CR_CRYPEN;
  612. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  613. /* Write first (special) block (may move to next phase [payload]) */
  614. stm32_cryp_write_ccm_first_header(cryp);
  615. } else if (stm32_cryp_get_input_text_len(cryp)) {
  616. cfg |= CR_PH_PAYLOAD;
  617. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  618. }
  619. return 0;
  620. }
  621. static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
  622. {
  623. int ret;
  624. u32 cfg, hw_mode;
  625. pm_runtime_get_sync(cryp->dev);
  626. /* Disable interrupt */
  627. stm32_cryp_write(cryp, cryp->caps->imsc, 0);
  628. /* Set configuration */
  629. cfg = CR_DATA8 | CR_FFLUSH;
  630. switch (cryp->ctx->keylen) {
  631. case AES_KEYSIZE_128:
  632. cfg |= CR_KEY128;
  633. break;
  634. case AES_KEYSIZE_192:
  635. cfg |= CR_KEY192;
  636. break;
  637. default:
  638. case AES_KEYSIZE_256:
  639. cfg |= CR_KEY256;
  640. break;
  641. }
  642. hw_mode = stm32_cryp_get_hw_mode(cryp);
  643. if (hw_mode == CR_AES_UNKNOWN)
  644. return -EINVAL;
  645. /* AES ECB/CBC decrypt: run key preparation first */
  646. if (is_decrypt(cryp) &&
  647. ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
  648. /* Configure in key preparation mode */
  649. if (cryp->caps->kp_mode)
  650. stm32_cryp_write(cryp, cryp->caps->cr,
  651. cfg | CR_AES_KP);
  652. else
  653. stm32_cryp_write(cryp,
  654. cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
  655. /* Set key only after full configuration done */
  656. stm32_cryp_hw_write_key(cryp);
  657. /* Start prepare key */
  658. stm32_cryp_enable(cryp);
  659. /* Wait for end of processing */
  660. ret = stm32_cryp_wait_busy(cryp);
  661. if (ret) {
  662. dev_err(cryp->dev, "Timeout (key preparation)\n");
  663. return ret;
  664. }
  665. cfg |= hw_mode | CR_DEC_NOT_ENC;
  666. /* Apply updated config (Decrypt + algo) and flush */
  667. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  668. } else {
  669. cfg |= hw_mode;
  670. if (is_decrypt(cryp))
  671. cfg |= CR_DEC_NOT_ENC;
  672. /* Apply config and flush */
  673. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  674. /* Set key only after configuration done */
  675. stm32_cryp_hw_write_key(cryp);
  676. }
  677. switch (hw_mode) {
  678. case CR_AES_GCM:
  679. case CR_AES_CCM:
  680. /* Phase 1 : init */
  681. if (hw_mode == CR_AES_CCM)
  682. ret = stm32_cryp_ccm_init(cryp, cfg);
  683. else
  684. ret = stm32_cryp_gcm_init(cryp, cfg);
  685. if (ret)
  686. return ret;
  687. break;
  688. case CR_DES_CBC:
  689. case CR_TDES_CBC:
  690. case CR_AES_CBC:
  691. case CR_AES_CTR:
  692. stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
  693. break;
  694. default:
  695. break;
  696. }
  697. /* Enable now */
  698. stm32_cryp_enable(cryp);
  699. return 0;
  700. }
  701. static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
  702. {
  703. if (!err && (is_gcm(cryp) || is_ccm(cryp)))
  704. /* Phase 4 : output tag */
  705. err = stm32_cryp_read_auth_tag(cryp);
  706. if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
  707. stm32_cryp_get_iv(cryp);
  708. pm_runtime_mark_last_busy(cryp->dev);
  709. pm_runtime_put_autosuspend(cryp->dev);
  710. if (is_gcm(cryp) || is_ccm(cryp))
  711. crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
  712. else
  713. crypto_finalize_skcipher_request(cryp->engine, cryp->req, err);
  714. }
  715. static void stm32_cryp_header_dma_callback(void *param)
  716. {
  717. struct stm32_cryp *cryp = (struct stm32_cryp *)param;
  718. int ret;
  719. u32 reg;
  720. dma_unmap_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE);
  721. reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
  722. stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN));
  723. kfree(cryp->header_sg);
  724. reg = stm32_cryp_read(cryp, cryp->caps->cr);
  725. if (cryp->header_in) {
  726. stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN);
  727. ret = stm32_cryp_wait_input(cryp);
  728. if (ret) {
  729. dev_err(cryp->dev, "input header ready timeout after dma\n");
  730. stm32_cryp_finish_req(cryp, ret);
  731. return;
  732. }
  733. stm32_cryp_irq_write_gcmccm_header(cryp);
  734. WARN_ON(cryp->header_in);
  735. }
  736. if (stm32_cryp_get_input_text_len(cryp)) {
  737. /* Phase 3 : payload */
  738. reg = stm32_cryp_read(cryp, cryp->caps->cr);
  739. stm32_cryp_write(cryp, cryp->caps->cr, reg & ~CR_CRYPEN);
  740. reg &= ~CR_PH_MASK;
  741. reg |= CR_PH_PAYLOAD | CR_CRYPEN;
  742. stm32_cryp_write(cryp, cryp->caps->cr, reg);
  743. if (cryp->flags & FLG_IN_OUT_DMA) {
  744. ret = stm32_cryp_dma_start(cryp);
  745. if (ret)
  746. stm32_cryp_finish_req(cryp, ret);
  747. } else {
  748. stm32_cryp_it_start(cryp);
  749. }
  750. } else {
  751. /*
  752. * Phase 4 : tag.
  753. * Nothing to read, nothing to write => end request
  754. */
  755. stm32_cryp_finish_req(cryp, 0);
  756. }
  757. }
  758. static void stm32_cryp_dma_callback(void *param)
  759. {
  760. struct stm32_cryp *cryp = (struct stm32_cryp *)param;
  761. int ret;
  762. u32 reg;
  763. complete(&cryp->dma_completion); /* completion to indicate no timeout */
  764. dma_sync_sg_for_device(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE);
  765. if (cryp->in_sg != cryp->out_sg)
  766. dma_unmap_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE);
  767. dma_unmap_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE);
  768. reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
  769. stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN));
  770. reg = stm32_cryp_read(cryp, cryp->caps->cr);
  771. if (is_gcm(cryp) || is_ccm(cryp)) {
  772. kfree(cryp->in_sg);
  773. kfree(cryp->out_sg);
  774. } else {
  775. if (cryp->in_sg != cryp->req->src)
  776. kfree(cryp->in_sg);
  777. if (cryp->out_sg != cryp->req->dst)
  778. kfree(cryp->out_sg);
  779. }
  780. if (cryp->payload_in) {
  781. stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN);
  782. ret = stm32_cryp_wait_input(cryp);
  783. if (ret) {
  784. dev_err(cryp->dev, "input ready timeout after dma\n");
  785. stm32_cryp_finish_req(cryp, ret);
  786. return;
  787. }
  788. stm32_cryp_irq_write_data(cryp);
  789. ret = stm32_cryp_wait_output(cryp);
  790. if (ret) {
  791. dev_err(cryp->dev, "output ready timeout after dma\n");
  792. stm32_cryp_finish_req(cryp, ret);
  793. return;
  794. }
  795. stm32_cryp_irq_read_data(cryp);
  796. }
  797. stm32_cryp_finish_req(cryp, 0);
  798. }
  799. static int stm32_cryp_header_dma_start(struct stm32_cryp *cryp)
  800. {
  801. int ret;
  802. struct dma_async_tx_descriptor *tx_in;
  803. u32 reg;
  804. size_t align_size;
  805. ret = dma_map_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE);
  806. if (!ret) {
  807. dev_err(cryp->dev, "dma_map_sg() error\n");
  808. return -ENOMEM;
  809. }
  810. dma_sync_sg_for_device(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE);
  811. tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->header_sg, cryp->header_sg_len,
  812. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  813. if (!tx_in) {
  814. dev_err(cryp->dev, "IN prep_slave_sg() failed\n");
  815. return -EINVAL;
  816. }
  817. tx_in->callback_param = cryp;
  818. tx_in->callback = stm32_cryp_header_dma_callback;
  819. /* Advance scatterwalk to not DMA'ed data */
  820. align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize);
  821. scatterwalk_copychunks(NULL, &cryp->in_walk, align_size, 2);
  822. cryp->header_in -= align_size;
  823. ret = dma_submit_error(dmaengine_submit(tx_in));
  824. if (ret < 0) {
  825. dev_err(cryp->dev, "DMA in submit failed\n");
  826. return ret;
  827. }
  828. dma_async_issue_pending(cryp->dma_lch_in);
  829. reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
  830. stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DIEN);
  831. return 0;
  832. }
  833. static int stm32_cryp_dma_start(struct stm32_cryp *cryp)
  834. {
  835. int ret;
  836. size_t align_size;
  837. struct dma_async_tx_descriptor *tx_in, *tx_out;
  838. u32 reg;
  839. if (cryp->in_sg != cryp->out_sg) {
  840. ret = dma_map_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE);
  841. if (!ret) {
  842. dev_err(cryp->dev, "dma_map_sg() error\n");
  843. return -ENOMEM;
  844. }
  845. }
  846. ret = dma_map_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE);
  847. if (!ret) {
  848. dev_err(cryp->dev, "dma_map_sg() error\n");
  849. return -ENOMEM;
  850. }
  851. dma_sync_sg_for_device(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE);
  852. tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->in_sg, cryp->in_sg_len,
  853. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  854. if (!tx_in) {
  855. dev_err(cryp->dev, "IN prep_slave_sg() failed\n");
  856. return -EINVAL;
  857. }
  858. /* No callback necessary */
  859. tx_in->callback_param = cryp;
  860. tx_in->callback = NULL;
  861. tx_out = dmaengine_prep_slave_sg(cryp->dma_lch_out, cryp->out_sg, cryp->out_sg_len,
  862. DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
  863. if (!tx_out) {
  864. dev_err(cryp->dev, "OUT prep_slave_sg() failed\n");
  865. return -EINVAL;
  866. }
  867. reinit_completion(&cryp->dma_completion);
  868. tx_out->callback = stm32_cryp_dma_callback;
  869. tx_out->callback_param = cryp;
  870. /* Advance scatterwalk to not DMA'ed data */
  871. align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize);
  872. scatterwalk_copychunks(NULL, &cryp->in_walk, align_size, 2);
  873. cryp->payload_in -= align_size;
  874. ret = dma_submit_error(dmaengine_submit(tx_in));
  875. if (ret < 0) {
  876. dev_err(cryp->dev, "DMA in submit failed\n");
  877. return ret;
  878. }
  879. dma_async_issue_pending(cryp->dma_lch_in);
  880. /* Advance scatterwalk to not DMA'ed data */
  881. scatterwalk_copychunks(NULL, &cryp->out_walk, align_size, 2);
  882. cryp->payload_out -= align_size;
  883. ret = dma_submit_error(dmaengine_submit(tx_out));
  884. if (ret < 0) {
  885. dev_err(cryp->dev, "DMA out submit failed\n");
  886. return ret;
  887. }
  888. dma_async_issue_pending(cryp->dma_lch_out);
  889. reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
  890. stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DOEN | DMACR_DIEN);
  891. if (!wait_for_completion_timeout(&cryp->dma_completion, msecs_to_jiffies(1000))) {
  892. dev_err(cryp->dev, "DMA out timed out\n");
  893. dmaengine_terminate_sync(cryp->dma_lch_out);
  894. return -ETIMEDOUT;
  895. }
  896. return 0;
  897. }
  898. static int stm32_cryp_it_start(struct stm32_cryp *cryp)
  899. {
  900. /* Enable interrupt and let the IRQ handler do everything */
  901. stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
  902. return 0;
  903. }
  904. static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
  905. static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
  906. {
  907. crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
  908. return 0;
  909. }
  910. static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
  911. static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
  912. {
  913. crypto_aead_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
  914. return 0;
  915. }
  916. static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
  917. {
  918. struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
  919. crypto_skcipher_reqtfm(req));
  920. struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
  921. struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
  922. if (!cryp)
  923. return -ENODEV;
  924. rctx->mode = mode;
  925. return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
  926. }
  927. static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
  928. {
  929. struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  930. struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
  931. struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
  932. if (!cryp)
  933. return -ENODEV;
  934. rctx->mode = mode;
  935. return crypto_transfer_aead_request_to_engine(cryp->engine, req);
  936. }
  937. static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
  938. unsigned int keylen)
  939. {
  940. struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
  941. memcpy(ctx->key, key, keylen);
  942. ctx->keylen = keylen;
  943. return 0;
  944. }
  945. static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
  946. unsigned int keylen)
  947. {
  948. if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
  949. keylen != AES_KEYSIZE_256)
  950. return -EINVAL;
  951. else
  952. return stm32_cryp_setkey(tfm, key, keylen);
  953. }
  954. static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
  955. unsigned int keylen)
  956. {
  957. return verify_skcipher_des_key(tfm, key) ?:
  958. stm32_cryp_setkey(tfm, key, keylen);
  959. }
  960. static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
  961. unsigned int keylen)
  962. {
  963. return verify_skcipher_des3_key(tfm, key) ?:
  964. stm32_cryp_setkey(tfm, key, keylen);
  965. }
  966. static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
  967. unsigned int keylen)
  968. {
  969. struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
  970. if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
  971. keylen != AES_KEYSIZE_256)
  972. return -EINVAL;
  973. memcpy(ctx->key, key, keylen);
  974. ctx->keylen = keylen;
  975. return 0;
  976. }
  977. static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
  978. unsigned int authsize)
  979. {
  980. switch (authsize) {
  981. case 4:
  982. case 8:
  983. case 12:
  984. case 13:
  985. case 14:
  986. case 15:
  987. case 16:
  988. break;
  989. default:
  990. return -EINVAL;
  991. }
  992. return 0;
  993. }
  994. static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
  995. unsigned int authsize)
  996. {
  997. switch (authsize) {
  998. case 4:
  999. case 6:
  1000. case 8:
  1001. case 10:
  1002. case 12:
  1003. case 14:
  1004. case 16:
  1005. break;
  1006. default:
  1007. return -EINVAL;
  1008. }
  1009. return 0;
  1010. }
  1011. static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
  1012. {
  1013. if (req->cryptlen % AES_BLOCK_SIZE)
  1014. return -EINVAL;
  1015. if (req->cryptlen == 0)
  1016. return 0;
  1017. return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
  1018. }
  1019. static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
  1020. {
  1021. if (req->cryptlen % AES_BLOCK_SIZE)
  1022. return -EINVAL;
  1023. if (req->cryptlen == 0)
  1024. return 0;
  1025. return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
  1026. }
  1027. static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
  1028. {
  1029. if (req->cryptlen % AES_BLOCK_SIZE)
  1030. return -EINVAL;
  1031. if (req->cryptlen == 0)
  1032. return 0;
  1033. return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
  1034. }
  1035. static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
  1036. {
  1037. if (req->cryptlen % AES_BLOCK_SIZE)
  1038. return -EINVAL;
  1039. if (req->cryptlen == 0)
  1040. return 0;
  1041. return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
  1042. }
  1043. static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
  1044. {
  1045. if (req->cryptlen == 0)
  1046. return 0;
  1047. return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
  1048. }
  1049. static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
  1050. {
  1051. if (req->cryptlen == 0)
  1052. return 0;
  1053. return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
  1054. }
  1055. static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
  1056. {
  1057. return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
  1058. }
  1059. static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
  1060. {
  1061. return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
  1062. }
  1063. static inline int crypto_ccm_check_iv(const u8 *iv)
  1064. {
  1065. /* 2 <= L <= 8, so 1 <= L' <= 7. */
  1066. if (iv[0] < 1 || iv[0] > 7)
  1067. return -EINVAL;
  1068. return 0;
  1069. }
  1070. static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
  1071. {
  1072. int err;
  1073. err = crypto_ccm_check_iv(req->iv);
  1074. if (err)
  1075. return err;
  1076. return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
  1077. }
  1078. static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
  1079. {
  1080. int err;
  1081. err = crypto_ccm_check_iv(req->iv);
  1082. if (err)
  1083. return err;
  1084. return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
  1085. }
  1086. static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
  1087. {
  1088. if (req->cryptlen % DES_BLOCK_SIZE)
  1089. return -EINVAL;
  1090. if (req->cryptlen == 0)
  1091. return 0;
  1092. return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
  1093. }
  1094. static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
  1095. {
  1096. if (req->cryptlen % DES_BLOCK_SIZE)
  1097. return -EINVAL;
  1098. if (req->cryptlen == 0)
  1099. return 0;
  1100. return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
  1101. }
  1102. static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
  1103. {
  1104. if (req->cryptlen % DES_BLOCK_SIZE)
  1105. return -EINVAL;
  1106. if (req->cryptlen == 0)
  1107. return 0;
  1108. return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
  1109. }
  1110. static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
  1111. {
  1112. if (req->cryptlen % DES_BLOCK_SIZE)
  1113. return -EINVAL;
  1114. if (req->cryptlen == 0)
  1115. return 0;
  1116. return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
  1117. }
  1118. static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
  1119. {
  1120. if (req->cryptlen % DES_BLOCK_SIZE)
  1121. return -EINVAL;
  1122. if (req->cryptlen == 0)
  1123. return 0;
  1124. return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
  1125. }
  1126. static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
  1127. {
  1128. if (req->cryptlen % DES_BLOCK_SIZE)
  1129. return -EINVAL;
  1130. if (req->cryptlen == 0)
  1131. return 0;
  1132. return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
  1133. }
  1134. static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
  1135. {
  1136. if (req->cryptlen % DES_BLOCK_SIZE)
  1137. return -EINVAL;
  1138. if (req->cryptlen == 0)
  1139. return 0;
  1140. return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
  1141. }
  1142. static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
  1143. {
  1144. if (req->cryptlen % DES_BLOCK_SIZE)
  1145. return -EINVAL;
  1146. if (req->cryptlen == 0)
  1147. return 0;
  1148. return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
  1149. }
  1150. static enum stm32_dma_mode stm32_cryp_dma_check_sg(struct scatterlist *test_sg, size_t len,
  1151. size_t block_size)
  1152. {
  1153. struct scatterlist *sg;
  1154. int i;
  1155. if (len <= 16)
  1156. return NO_DMA; /* Faster */
  1157. for_each_sg(test_sg, sg, sg_nents(test_sg), i) {
  1158. if (!IS_ALIGNED(sg->length, block_size) && !sg_is_last(sg))
  1159. return NO_DMA;
  1160. if (sg->offset % sizeof(u32))
  1161. return NO_DMA;
  1162. if (sg_is_last(sg) && !IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
  1163. return DMA_NEED_SG_TRUNC;
  1164. }
  1165. return DMA_PLAIN_SG;
  1166. }
  1167. static enum stm32_dma_mode stm32_cryp_dma_check(struct stm32_cryp *cryp, struct scatterlist *in_sg,
  1168. struct scatterlist *out_sg)
  1169. {
  1170. enum stm32_dma_mode ret = DMA_PLAIN_SG;
  1171. if (!is_aes(cryp))
  1172. return NO_DMA;
  1173. if (!cryp->dma_lch_in || !cryp->dma_lch_out)
  1174. return NO_DMA;
  1175. ret = stm32_cryp_dma_check_sg(in_sg, cryp->payload_in, AES_BLOCK_SIZE);
  1176. if (ret == NO_DMA)
  1177. return ret;
  1178. ret = stm32_cryp_dma_check_sg(out_sg, cryp->payload_out, AES_BLOCK_SIZE);
  1179. if (ret == NO_DMA)
  1180. return ret;
  1181. /* Check CTR counter overflow */
  1182. if (is_aes(cryp) && is_ctr(cryp)) {
  1183. u32 c;
  1184. __be32 iv3;
  1185. memcpy(&iv3, &cryp->req->iv[3 * sizeof(u32)], sizeof(iv3));
  1186. c = be32_to_cpu(iv3);
  1187. if ((c + cryp->payload_in) < cryp->payload_in)
  1188. return NO_DMA;
  1189. }
  1190. /* Workaround */
  1191. if (is_aes(cryp) && is_ctr(cryp) && ret == DMA_NEED_SG_TRUNC)
  1192. return NO_DMA;
  1193. return ret;
  1194. }
  1195. static int stm32_cryp_truncate_sg(struct scatterlist **new_sg, size_t *new_sg_len,
  1196. struct scatterlist *sg, off_t skip, size_t size)
  1197. {
  1198. struct scatterlist *cur;
  1199. int alloc_sg_len;
  1200. *new_sg_len = 0;
  1201. if (!sg || !size) {
  1202. *new_sg = NULL;
  1203. return 0;
  1204. }
  1205. alloc_sg_len = sg_nents_for_len(sg, skip + size);
  1206. if (alloc_sg_len < 0)
  1207. return alloc_sg_len;
  1208. /* We allocate to much sg entry, but it is easier */
  1209. *new_sg = kmalloc_array((size_t)alloc_sg_len, sizeof(struct scatterlist), GFP_KERNEL);
  1210. if (!*new_sg)
  1211. return -ENOMEM;
  1212. sg_init_table(*new_sg, (unsigned int)alloc_sg_len);
  1213. cur = *new_sg;
  1214. while (sg && size) {
  1215. unsigned int len = sg->length;
  1216. unsigned int offset = sg->offset;
  1217. if (skip > len) {
  1218. skip -= len;
  1219. sg = sg_next(sg);
  1220. continue;
  1221. }
  1222. if (skip) {
  1223. len -= skip;
  1224. offset += skip;
  1225. skip = 0;
  1226. }
  1227. if (size < len)
  1228. len = size;
  1229. if (len > 0) {
  1230. (*new_sg_len)++;
  1231. size -= len;
  1232. sg_set_page(cur, sg_page(sg), len, offset);
  1233. if (size == 0)
  1234. sg_mark_end(cur);
  1235. cur = sg_next(cur);
  1236. }
  1237. sg = sg_next(sg);
  1238. }
  1239. return 0;
  1240. }
  1241. static int stm32_cryp_cipher_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg,
  1242. struct scatterlist *out_sg)
  1243. {
  1244. size_t align_size;
  1245. int ret;
  1246. cryp->dma_mode = stm32_cryp_dma_check(cryp, in_sg, out_sg);
  1247. scatterwalk_start(&cryp->in_walk, in_sg);
  1248. scatterwalk_start(&cryp->out_walk, out_sg);
  1249. if (cryp->dma_mode == NO_DMA) {
  1250. cryp->flags &= ~FLG_IN_OUT_DMA;
  1251. if (is_ctr(cryp))
  1252. memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
  1253. } else if (cryp->dma_mode == DMA_NEED_SG_TRUNC) {
  1254. cryp->flags |= FLG_IN_OUT_DMA;
  1255. align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize);
  1256. ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, 0, align_size);
  1257. if (ret)
  1258. return ret;
  1259. ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, 0,
  1260. align_size);
  1261. if (ret) {
  1262. kfree(cryp->in_sg);
  1263. return ret;
  1264. }
  1265. } else {
  1266. cryp->flags |= FLG_IN_OUT_DMA;
  1267. cryp->in_sg = in_sg;
  1268. cryp->out_sg = out_sg;
  1269. ret = sg_nents_for_len(cryp->in_sg, cryp->payload_in);
  1270. if (ret < 0)
  1271. return ret;
  1272. cryp->in_sg_len = (size_t)ret;
  1273. ret = sg_nents_for_len(out_sg, cryp->payload_out);
  1274. if (ret < 0)
  1275. return ret;
  1276. cryp->out_sg_len = (size_t)ret;
  1277. }
  1278. return 0;
  1279. }
  1280. static int stm32_cryp_aead_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg,
  1281. struct scatterlist *out_sg)
  1282. {
  1283. size_t align_size;
  1284. off_t skip;
  1285. int ret, ret2;
  1286. cryp->header_sg = NULL;
  1287. cryp->in_sg = NULL;
  1288. cryp->out_sg = NULL;
  1289. if (!cryp->dma_lch_in || !cryp->dma_lch_out) {
  1290. cryp->dma_mode = NO_DMA;
  1291. cryp->flags &= ~(FLG_IN_OUT_DMA | FLG_HEADER_DMA);
  1292. return 0;
  1293. }
  1294. /* CCM hw_init may have advanced in header */
  1295. skip = cryp->areq->assoclen - cryp->header_in;
  1296. align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize);
  1297. ret = stm32_cryp_truncate_sg(&cryp->header_sg, &cryp->header_sg_len, in_sg, skip,
  1298. align_size);
  1299. if (ret)
  1300. return ret;
  1301. ret = stm32_cryp_dma_check_sg(cryp->header_sg, align_size, AES_BLOCK_SIZE);
  1302. if (ret == NO_DMA) {
  1303. /* We cannot DMA the header */
  1304. kfree(cryp->header_sg);
  1305. cryp->header_sg = NULL;
  1306. cryp->flags &= ~FLG_HEADER_DMA;
  1307. } else {
  1308. cryp->flags |= FLG_HEADER_DMA;
  1309. }
  1310. /* Now skip all header to be at payload start */
  1311. skip = cryp->areq->assoclen;
  1312. align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize);
  1313. ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, skip, align_size);
  1314. if (ret) {
  1315. kfree(cryp->header_sg);
  1316. return ret;
  1317. }
  1318. /* For out buffer align_size is same as in buffer */
  1319. ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, skip, align_size);
  1320. if (ret) {
  1321. kfree(cryp->header_sg);
  1322. kfree(cryp->in_sg);
  1323. return ret;
  1324. }
  1325. ret = stm32_cryp_dma_check_sg(cryp->in_sg, align_size, AES_BLOCK_SIZE);
  1326. ret2 = stm32_cryp_dma_check_sg(cryp->out_sg, align_size, AES_BLOCK_SIZE);
  1327. if (ret == NO_DMA || ret2 == NO_DMA) {
  1328. kfree(cryp->in_sg);
  1329. cryp->in_sg = NULL;
  1330. kfree(cryp->out_sg);
  1331. cryp->out_sg = NULL;
  1332. cryp->flags &= ~FLG_IN_OUT_DMA;
  1333. } else {
  1334. cryp->flags |= FLG_IN_OUT_DMA;
  1335. }
  1336. return 0;
  1337. }
  1338. static int stm32_cryp_prepare_req(struct skcipher_request *req,
  1339. struct aead_request *areq)
  1340. {
  1341. struct stm32_cryp_ctx *ctx;
  1342. struct stm32_cryp *cryp;
  1343. struct stm32_cryp_reqctx *rctx;
  1344. struct scatterlist *in_sg, *out_sg;
  1345. int ret;
  1346. if (!req && !areq)
  1347. return -EINVAL;
  1348. ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
  1349. crypto_aead_ctx(crypto_aead_reqtfm(areq));
  1350. cryp = ctx->cryp;
  1351. rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
  1352. rctx->mode &= FLG_MODE_MASK;
  1353. cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
  1354. cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
  1355. cryp->ctx = ctx;
  1356. if (req) {
  1357. cryp->req = req;
  1358. cryp->areq = NULL;
  1359. cryp->header_in = 0;
  1360. cryp->payload_in = req->cryptlen;
  1361. cryp->payload_out = req->cryptlen;
  1362. cryp->authsize = 0;
  1363. in_sg = req->src;
  1364. out_sg = req->dst;
  1365. ret = stm32_cryp_cipher_prepare(cryp, in_sg, out_sg);
  1366. if (ret)
  1367. return ret;
  1368. ret = stm32_cryp_hw_init(cryp);
  1369. } else {
  1370. /*
  1371. * Length of input and output data:
  1372. * Encryption case:
  1373. * INPUT = AssocData || PlainText
  1374. * <- assoclen -> <- cryptlen ->
  1375. *
  1376. * OUTPUT = AssocData || CipherText || AuthTag
  1377. * <- assoclen -> <-- cryptlen --> <- authsize ->
  1378. *
  1379. * Decryption case:
  1380. * INPUT = AssocData || CipherTex || AuthTag
  1381. * <- assoclen ---> <---------- cryptlen ---------->
  1382. *
  1383. * OUTPUT = AssocData || PlainText
  1384. * <- assoclen -> <- cryptlen - authsize ->
  1385. */
  1386. cryp->areq = areq;
  1387. cryp->req = NULL;
  1388. cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
  1389. if (is_encrypt(cryp)) {
  1390. cryp->payload_in = areq->cryptlen;
  1391. cryp->header_in = areq->assoclen;
  1392. cryp->payload_out = areq->cryptlen;
  1393. } else {
  1394. cryp->payload_in = areq->cryptlen - cryp->authsize;
  1395. cryp->header_in = areq->assoclen;
  1396. cryp->payload_out = cryp->payload_in;
  1397. }
  1398. in_sg = areq->src;
  1399. out_sg = areq->dst;
  1400. scatterwalk_start(&cryp->in_walk, in_sg);
  1401. scatterwalk_start(&cryp->out_walk, out_sg);
  1402. /* In output, jump after assoc data */
  1403. scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
  1404. ret = stm32_cryp_hw_init(cryp);
  1405. if (ret)
  1406. return ret;
  1407. ret = stm32_cryp_aead_prepare(cryp, in_sg, out_sg);
  1408. }
  1409. return ret;
  1410. }
  1411. static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
  1412. {
  1413. struct skcipher_request *req = container_of(areq,
  1414. struct skcipher_request,
  1415. base);
  1416. struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
  1417. crypto_skcipher_reqtfm(req));
  1418. struct stm32_cryp *cryp = ctx->cryp;
  1419. int ret;
  1420. if (!cryp)
  1421. return -ENODEV;
  1422. ret = stm32_cryp_prepare_req(req, NULL);
  1423. if (ret)
  1424. return ret;
  1425. if (cryp->flags & FLG_IN_OUT_DMA)
  1426. ret = stm32_cryp_dma_start(cryp);
  1427. else
  1428. ret = stm32_cryp_it_start(cryp);
  1429. if (ret == -ETIMEDOUT)
  1430. stm32_cryp_finish_req(cryp, ret);
  1431. return ret;
  1432. }
  1433. static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
  1434. {
  1435. struct aead_request *req = container_of(areq, struct aead_request,
  1436. base);
  1437. struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
  1438. struct stm32_cryp *cryp = ctx->cryp;
  1439. int err;
  1440. if (!cryp)
  1441. return -ENODEV;
  1442. err = stm32_cryp_prepare_req(NULL, req);
  1443. if (err)
  1444. return err;
  1445. if (!stm32_cryp_get_input_text_len(cryp) && !cryp->header_in &&
  1446. !(cryp->flags & FLG_HEADER_DMA)) {
  1447. /* No input data to process: get tag and finish */
  1448. stm32_cryp_finish_req(cryp, 0);
  1449. return 0;
  1450. }
  1451. if (cryp->flags & FLG_HEADER_DMA)
  1452. return stm32_cryp_header_dma_start(cryp);
  1453. if (!cryp->header_in && cryp->flags & FLG_IN_OUT_DMA)
  1454. return stm32_cryp_dma_start(cryp);
  1455. return stm32_cryp_it_start(cryp);
  1456. }
  1457. static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
  1458. {
  1459. u32 cfg, size_bit;
  1460. unsigned int i;
  1461. int ret = 0;
  1462. /* Update Config */
  1463. cfg = stm32_cryp_read(cryp, cryp->caps->cr);
  1464. cfg &= ~CR_PH_MASK;
  1465. cfg |= CR_PH_FINAL;
  1466. cfg &= ~CR_DEC_NOT_ENC;
  1467. cfg |= CR_CRYPEN;
  1468. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1469. if (is_gcm(cryp)) {
  1470. /* GCM: write aad and payload size (in bits) */
  1471. size_bit = cryp->areq->assoclen * 8;
  1472. if (cryp->caps->swap_final)
  1473. size_bit = (__force u32)cpu_to_be32(size_bit);
  1474. stm32_cryp_write(cryp, cryp->caps->din, 0);
  1475. stm32_cryp_write(cryp, cryp->caps->din, size_bit);
  1476. size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
  1477. cryp->areq->cryptlen - cryp->authsize;
  1478. size_bit *= 8;
  1479. if (cryp->caps->swap_final)
  1480. size_bit = (__force u32)cpu_to_be32(size_bit);
  1481. stm32_cryp_write(cryp, cryp->caps->din, 0);
  1482. stm32_cryp_write(cryp, cryp->caps->din, size_bit);
  1483. } else {
  1484. /* CCM: write CTR0 */
  1485. u32 iv32[AES_BLOCK_32];
  1486. u8 *iv = (u8 *)iv32;
  1487. __be32 *biv = (__be32 *)iv32;
  1488. memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
  1489. memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
  1490. for (i = 0; i < AES_BLOCK_32; i++) {
  1491. u32 xiv = iv32[i];
  1492. if (!cryp->caps->padding_wa)
  1493. xiv = be32_to_cpu(biv[i]);
  1494. stm32_cryp_write(cryp, cryp->caps->din, xiv);
  1495. }
  1496. }
  1497. /* Wait for output data */
  1498. ret = stm32_cryp_wait_output(cryp);
  1499. if (ret) {
  1500. dev_err(cryp->dev, "Timeout (read tag)\n");
  1501. return ret;
  1502. }
  1503. if (is_encrypt(cryp)) {
  1504. u32 out_tag[AES_BLOCK_32];
  1505. /* Get and write tag */
  1506. readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
  1507. scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
  1508. } else {
  1509. /* Get and check tag */
  1510. u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
  1511. scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
  1512. readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
  1513. if (crypto_memneq(in_tag, out_tag, cryp->authsize))
  1514. ret = -EBADMSG;
  1515. }
  1516. /* Disable cryp */
  1517. cfg &= ~CR_CRYPEN;
  1518. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1519. return ret;
  1520. }
  1521. static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
  1522. {
  1523. u32 cr;
  1524. if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
  1525. /*
  1526. * In this case, we need to increment manually the ctr counter,
  1527. * as HW doesn't handle the U32 carry.
  1528. */
  1529. crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
  1530. cr = stm32_cryp_read(cryp, cryp->caps->cr);
  1531. stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
  1532. stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
  1533. stm32_cryp_write(cryp, cryp->caps->cr, cr);
  1534. }
  1535. /* The IV registers are BE */
  1536. cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
  1537. cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
  1538. cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
  1539. cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
  1540. }
  1541. static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
  1542. {
  1543. u32 block[AES_BLOCK_32];
  1544. readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
  1545. scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
  1546. cryp->payload_out), 1);
  1547. cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
  1548. cryp->payload_out);
  1549. }
  1550. static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
  1551. {
  1552. u32 block[AES_BLOCK_32] = {0};
  1553. scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
  1554. cryp->payload_in), 0);
  1555. writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
  1556. cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
  1557. }
  1558. static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
  1559. {
  1560. int err;
  1561. u32 cfg, block[AES_BLOCK_32] = {0};
  1562. unsigned int i;
  1563. /* 'Special workaround' procedure described in the datasheet */
  1564. /* a) disable ip */
  1565. stm32_cryp_write(cryp, cryp->caps->imsc, 0);
  1566. cfg = stm32_cryp_read(cryp, cryp->caps->cr);
  1567. cfg &= ~CR_CRYPEN;
  1568. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1569. /* b) Update IV1R */
  1570. stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
  1571. /* c) change mode to CTR */
  1572. cfg &= ~CR_ALGO_MASK;
  1573. cfg |= CR_AES_CTR;
  1574. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1575. /* a) enable IP */
  1576. cfg |= CR_CRYPEN;
  1577. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1578. /* b) pad and write the last block */
  1579. stm32_cryp_irq_write_block(cryp);
  1580. /* wait end of process */
  1581. err = stm32_cryp_wait_output(cryp);
  1582. if (err) {
  1583. dev_err(cryp->dev, "Timeout (write gcm last data)\n");
  1584. return stm32_cryp_finish_req(cryp, err);
  1585. }
  1586. /* c) get and store encrypted data */
  1587. /*
  1588. * Same code as stm32_cryp_irq_read_data(), but we want to store
  1589. * block value
  1590. */
  1591. readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
  1592. scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
  1593. cryp->payload_out), 1);
  1594. cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
  1595. cryp->payload_out);
  1596. /* d) change mode back to AES GCM */
  1597. cfg &= ~CR_ALGO_MASK;
  1598. cfg |= CR_AES_GCM;
  1599. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1600. /* e) change phase to Final */
  1601. cfg &= ~CR_PH_MASK;
  1602. cfg |= CR_PH_FINAL;
  1603. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1604. /* f) write padded data */
  1605. writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
  1606. /* g) Empty fifo out */
  1607. err = stm32_cryp_wait_output(cryp);
  1608. if (err) {
  1609. dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
  1610. return stm32_cryp_finish_req(cryp, err);
  1611. }
  1612. for (i = 0; i < AES_BLOCK_32; i++)
  1613. stm32_cryp_read(cryp, cryp->caps->dout);
  1614. /* h) run the he normal Final phase */
  1615. stm32_cryp_finish_req(cryp, 0);
  1616. }
  1617. static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
  1618. {
  1619. u32 cfg;
  1620. /* disable ip, set NPBLB and reneable ip */
  1621. cfg = stm32_cryp_read(cryp, cryp->caps->cr);
  1622. cfg &= ~CR_CRYPEN;
  1623. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1624. cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
  1625. cfg |= CR_CRYPEN;
  1626. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1627. }
  1628. static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
  1629. {
  1630. int err = 0;
  1631. u32 cfg, iv1tmp;
  1632. u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
  1633. u32 block[AES_BLOCK_32] = {0};
  1634. unsigned int i;
  1635. /* 'Special workaround' procedure described in the datasheet */
  1636. /* a) disable ip */
  1637. stm32_cryp_write(cryp, cryp->caps->imsc, 0);
  1638. cfg = stm32_cryp_read(cryp, cryp->caps->cr);
  1639. cfg &= ~CR_CRYPEN;
  1640. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1641. /* b) get IV1 from CRYP_CSGCMCCM7 */
  1642. iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
  1643. /* c) Load CRYP_CSGCMCCMxR */
  1644. for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
  1645. cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
  1646. /* d) Write IV1R */
  1647. stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
  1648. /* e) change mode to CTR */
  1649. cfg &= ~CR_ALGO_MASK;
  1650. cfg |= CR_AES_CTR;
  1651. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1652. /* a) enable IP */
  1653. cfg |= CR_CRYPEN;
  1654. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1655. /* b) pad and write the last block */
  1656. stm32_cryp_irq_write_block(cryp);
  1657. /* wait end of process */
  1658. err = stm32_cryp_wait_output(cryp);
  1659. if (err) {
  1660. dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
  1661. return stm32_cryp_finish_req(cryp, err);
  1662. }
  1663. /* c) get and store decrypted data */
  1664. /*
  1665. * Same code as stm32_cryp_irq_read_data(), but we want to store
  1666. * block value
  1667. */
  1668. readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
  1669. scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
  1670. cryp->payload_out), 1);
  1671. cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
  1672. /* d) Load again CRYP_CSGCMCCMxR */
  1673. for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
  1674. cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
  1675. /* e) change mode back to AES CCM */
  1676. cfg &= ~CR_ALGO_MASK;
  1677. cfg |= CR_AES_CCM;
  1678. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1679. /* f) change phase to header */
  1680. cfg &= ~CR_PH_MASK;
  1681. cfg |= CR_PH_HEADER;
  1682. stm32_cryp_write(cryp, cryp->caps->cr, cfg);
  1683. /* g) XOR and write padded data */
  1684. for (i = 0; i < ARRAY_SIZE(block); i++) {
  1685. block[i] ^= cstmp1[i];
  1686. block[i] ^= cstmp2[i];
  1687. stm32_cryp_write(cryp, cryp->caps->din, block[i]);
  1688. }
  1689. /* h) wait for completion */
  1690. err = stm32_cryp_wait_busy(cryp);
  1691. if (err)
  1692. dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
  1693. /* i) run the he normal Final phase */
  1694. stm32_cryp_finish_req(cryp, err);
  1695. }
  1696. static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
  1697. {
  1698. if (unlikely(!cryp->payload_in)) {
  1699. dev_warn(cryp->dev, "No more data to process\n");
  1700. return;
  1701. }
  1702. if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
  1703. (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
  1704. is_encrypt(cryp))) {
  1705. /* Padding for AES GCM encryption */
  1706. if (cryp->caps->padding_wa) {
  1707. /* Special case 1 */
  1708. stm32_cryp_irq_write_gcm_padded_data(cryp);
  1709. return;
  1710. }
  1711. /* Setting padding bytes (NBBLB) */
  1712. stm32_cryp_irq_set_npblb(cryp);
  1713. }
  1714. if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
  1715. (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
  1716. is_decrypt(cryp))) {
  1717. /* Padding for AES CCM decryption */
  1718. if (cryp->caps->padding_wa) {
  1719. /* Special case 2 */
  1720. stm32_cryp_irq_write_ccm_padded_data(cryp);
  1721. return;
  1722. }
  1723. /* Setting padding bytes (NBBLB) */
  1724. stm32_cryp_irq_set_npblb(cryp);
  1725. }
  1726. if (is_aes(cryp) && is_ctr(cryp))
  1727. stm32_cryp_check_ctr_counter(cryp);
  1728. stm32_cryp_irq_write_block(cryp);
  1729. }
  1730. static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
  1731. {
  1732. u32 block[AES_BLOCK_32] = {0};
  1733. size_t written;
  1734. written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
  1735. scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
  1736. writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
  1737. cryp->header_in -= written;
  1738. stm32_crypt_gcmccm_end_header(cryp);
  1739. }
  1740. static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
  1741. {
  1742. struct stm32_cryp *cryp = arg;
  1743. u32 ph;
  1744. u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
  1745. if (cryp->irq_status & MISR_OUT)
  1746. /* Output FIFO IRQ: read data */
  1747. stm32_cryp_irq_read_data(cryp);
  1748. if (cryp->irq_status & MISR_IN) {
  1749. if (is_gcm(cryp) || is_ccm(cryp)) {
  1750. ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
  1751. if (unlikely(ph == CR_PH_HEADER))
  1752. /* Write Header */
  1753. stm32_cryp_irq_write_gcmccm_header(cryp);
  1754. else
  1755. /* Input FIFO IRQ: write data */
  1756. stm32_cryp_irq_write_data(cryp);
  1757. if (is_gcm(cryp))
  1758. cryp->gcm_ctr++;
  1759. } else {
  1760. /* Input FIFO IRQ: write data */
  1761. stm32_cryp_irq_write_data(cryp);
  1762. }
  1763. }
  1764. /* Mask useless interrupts */
  1765. if (!cryp->payload_in && !cryp->header_in)
  1766. it_mask &= ~IMSCR_IN;
  1767. if (!cryp->payload_out)
  1768. it_mask &= ~IMSCR_OUT;
  1769. stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
  1770. if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out) {
  1771. local_bh_disable();
  1772. stm32_cryp_finish_req(cryp, 0);
  1773. local_bh_enable();
  1774. }
  1775. return IRQ_HANDLED;
  1776. }
  1777. static irqreturn_t stm32_cryp_irq(int irq, void *arg)
  1778. {
  1779. struct stm32_cryp *cryp = arg;
  1780. cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
  1781. return IRQ_WAKE_THREAD;
  1782. }
  1783. static int stm32_cryp_dma_init(struct stm32_cryp *cryp)
  1784. {
  1785. struct dma_slave_config dma_conf;
  1786. struct dma_chan *chan;
  1787. int ret;
  1788. memset(&dma_conf, 0, sizeof(dma_conf));
  1789. dma_conf.direction = DMA_MEM_TO_DEV;
  1790. dma_conf.dst_addr = cryp->phys_base + cryp->caps->din;
  1791. dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  1792. dma_conf.dst_maxburst = CRYP_DMA_BURST_REG;
  1793. dma_conf.device_fc = false;
  1794. chan = dma_request_chan(cryp->dev, "in");
  1795. if (IS_ERR(chan))
  1796. return PTR_ERR(chan);
  1797. cryp->dma_lch_in = chan;
  1798. ret = dmaengine_slave_config(cryp->dma_lch_in, &dma_conf);
  1799. if (ret) {
  1800. dma_release_channel(cryp->dma_lch_in);
  1801. cryp->dma_lch_in = NULL;
  1802. dev_err(cryp->dev, "Couldn't configure DMA in slave.\n");
  1803. return ret;
  1804. }
  1805. memset(&dma_conf, 0, sizeof(dma_conf));
  1806. dma_conf.direction = DMA_DEV_TO_MEM;
  1807. dma_conf.src_addr = cryp->phys_base + cryp->caps->dout;
  1808. dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  1809. dma_conf.src_maxburst = CRYP_DMA_BURST_REG;
  1810. dma_conf.device_fc = false;
  1811. chan = dma_request_chan(cryp->dev, "out");
  1812. if (IS_ERR(chan)) {
  1813. dma_release_channel(cryp->dma_lch_in);
  1814. cryp->dma_lch_in = NULL;
  1815. return PTR_ERR(chan);
  1816. }
  1817. cryp->dma_lch_out = chan;
  1818. ret = dmaengine_slave_config(cryp->dma_lch_out, &dma_conf);
  1819. if (ret) {
  1820. dma_release_channel(cryp->dma_lch_out);
  1821. cryp->dma_lch_out = NULL;
  1822. dev_err(cryp->dev, "Couldn't configure DMA out slave.\n");
  1823. dma_release_channel(cryp->dma_lch_in);
  1824. cryp->dma_lch_in = NULL;
  1825. return ret;
  1826. }
  1827. init_completion(&cryp->dma_completion);
  1828. return 0;
  1829. }
  1830. static struct skcipher_engine_alg crypto_algs[] = {
  1831. {
  1832. .base = {
  1833. .base.cra_name = "ecb(aes)",
  1834. .base.cra_driver_name = "stm32-ecb-aes",
  1835. .base.cra_priority = 300,
  1836. .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
  1837. .base.cra_blocksize = AES_BLOCK_SIZE,
  1838. .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
  1839. .base.cra_alignmask = 0,
  1840. .base.cra_module = THIS_MODULE,
  1841. .init = stm32_cryp_init_tfm,
  1842. .min_keysize = AES_MIN_KEY_SIZE,
  1843. .max_keysize = AES_MAX_KEY_SIZE,
  1844. .setkey = stm32_cryp_aes_setkey,
  1845. .encrypt = stm32_cryp_aes_ecb_encrypt,
  1846. .decrypt = stm32_cryp_aes_ecb_decrypt,
  1847. },
  1848. .op = {
  1849. .do_one_request = stm32_cryp_cipher_one_req,
  1850. },
  1851. },
  1852. {
  1853. .base = {
  1854. .base.cra_name = "cbc(aes)",
  1855. .base.cra_driver_name = "stm32-cbc-aes",
  1856. .base.cra_priority = 300,
  1857. .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
  1858. .base.cra_blocksize = AES_BLOCK_SIZE,
  1859. .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
  1860. .base.cra_alignmask = 0,
  1861. .base.cra_module = THIS_MODULE,
  1862. .init = stm32_cryp_init_tfm,
  1863. .min_keysize = AES_MIN_KEY_SIZE,
  1864. .max_keysize = AES_MAX_KEY_SIZE,
  1865. .ivsize = AES_BLOCK_SIZE,
  1866. .setkey = stm32_cryp_aes_setkey,
  1867. .encrypt = stm32_cryp_aes_cbc_encrypt,
  1868. .decrypt = stm32_cryp_aes_cbc_decrypt,
  1869. },
  1870. .op = {
  1871. .do_one_request = stm32_cryp_cipher_one_req,
  1872. },
  1873. },
  1874. {
  1875. .base = {
  1876. .base.cra_name = "ctr(aes)",
  1877. .base.cra_driver_name = "stm32-ctr-aes",
  1878. .base.cra_priority = 300,
  1879. .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
  1880. .base.cra_blocksize = 1,
  1881. .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
  1882. .base.cra_alignmask = 0,
  1883. .base.cra_module = THIS_MODULE,
  1884. .init = stm32_cryp_init_tfm,
  1885. .min_keysize = AES_MIN_KEY_SIZE,
  1886. .max_keysize = AES_MAX_KEY_SIZE,
  1887. .ivsize = AES_BLOCK_SIZE,
  1888. .setkey = stm32_cryp_aes_setkey,
  1889. .encrypt = stm32_cryp_aes_ctr_encrypt,
  1890. .decrypt = stm32_cryp_aes_ctr_decrypt,
  1891. },
  1892. .op = {
  1893. .do_one_request = stm32_cryp_cipher_one_req,
  1894. },
  1895. },
  1896. {
  1897. .base = {
  1898. .base.cra_name = "ecb(des)",
  1899. .base.cra_driver_name = "stm32-ecb-des",
  1900. .base.cra_priority = 300,
  1901. .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
  1902. .base.cra_blocksize = DES_BLOCK_SIZE,
  1903. .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
  1904. .base.cra_alignmask = 0,
  1905. .base.cra_module = THIS_MODULE,
  1906. .init = stm32_cryp_init_tfm,
  1907. .min_keysize = DES_BLOCK_SIZE,
  1908. .max_keysize = DES_BLOCK_SIZE,
  1909. .setkey = stm32_cryp_des_setkey,
  1910. .encrypt = stm32_cryp_des_ecb_encrypt,
  1911. .decrypt = stm32_cryp_des_ecb_decrypt,
  1912. },
  1913. .op = {
  1914. .do_one_request = stm32_cryp_cipher_one_req,
  1915. },
  1916. },
  1917. {
  1918. .base = {
  1919. .base.cra_name = "cbc(des)",
  1920. .base.cra_driver_name = "stm32-cbc-des",
  1921. .base.cra_priority = 300,
  1922. .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
  1923. .base.cra_blocksize = DES_BLOCK_SIZE,
  1924. .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
  1925. .base.cra_alignmask = 0,
  1926. .base.cra_module = THIS_MODULE,
  1927. .init = stm32_cryp_init_tfm,
  1928. .min_keysize = DES_BLOCK_SIZE,
  1929. .max_keysize = DES_BLOCK_SIZE,
  1930. .ivsize = DES_BLOCK_SIZE,
  1931. .setkey = stm32_cryp_des_setkey,
  1932. .encrypt = stm32_cryp_des_cbc_encrypt,
  1933. .decrypt = stm32_cryp_des_cbc_decrypt,
  1934. },
  1935. .op = {
  1936. .do_one_request = stm32_cryp_cipher_one_req,
  1937. },
  1938. },
  1939. {
  1940. .base = {
  1941. .base.cra_name = "ecb(des3_ede)",
  1942. .base.cra_driver_name = "stm32-ecb-des3",
  1943. .base.cra_priority = 300,
  1944. .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
  1945. .base.cra_blocksize = DES_BLOCK_SIZE,
  1946. .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
  1947. .base.cra_alignmask = 0,
  1948. .base.cra_module = THIS_MODULE,
  1949. .init = stm32_cryp_init_tfm,
  1950. .min_keysize = 3 * DES_BLOCK_SIZE,
  1951. .max_keysize = 3 * DES_BLOCK_SIZE,
  1952. .setkey = stm32_cryp_tdes_setkey,
  1953. .encrypt = stm32_cryp_tdes_ecb_encrypt,
  1954. .decrypt = stm32_cryp_tdes_ecb_decrypt,
  1955. },
  1956. .op = {
  1957. .do_one_request = stm32_cryp_cipher_one_req,
  1958. },
  1959. },
  1960. {
  1961. .base = {
  1962. .base.cra_name = "cbc(des3_ede)",
  1963. .base.cra_driver_name = "stm32-cbc-des3",
  1964. .base.cra_priority = 300,
  1965. .base.cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
  1966. .base.cra_blocksize = DES_BLOCK_SIZE,
  1967. .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
  1968. .base.cra_alignmask = 0,
  1969. .base.cra_module = THIS_MODULE,
  1970. .init = stm32_cryp_init_tfm,
  1971. .min_keysize = 3 * DES_BLOCK_SIZE,
  1972. .max_keysize = 3 * DES_BLOCK_SIZE,
  1973. .ivsize = DES_BLOCK_SIZE,
  1974. .setkey = stm32_cryp_tdes_setkey,
  1975. .encrypt = stm32_cryp_tdes_cbc_encrypt,
  1976. .decrypt = stm32_cryp_tdes_cbc_decrypt,
  1977. },
  1978. .op = {
  1979. .do_one_request = stm32_cryp_cipher_one_req,
  1980. },
  1981. },
  1982. };
  1983. static struct aead_engine_alg aead_algs[] = {
  1984. {
  1985. .base.setkey = stm32_cryp_aes_aead_setkey,
  1986. .base.setauthsize = stm32_cryp_aes_gcm_setauthsize,
  1987. .base.encrypt = stm32_cryp_aes_gcm_encrypt,
  1988. .base.decrypt = stm32_cryp_aes_gcm_decrypt,
  1989. .base.init = stm32_cryp_aes_aead_init,
  1990. .base.ivsize = 12,
  1991. .base.maxauthsize = AES_BLOCK_SIZE,
  1992. .base.base = {
  1993. .cra_name = "gcm(aes)",
  1994. .cra_driver_name = "stm32-gcm-aes",
  1995. .cra_priority = 300,
  1996. .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
  1997. .cra_blocksize = 1,
  1998. .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
  1999. .cra_alignmask = 0,
  2000. .cra_module = THIS_MODULE,
  2001. },
  2002. .op = {
  2003. .do_one_request = stm32_cryp_aead_one_req,
  2004. },
  2005. },
  2006. {
  2007. .base.setkey = stm32_cryp_aes_aead_setkey,
  2008. .base.setauthsize = stm32_cryp_aes_ccm_setauthsize,
  2009. .base.encrypt = stm32_cryp_aes_ccm_encrypt,
  2010. .base.decrypt = stm32_cryp_aes_ccm_decrypt,
  2011. .base.init = stm32_cryp_aes_aead_init,
  2012. .base.ivsize = AES_BLOCK_SIZE,
  2013. .base.maxauthsize = AES_BLOCK_SIZE,
  2014. .base.base = {
  2015. .cra_name = "ccm(aes)",
  2016. .cra_driver_name = "stm32-ccm-aes",
  2017. .cra_priority = 300,
  2018. .cra_flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
  2019. .cra_blocksize = 1,
  2020. .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
  2021. .cra_alignmask = 0,
  2022. .cra_module = THIS_MODULE,
  2023. },
  2024. .op = {
  2025. .do_one_request = stm32_cryp_aead_one_req,
  2026. },
  2027. },
  2028. };
  2029. static const struct stm32_cryp_caps ux500_data = {
  2030. .aeads_support = false,
  2031. .linear_aes_key = true,
  2032. .kp_mode = false,
  2033. .iv_protection = true,
  2034. .swap_final = true,
  2035. .padding_wa = true,
  2036. .cr = UX500_CRYP_CR,
  2037. .sr = UX500_CRYP_SR,
  2038. .din = UX500_CRYP_DIN,
  2039. .dout = UX500_CRYP_DOUT,
  2040. .dmacr = UX500_CRYP_DMACR,
  2041. .imsc = UX500_CRYP_IMSC,
  2042. .mis = UX500_CRYP_MIS,
  2043. .k1l = UX500_CRYP_K1L,
  2044. .k1r = UX500_CRYP_K1R,
  2045. .k3r = UX500_CRYP_K3R,
  2046. .iv0l = UX500_CRYP_IV0L,
  2047. .iv0r = UX500_CRYP_IV0R,
  2048. .iv1l = UX500_CRYP_IV1L,
  2049. .iv1r = UX500_CRYP_IV1R,
  2050. };
  2051. static const struct stm32_cryp_caps f7_data = {
  2052. .aeads_support = true,
  2053. .linear_aes_key = false,
  2054. .kp_mode = true,
  2055. .iv_protection = false,
  2056. .swap_final = true,
  2057. .padding_wa = true,
  2058. .cr = CRYP_CR,
  2059. .sr = CRYP_SR,
  2060. .din = CRYP_DIN,
  2061. .dout = CRYP_DOUT,
  2062. .dmacr = CRYP_DMACR,
  2063. .imsc = CRYP_IMSCR,
  2064. .mis = CRYP_MISR,
  2065. .k1l = CRYP_K1LR,
  2066. .k1r = CRYP_K1RR,
  2067. .k3r = CRYP_K3RR,
  2068. .iv0l = CRYP_IV0LR,
  2069. .iv0r = CRYP_IV0RR,
  2070. .iv1l = CRYP_IV1LR,
  2071. .iv1r = CRYP_IV1RR,
  2072. };
  2073. static const struct stm32_cryp_caps mp1_data = {
  2074. .aeads_support = true,
  2075. .linear_aes_key = false,
  2076. .kp_mode = true,
  2077. .iv_protection = false,
  2078. .swap_final = false,
  2079. .padding_wa = false,
  2080. .cr = CRYP_CR,
  2081. .sr = CRYP_SR,
  2082. .din = CRYP_DIN,
  2083. .dout = CRYP_DOUT,
  2084. .dmacr = CRYP_DMACR,
  2085. .imsc = CRYP_IMSCR,
  2086. .mis = CRYP_MISR,
  2087. .k1l = CRYP_K1LR,
  2088. .k1r = CRYP_K1RR,
  2089. .k3r = CRYP_K3RR,
  2090. .iv0l = CRYP_IV0LR,
  2091. .iv0r = CRYP_IV0RR,
  2092. .iv1l = CRYP_IV1LR,
  2093. .iv1r = CRYP_IV1RR,
  2094. };
  2095. static const struct of_device_id stm32_dt_ids[] = {
  2096. { .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
  2097. { .compatible = "st,stm32f756-cryp", .data = &f7_data},
  2098. { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
  2099. {},
  2100. };
  2101. MODULE_DEVICE_TABLE(of, stm32_dt_ids);
  2102. static int stm32_cryp_probe(struct platform_device *pdev)
  2103. {
  2104. struct device *dev = &pdev->dev;
  2105. struct stm32_cryp *cryp;
  2106. struct reset_control *rst;
  2107. int irq, ret;
  2108. cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
  2109. if (!cryp)
  2110. return -ENOMEM;
  2111. cryp->caps = of_device_get_match_data(dev);
  2112. if (!cryp->caps)
  2113. return -ENODEV;
  2114. cryp->dev = dev;
  2115. cryp->regs = devm_platform_ioremap_resource(pdev, 0);
  2116. if (IS_ERR(cryp->regs))
  2117. return PTR_ERR(cryp->regs);
  2118. cryp->phys_base = platform_get_resource(pdev, IORESOURCE_MEM, 0)->start;
  2119. irq = platform_get_irq(pdev, 0);
  2120. if (irq < 0)
  2121. return irq;
  2122. ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
  2123. stm32_cryp_irq_thread, IRQF_ONESHOT,
  2124. dev_name(dev), cryp);
  2125. if (ret) {
  2126. dev_err(dev, "Cannot grab IRQ\n");
  2127. return ret;
  2128. }
  2129. cryp->clk = devm_clk_get(dev, NULL);
  2130. if (IS_ERR(cryp->clk)) {
  2131. dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
  2132. return PTR_ERR(cryp->clk);
  2133. }
  2134. ret = clk_prepare_enable(cryp->clk);
  2135. if (ret) {
  2136. dev_err(cryp->dev, "Failed to enable clock\n");
  2137. return ret;
  2138. }
  2139. pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
  2140. pm_runtime_use_autosuspend(dev);
  2141. pm_runtime_get_noresume(dev);
  2142. pm_runtime_set_active(dev);
  2143. pm_runtime_enable(dev);
  2144. rst = devm_reset_control_get(dev, NULL);
  2145. if (IS_ERR(rst)) {
  2146. ret = PTR_ERR(rst);
  2147. if (ret == -EPROBE_DEFER)
  2148. goto err_rst;
  2149. } else {
  2150. reset_control_assert(rst);
  2151. udelay(2);
  2152. reset_control_deassert(rst);
  2153. }
  2154. platform_set_drvdata(pdev, cryp);
  2155. ret = stm32_cryp_dma_init(cryp);
  2156. switch (ret) {
  2157. case 0:
  2158. break;
  2159. case -ENODEV:
  2160. dev_dbg(dev, "DMA mode not available\n");
  2161. break;
  2162. default:
  2163. goto err_dma;
  2164. }
  2165. spin_lock(&cryp_list.lock);
  2166. list_add(&cryp->list, &cryp_list.dev_list);
  2167. spin_unlock(&cryp_list.lock);
  2168. /* Initialize crypto engine */
  2169. cryp->engine = crypto_engine_alloc_init(dev, 1);
  2170. if (!cryp->engine) {
  2171. dev_err(dev, "Could not init crypto engine\n");
  2172. ret = -ENOMEM;
  2173. goto err_engine1;
  2174. }
  2175. ret = crypto_engine_start(cryp->engine);
  2176. if (ret) {
  2177. dev_err(dev, "Could not start crypto engine\n");
  2178. goto err_engine2;
  2179. }
  2180. ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
  2181. if (ret) {
  2182. dev_err(dev, "Could not register algs\n");
  2183. goto err_algs;
  2184. }
  2185. if (cryp->caps->aeads_support) {
  2186. ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
  2187. if (ret)
  2188. goto err_aead_algs;
  2189. }
  2190. dev_info(dev, "Initialized\n");
  2191. pm_runtime_put_sync(dev);
  2192. return 0;
  2193. err_aead_algs:
  2194. crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
  2195. err_algs:
  2196. err_engine2:
  2197. crypto_engine_exit(cryp->engine);
  2198. err_engine1:
  2199. spin_lock(&cryp_list.lock);
  2200. list_del(&cryp->list);
  2201. spin_unlock(&cryp_list.lock);
  2202. if (cryp->dma_lch_in)
  2203. dma_release_channel(cryp->dma_lch_in);
  2204. if (cryp->dma_lch_out)
  2205. dma_release_channel(cryp->dma_lch_out);
  2206. err_dma:
  2207. err_rst:
  2208. pm_runtime_disable(dev);
  2209. pm_runtime_put_noidle(dev);
  2210. clk_disable_unprepare(cryp->clk);
  2211. return ret;
  2212. }
  2213. static void stm32_cryp_remove(struct platform_device *pdev)
  2214. {
  2215. struct stm32_cryp *cryp = platform_get_drvdata(pdev);
  2216. int ret;
  2217. ret = pm_runtime_get_sync(cryp->dev);
  2218. if (cryp->caps->aeads_support)
  2219. crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
  2220. crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
  2221. crypto_engine_exit(cryp->engine);
  2222. spin_lock(&cryp_list.lock);
  2223. list_del(&cryp->list);
  2224. spin_unlock(&cryp_list.lock);
  2225. if (cryp->dma_lch_in)
  2226. dma_release_channel(cryp->dma_lch_in);
  2227. if (cryp->dma_lch_out)
  2228. dma_release_channel(cryp->dma_lch_out);
  2229. pm_runtime_disable(cryp->dev);
  2230. pm_runtime_put_noidle(cryp->dev);
  2231. if (ret >= 0)
  2232. clk_disable_unprepare(cryp->clk);
  2233. }
  2234. #ifdef CONFIG_PM
  2235. static int stm32_cryp_runtime_suspend(struct device *dev)
  2236. {
  2237. struct stm32_cryp *cryp = dev_get_drvdata(dev);
  2238. clk_disable_unprepare(cryp->clk);
  2239. return 0;
  2240. }
  2241. static int stm32_cryp_runtime_resume(struct device *dev)
  2242. {
  2243. struct stm32_cryp *cryp = dev_get_drvdata(dev);
  2244. int ret;
  2245. ret = clk_prepare_enable(cryp->clk);
  2246. if (ret) {
  2247. dev_err(cryp->dev, "Failed to prepare_enable clock\n");
  2248. return ret;
  2249. }
  2250. return 0;
  2251. }
  2252. #endif
  2253. static const struct dev_pm_ops stm32_cryp_pm_ops = {
  2254. SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
  2255. pm_runtime_force_resume)
  2256. SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
  2257. stm32_cryp_runtime_resume, NULL)
  2258. };
  2259. static struct platform_driver stm32_cryp_driver = {
  2260. .probe = stm32_cryp_probe,
  2261. .remove_new = stm32_cryp_remove,
  2262. .driver = {
  2263. .name = DRIVER_NAME,
  2264. .pm = &stm32_cryp_pm_ops,
  2265. .of_match_table = stm32_dt_ids,
  2266. },
  2267. };
  2268. module_platform_driver(stm32_cryp_driver);
  2269. MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
  2270. MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
  2271. MODULE_LICENSE("GPL");