stm32-hash.c 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * This file is part of STM32 Crypto driver for Linux.
  4. *
  5. * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
  6. * Author(s): Lionel DEBIEVE <lionel.debieve@st.com> for STMicroelectronics.
  7. */
  8. #include <crypto/engine.h>
  9. #include <crypto/internal/hash.h>
  10. #include <crypto/md5.h>
  11. #include <crypto/scatterwalk.h>
  12. #include <crypto/sha1.h>
  13. #include <crypto/sha2.h>
  14. #include <crypto/sha3.h>
  15. #include <linux/clk.h>
  16. #include <linux/delay.h>
  17. #include <linux/dma-mapping.h>
  18. #include <linux/dmaengine.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/iopoll.h>
  21. #include <linux/kernel.h>
  22. #include <linux/module.h>
  23. #include <linux/of.h>
  24. #include <linux/platform_device.h>
  25. #include <linux/pm_runtime.h>
  26. #include <linux/reset.h>
  27. #include <linux/string.h>
  28. #define HASH_CR 0x00
  29. #define HASH_DIN 0x04
  30. #define HASH_STR 0x08
  31. #define HASH_UX500_HREG(x) (0x0c + ((x) * 0x04))
  32. #define HASH_IMR 0x20
  33. #define HASH_SR 0x24
  34. #define HASH_CSR(x) (0x0F8 + ((x) * 0x04))
  35. #define HASH_HREG(x) (0x310 + ((x) * 0x04))
  36. #define HASH_HWCFGR 0x3F0
  37. #define HASH_VER 0x3F4
  38. #define HASH_ID 0x3F8
  39. /* Control Register */
  40. #define HASH_CR_INIT BIT(2)
  41. #define HASH_CR_DMAE BIT(3)
  42. #define HASH_CR_DATATYPE_POS 4
  43. #define HASH_CR_MODE BIT(6)
  44. #define HASH_CR_ALGO_POS 7
  45. #define HASH_CR_MDMAT BIT(13)
  46. #define HASH_CR_DMAA BIT(14)
  47. #define HASH_CR_LKEY BIT(16)
  48. /* Interrupt */
  49. #define HASH_DINIE BIT(0)
  50. #define HASH_DCIE BIT(1)
  51. /* Interrupt Mask */
  52. #define HASH_MASK_CALC_COMPLETION BIT(0)
  53. #define HASH_MASK_DATA_INPUT BIT(1)
  54. /* Status Flags */
  55. #define HASH_SR_DATA_INPUT_READY BIT(0)
  56. #define HASH_SR_OUTPUT_READY BIT(1)
  57. #define HASH_SR_DMA_ACTIVE BIT(2)
  58. #define HASH_SR_BUSY BIT(3)
  59. /* STR Register */
  60. #define HASH_STR_NBLW_MASK GENMASK(4, 0)
  61. #define HASH_STR_DCAL BIT(8)
  62. /* HWCFGR Register */
  63. #define HASH_HWCFG_DMA_MASK GENMASK(3, 0)
  64. /* Context swap register */
  65. #define HASH_CSR_NB_SHA256_HMAC 54
  66. #define HASH_CSR_NB_SHA256 38
  67. #define HASH_CSR_NB_SHA512_HMAC 103
  68. #define HASH_CSR_NB_SHA512 91
  69. #define HASH_CSR_NB_SHA3_HMAC 88
  70. #define HASH_CSR_NB_SHA3 72
  71. #define HASH_CSR_NB_MAX HASH_CSR_NB_SHA512_HMAC
  72. #define HASH_FLAGS_INIT BIT(0)
  73. #define HASH_FLAGS_OUTPUT_READY BIT(1)
  74. #define HASH_FLAGS_CPU BIT(2)
  75. #define HASH_FLAGS_DMA_ACTIVE BIT(3)
  76. #define HASH_FLAGS_HMAC_INIT BIT(4)
  77. #define HASH_FLAGS_HMAC_FINAL BIT(5)
  78. #define HASH_FLAGS_HMAC_KEY BIT(6)
  79. #define HASH_FLAGS_SHA3_MODE BIT(7)
  80. #define HASH_FLAGS_FINAL BIT(15)
  81. #define HASH_FLAGS_FINUP BIT(16)
  82. #define HASH_FLAGS_ALGO_MASK GENMASK(20, 17)
  83. #define HASH_FLAGS_ALGO_SHIFT 17
  84. #define HASH_FLAGS_ERRORS BIT(21)
  85. #define HASH_FLAGS_EMPTY BIT(22)
  86. #define HASH_FLAGS_HMAC BIT(23)
  87. #define HASH_FLAGS_SGS_COPIED BIT(24)
  88. #define HASH_OP_UPDATE 1
  89. #define HASH_OP_FINAL 2
  90. #define HASH_BURST_LEVEL 4
  91. enum stm32_hash_data_format {
  92. HASH_DATA_32_BITS = 0x0,
  93. HASH_DATA_16_BITS = 0x1,
  94. HASH_DATA_8_BITS = 0x2,
  95. HASH_DATA_1_BIT = 0x3
  96. };
  97. #define HASH_BUFLEN (SHA3_224_BLOCK_SIZE + 4)
  98. #define HASH_MAX_KEY_SIZE (SHA512_BLOCK_SIZE * 8)
  99. enum stm32_hash_algo {
  100. HASH_SHA1 = 0,
  101. HASH_MD5 = 1,
  102. HASH_SHA224 = 2,
  103. HASH_SHA256 = 3,
  104. HASH_SHA3_224 = 4,
  105. HASH_SHA3_256 = 5,
  106. HASH_SHA3_384 = 6,
  107. HASH_SHA3_512 = 7,
  108. HASH_SHA384 = 12,
  109. HASH_SHA512 = 15,
  110. };
  111. enum ux500_hash_algo {
  112. HASH_SHA256_UX500 = 0,
  113. HASH_SHA1_UX500 = 1,
  114. };
  115. #define HASH_AUTOSUSPEND_DELAY 50
  116. struct stm32_hash_ctx {
  117. struct stm32_hash_dev *hdev;
  118. struct crypto_shash *xtfm;
  119. unsigned long flags;
  120. u8 key[HASH_MAX_KEY_SIZE];
  121. int keylen;
  122. };
  123. struct stm32_hash_state {
  124. u32 flags;
  125. u16 bufcnt;
  126. u16 blocklen;
  127. u8 buffer[HASH_BUFLEN] __aligned(sizeof(u32));
  128. /* hash state */
  129. u32 hw_context[3 + HASH_CSR_NB_MAX];
  130. };
  131. struct stm32_hash_request_ctx {
  132. struct stm32_hash_dev *hdev;
  133. unsigned long op;
  134. u8 digest[SHA512_DIGEST_SIZE] __aligned(sizeof(u32));
  135. size_t digcnt;
  136. struct scatterlist *sg;
  137. struct scatterlist sgl[2]; /* scatterlist used to realize alignment */
  138. unsigned int offset;
  139. unsigned int total;
  140. struct scatterlist sg_key;
  141. dma_addr_t dma_addr;
  142. size_t dma_ct;
  143. int nents;
  144. u8 data_type;
  145. struct stm32_hash_state state;
  146. };
  147. struct stm32_hash_algs_info {
  148. struct ahash_engine_alg *algs_list;
  149. size_t size;
  150. };
  151. struct stm32_hash_pdata {
  152. const int alg_shift;
  153. const struct stm32_hash_algs_info *algs_info;
  154. size_t algs_info_size;
  155. bool has_sr;
  156. bool has_mdmat;
  157. bool context_secured;
  158. bool broken_emptymsg;
  159. bool ux500;
  160. };
  161. struct stm32_hash_dev {
  162. struct list_head list;
  163. struct device *dev;
  164. struct clk *clk;
  165. struct reset_control *rst;
  166. void __iomem *io_base;
  167. phys_addr_t phys_base;
  168. u8 xmit_buf[HASH_BUFLEN] __aligned(sizeof(u32));
  169. u32 dma_mode;
  170. bool polled;
  171. struct ahash_request *req;
  172. struct crypto_engine *engine;
  173. unsigned long flags;
  174. struct dma_chan *dma_lch;
  175. struct completion dma_completion;
  176. const struct stm32_hash_pdata *pdata;
  177. };
  178. struct stm32_hash_drv {
  179. struct list_head dev_list;
  180. spinlock_t lock; /* List protection access */
  181. };
  182. static struct stm32_hash_drv stm32_hash = {
  183. .dev_list = LIST_HEAD_INIT(stm32_hash.dev_list),
  184. .lock = __SPIN_LOCK_UNLOCKED(stm32_hash.lock),
  185. };
  186. static void stm32_hash_dma_callback(void *param);
  187. static int stm32_hash_prepare_request(struct ahash_request *req);
  188. static void stm32_hash_unprepare_request(struct ahash_request *req);
  189. static inline u32 stm32_hash_read(struct stm32_hash_dev *hdev, u32 offset)
  190. {
  191. return readl_relaxed(hdev->io_base + offset);
  192. }
  193. static inline void stm32_hash_write(struct stm32_hash_dev *hdev,
  194. u32 offset, u32 value)
  195. {
  196. writel_relaxed(value, hdev->io_base + offset);
  197. }
  198. /**
  199. * stm32_hash_wait_busy - wait until hash processor is available. It return an
  200. * error if the hash core is processing a block of data for more than 10 ms.
  201. * @hdev: the stm32_hash_dev device.
  202. */
  203. static inline int stm32_hash_wait_busy(struct stm32_hash_dev *hdev)
  204. {
  205. u32 status;
  206. /* The Ux500 lacks the special status register, we poll the DCAL bit instead */
  207. if (!hdev->pdata->has_sr)
  208. return readl_relaxed_poll_timeout(hdev->io_base + HASH_STR, status,
  209. !(status & HASH_STR_DCAL), 10, 10000);
  210. return readl_relaxed_poll_timeout(hdev->io_base + HASH_SR, status,
  211. !(status & HASH_SR_BUSY), 10, 10000);
  212. }
  213. /**
  214. * stm32_hash_set_nblw - set the number of valid bytes in the last word.
  215. * @hdev: the stm32_hash_dev device.
  216. * @length: the length of the final word.
  217. */
  218. static void stm32_hash_set_nblw(struct stm32_hash_dev *hdev, int length)
  219. {
  220. u32 reg;
  221. reg = stm32_hash_read(hdev, HASH_STR);
  222. reg &= ~(HASH_STR_NBLW_MASK);
  223. reg |= (8U * ((length) % 4U));
  224. stm32_hash_write(hdev, HASH_STR, reg);
  225. }
  226. static int stm32_hash_write_key(struct stm32_hash_dev *hdev)
  227. {
  228. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  229. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  230. u32 reg;
  231. int keylen = ctx->keylen;
  232. void *key = ctx->key;
  233. if (keylen) {
  234. stm32_hash_set_nblw(hdev, keylen);
  235. while (keylen > 0) {
  236. stm32_hash_write(hdev, HASH_DIN, *(u32 *)key);
  237. keylen -= 4;
  238. key += 4;
  239. }
  240. reg = stm32_hash_read(hdev, HASH_STR);
  241. reg |= HASH_STR_DCAL;
  242. stm32_hash_write(hdev, HASH_STR, reg);
  243. return -EINPROGRESS;
  244. }
  245. return 0;
  246. }
  247. /**
  248. * stm32_hash_write_ctrl - Initialize the hash processor, only if
  249. * HASH_FLAGS_INIT is set.
  250. * @hdev: the stm32_hash_dev device
  251. */
  252. static void stm32_hash_write_ctrl(struct stm32_hash_dev *hdev)
  253. {
  254. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  255. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  256. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  257. struct stm32_hash_state *state = &rctx->state;
  258. u32 alg = (state->flags & HASH_FLAGS_ALGO_MASK) >> HASH_FLAGS_ALGO_SHIFT;
  259. u32 reg = HASH_CR_INIT;
  260. if (!(hdev->flags & HASH_FLAGS_INIT)) {
  261. if (hdev->pdata->ux500) {
  262. reg |= ((alg & BIT(0)) << HASH_CR_ALGO_POS);
  263. } else {
  264. if (hdev->pdata->alg_shift == HASH_CR_ALGO_POS)
  265. reg |= ((alg & BIT(1)) << 17) |
  266. ((alg & BIT(0)) << HASH_CR_ALGO_POS);
  267. else
  268. reg |= alg << hdev->pdata->alg_shift;
  269. }
  270. reg |= (rctx->data_type << HASH_CR_DATATYPE_POS);
  271. if (state->flags & HASH_FLAGS_HMAC) {
  272. hdev->flags |= HASH_FLAGS_HMAC;
  273. reg |= HASH_CR_MODE;
  274. if (ctx->keylen > crypto_ahash_blocksize(tfm))
  275. reg |= HASH_CR_LKEY;
  276. }
  277. if (!hdev->polled)
  278. stm32_hash_write(hdev, HASH_IMR, HASH_DCIE);
  279. stm32_hash_write(hdev, HASH_CR, reg);
  280. hdev->flags |= HASH_FLAGS_INIT;
  281. /*
  282. * After first block + 1 words are fill up,
  283. * we only need to fill 1 block to start partial computation
  284. */
  285. rctx->state.blocklen -= sizeof(u32);
  286. dev_dbg(hdev->dev, "Write Control %x\n", reg);
  287. }
  288. }
  289. static void stm32_hash_append_sg(struct stm32_hash_request_ctx *rctx)
  290. {
  291. struct stm32_hash_state *state = &rctx->state;
  292. size_t count;
  293. while ((state->bufcnt < state->blocklen) && rctx->total) {
  294. count = min(rctx->sg->length - rctx->offset, rctx->total);
  295. count = min_t(size_t, count, state->blocklen - state->bufcnt);
  296. if (count <= 0) {
  297. if ((rctx->sg->length == 0) && !sg_is_last(rctx->sg)) {
  298. rctx->sg = sg_next(rctx->sg);
  299. continue;
  300. } else {
  301. break;
  302. }
  303. }
  304. scatterwalk_map_and_copy(state->buffer + state->bufcnt,
  305. rctx->sg, rctx->offset, count, 0);
  306. state->bufcnt += count;
  307. rctx->offset += count;
  308. rctx->total -= count;
  309. if (rctx->offset == rctx->sg->length) {
  310. rctx->sg = sg_next(rctx->sg);
  311. if (rctx->sg)
  312. rctx->offset = 0;
  313. else
  314. rctx->total = 0;
  315. }
  316. }
  317. }
  318. static int stm32_hash_xmit_cpu(struct stm32_hash_dev *hdev,
  319. const u8 *buf, size_t length, int final)
  320. {
  321. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  322. struct stm32_hash_state *state = &rctx->state;
  323. unsigned int count, len32;
  324. const u32 *buffer = (const u32 *)buf;
  325. u32 reg;
  326. if (final) {
  327. hdev->flags |= HASH_FLAGS_FINAL;
  328. /* Do not process empty messages if hw is buggy. */
  329. if (!(hdev->flags & HASH_FLAGS_INIT) && !length &&
  330. hdev->pdata->broken_emptymsg) {
  331. state->flags |= HASH_FLAGS_EMPTY;
  332. return 0;
  333. }
  334. }
  335. len32 = DIV_ROUND_UP(length, sizeof(u32));
  336. dev_dbg(hdev->dev, "%s: length: %zd, final: %x len32 %i\n",
  337. __func__, length, final, len32);
  338. hdev->flags |= HASH_FLAGS_CPU;
  339. stm32_hash_write_ctrl(hdev);
  340. if (stm32_hash_wait_busy(hdev))
  341. return -ETIMEDOUT;
  342. if ((hdev->flags & HASH_FLAGS_HMAC) &&
  343. (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
  344. hdev->flags |= HASH_FLAGS_HMAC_KEY;
  345. stm32_hash_write_key(hdev);
  346. if (stm32_hash_wait_busy(hdev))
  347. return -ETIMEDOUT;
  348. }
  349. for (count = 0; count < len32; count++)
  350. stm32_hash_write(hdev, HASH_DIN, buffer[count]);
  351. if (final) {
  352. if (stm32_hash_wait_busy(hdev))
  353. return -ETIMEDOUT;
  354. stm32_hash_set_nblw(hdev, length);
  355. reg = stm32_hash_read(hdev, HASH_STR);
  356. reg |= HASH_STR_DCAL;
  357. stm32_hash_write(hdev, HASH_STR, reg);
  358. if (hdev->flags & HASH_FLAGS_HMAC) {
  359. if (stm32_hash_wait_busy(hdev))
  360. return -ETIMEDOUT;
  361. stm32_hash_write_key(hdev);
  362. }
  363. return -EINPROGRESS;
  364. }
  365. return 0;
  366. }
  367. static int hash_swap_reg(struct stm32_hash_request_ctx *rctx)
  368. {
  369. struct stm32_hash_state *state = &rctx->state;
  370. switch ((state->flags & HASH_FLAGS_ALGO_MASK) >>
  371. HASH_FLAGS_ALGO_SHIFT) {
  372. case HASH_MD5:
  373. case HASH_SHA1:
  374. case HASH_SHA224:
  375. case HASH_SHA256:
  376. if (state->flags & HASH_FLAGS_HMAC)
  377. return HASH_CSR_NB_SHA256_HMAC;
  378. else
  379. return HASH_CSR_NB_SHA256;
  380. break;
  381. case HASH_SHA384:
  382. case HASH_SHA512:
  383. if (state->flags & HASH_FLAGS_HMAC)
  384. return HASH_CSR_NB_SHA512_HMAC;
  385. else
  386. return HASH_CSR_NB_SHA512;
  387. break;
  388. case HASH_SHA3_224:
  389. case HASH_SHA3_256:
  390. case HASH_SHA3_384:
  391. case HASH_SHA3_512:
  392. if (state->flags & HASH_FLAGS_HMAC)
  393. return HASH_CSR_NB_SHA3_HMAC;
  394. else
  395. return HASH_CSR_NB_SHA3;
  396. break;
  397. default:
  398. return -EINVAL;
  399. }
  400. }
  401. static int stm32_hash_update_cpu(struct stm32_hash_dev *hdev)
  402. {
  403. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  404. struct stm32_hash_state *state = &rctx->state;
  405. int bufcnt, err = 0, final;
  406. dev_dbg(hdev->dev, "%s flags %x\n", __func__, state->flags);
  407. final = state->flags & HASH_FLAGS_FINAL;
  408. while ((rctx->total >= state->blocklen) ||
  409. (state->bufcnt + rctx->total >= state->blocklen)) {
  410. stm32_hash_append_sg(rctx);
  411. bufcnt = state->bufcnt;
  412. state->bufcnt = 0;
  413. err = stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 0);
  414. if (err)
  415. return err;
  416. }
  417. stm32_hash_append_sg(rctx);
  418. if (final) {
  419. bufcnt = state->bufcnt;
  420. state->bufcnt = 0;
  421. return stm32_hash_xmit_cpu(hdev, state->buffer, bufcnt, 1);
  422. }
  423. return err;
  424. }
  425. static int stm32_hash_xmit_dma(struct stm32_hash_dev *hdev,
  426. struct scatterlist *sg, int length, int mdmat)
  427. {
  428. struct dma_async_tx_descriptor *in_desc;
  429. dma_cookie_t cookie;
  430. u32 reg;
  431. int err;
  432. dev_dbg(hdev->dev, "%s mdmat: %x length: %d\n", __func__, mdmat, length);
  433. /* do not use dma if there is no data to send */
  434. if (length <= 0)
  435. return 0;
  436. in_desc = dmaengine_prep_slave_sg(hdev->dma_lch, sg, 1,
  437. DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT |
  438. DMA_CTRL_ACK);
  439. if (!in_desc) {
  440. dev_err(hdev->dev, "dmaengine_prep_slave error\n");
  441. return -ENOMEM;
  442. }
  443. reinit_completion(&hdev->dma_completion);
  444. in_desc->callback = stm32_hash_dma_callback;
  445. in_desc->callback_param = hdev;
  446. hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
  447. reg = stm32_hash_read(hdev, HASH_CR);
  448. if (hdev->pdata->has_mdmat) {
  449. if (mdmat)
  450. reg |= HASH_CR_MDMAT;
  451. else
  452. reg &= ~HASH_CR_MDMAT;
  453. }
  454. reg |= HASH_CR_DMAE;
  455. stm32_hash_write(hdev, HASH_CR, reg);
  456. cookie = dmaengine_submit(in_desc);
  457. err = dma_submit_error(cookie);
  458. if (err)
  459. return -ENOMEM;
  460. dma_async_issue_pending(hdev->dma_lch);
  461. if (!wait_for_completion_timeout(&hdev->dma_completion,
  462. msecs_to_jiffies(100)))
  463. err = -ETIMEDOUT;
  464. if (dma_async_is_tx_complete(hdev->dma_lch, cookie,
  465. NULL, NULL) != DMA_COMPLETE)
  466. err = -ETIMEDOUT;
  467. if (err) {
  468. dev_err(hdev->dev, "DMA Error %i\n", err);
  469. dmaengine_terminate_all(hdev->dma_lch);
  470. return err;
  471. }
  472. return -EINPROGRESS;
  473. }
  474. static void stm32_hash_dma_callback(void *param)
  475. {
  476. struct stm32_hash_dev *hdev = param;
  477. complete(&hdev->dma_completion);
  478. }
  479. static int stm32_hash_hmac_dma_send(struct stm32_hash_dev *hdev)
  480. {
  481. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  482. struct crypto_ahash *tfm = crypto_ahash_reqtfm(hdev->req);
  483. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  484. int err;
  485. if (ctx->keylen < rctx->state.blocklen || hdev->dma_mode > 0) {
  486. err = stm32_hash_write_key(hdev);
  487. if (stm32_hash_wait_busy(hdev))
  488. return -ETIMEDOUT;
  489. } else {
  490. if (!(hdev->flags & HASH_FLAGS_HMAC_KEY))
  491. sg_init_one(&rctx->sg_key, ctx->key,
  492. ALIGN(ctx->keylen, sizeof(u32)));
  493. rctx->dma_ct = dma_map_sg(hdev->dev, &rctx->sg_key, 1,
  494. DMA_TO_DEVICE);
  495. if (rctx->dma_ct == 0) {
  496. dev_err(hdev->dev, "dma_map_sg error\n");
  497. return -ENOMEM;
  498. }
  499. err = stm32_hash_xmit_dma(hdev, &rctx->sg_key, ctx->keylen, 0);
  500. dma_unmap_sg(hdev->dev, &rctx->sg_key, 1, DMA_TO_DEVICE);
  501. }
  502. return err;
  503. }
  504. static int stm32_hash_dma_init(struct stm32_hash_dev *hdev)
  505. {
  506. struct dma_slave_config dma_conf;
  507. struct dma_chan *chan;
  508. int err;
  509. memset(&dma_conf, 0, sizeof(dma_conf));
  510. dma_conf.direction = DMA_MEM_TO_DEV;
  511. dma_conf.dst_addr = hdev->phys_base + HASH_DIN;
  512. dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
  513. dma_conf.src_maxburst = HASH_BURST_LEVEL;
  514. dma_conf.dst_maxburst = HASH_BURST_LEVEL;
  515. dma_conf.device_fc = false;
  516. chan = dma_request_chan(hdev->dev, "in");
  517. if (IS_ERR(chan))
  518. return PTR_ERR(chan);
  519. hdev->dma_lch = chan;
  520. err = dmaengine_slave_config(hdev->dma_lch, &dma_conf);
  521. if (err) {
  522. dma_release_channel(hdev->dma_lch);
  523. hdev->dma_lch = NULL;
  524. dev_err(hdev->dev, "Couldn't configure DMA slave.\n");
  525. return err;
  526. }
  527. init_completion(&hdev->dma_completion);
  528. return 0;
  529. }
  530. static int stm32_hash_dma_send(struct stm32_hash_dev *hdev)
  531. {
  532. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  533. u32 *buffer = (void *)rctx->state.buffer;
  534. struct scatterlist sg[1], *tsg;
  535. int err = 0, reg, ncp = 0;
  536. unsigned int i, len = 0, bufcnt = 0;
  537. bool final = hdev->flags & HASH_FLAGS_FINAL;
  538. bool is_last = false;
  539. u32 last_word;
  540. dev_dbg(hdev->dev, "%s total: %d bufcnt: %d final: %d\n",
  541. __func__, rctx->total, rctx->state.bufcnt, final);
  542. if (rctx->nents < 0)
  543. return -EINVAL;
  544. stm32_hash_write_ctrl(hdev);
  545. if (hdev->flags & HASH_FLAGS_HMAC && (!(hdev->flags & HASH_FLAGS_HMAC_KEY))) {
  546. hdev->flags |= HASH_FLAGS_HMAC_KEY;
  547. err = stm32_hash_hmac_dma_send(hdev);
  548. if (err != -EINPROGRESS)
  549. return err;
  550. }
  551. for_each_sg(rctx->sg, tsg, rctx->nents, i) {
  552. sg[0] = *tsg;
  553. len = sg->length;
  554. if (sg_is_last(sg) || (bufcnt + sg[0].length) >= rctx->total) {
  555. if (!final) {
  556. /* Always manually put the last word of a non-final transfer. */
  557. len -= sizeof(u32);
  558. sg_pcopy_to_buffer(rctx->sg, rctx->nents, &last_word, 4, len);
  559. sg->length -= sizeof(u32);
  560. } else {
  561. /*
  562. * In Multiple DMA mode, DMA must be aborted before the final
  563. * transfer.
  564. */
  565. sg->length = rctx->total - bufcnt;
  566. if (hdev->dma_mode > 0) {
  567. len = (ALIGN(sg->length, 16) - 16);
  568. ncp = sg_pcopy_to_buffer(rctx->sg, rctx->nents,
  569. rctx->state.buffer,
  570. sg->length - len,
  571. rctx->total - sg->length + len);
  572. if (!len)
  573. break;
  574. sg->length = len;
  575. } else {
  576. is_last = true;
  577. if (!(IS_ALIGNED(sg->length, sizeof(u32)))) {
  578. len = sg->length;
  579. sg->length = ALIGN(sg->length,
  580. sizeof(u32));
  581. }
  582. }
  583. }
  584. }
  585. rctx->dma_ct = dma_map_sg(hdev->dev, sg, 1,
  586. DMA_TO_DEVICE);
  587. if (rctx->dma_ct == 0) {
  588. dev_err(hdev->dev, "dma_map_sg error\n");
  589. return -ENOMEM;
  590. }
  591. err = stm32_hash_xmit_dma(hdev, sg, len, !is_last);
  592. /* The last word of a non final transfer is sent manually. */
  593. if (!final) {
  594. stm32_hash_write(hdev, HASH_DIN, last_word);
  595. len += sizeof(u32);
  596. }
  597. rctx->total -= len;
  598. bufcnt += sg[0].length;
  599. dma_unmap_sg(hdev->dev, sg, 1, DMA_TO_DEVICE);
  600. if (err == -ENOMEM || err == -ETIMEDOUT)
  601. return err;
  602. if (is_last)
  603. break;
  604. }
  605. /*
  606. * When the second last block transfer of 4 words is performed by the DMA,
  607. * the software must set the DMA Abort bit (DMAA) to 1 before completing the
  608. * last transfer of 4 words or less.
  609. */
  610. if (final) {
  611. if (hdev->dma_mode > 0) {
  612. if (stm32_hash_wait_busy(hdev))
  613. return -ETIMEDOUT;
  614. reg = stm32_hash_read(hdev, HASH_CR);
  615. reg &= ~HASH_CR_DMAE;
  616. reg |= HASH_CR_DMAA;
  617. stm32_hash_write(hdev, HASH_CR, reg);
  618. if (ncp) {
  619. memset(buffer + ncp, 0, 4 - DIV_ROUND_UP(ncp, sizeof(u32)));
  620. writesl(hdev->io_base + HASH_DIN, buffer,
  621. DIV_ROUND_UP(ncp, sizeof(u32)));
  622. }
  623. stm32_hash_set_nblw(hdev, ncp);
  624. reg = stm32_hash_read(hdev, HASH_STR);
  625. reg |= HASH_STR_DCAL;
  626. stm32_hash_write(hdev, HASH_STR, reg);
  627. err = -EINPROGRESS;
  628. }
  629. /*
  630. * The hash processor needs the key to be loaded a second time in order
  631. * to process the HMAC.
  632. */
  633. if (hdev->flags & HASH_FLAGS_HMAC) {
  634. if (stm32_hash_wait_busy(hdev))
  635. return -ETIMEDOUT;
  636. err = stm32_hash_hmac_dma_send(hdev);
  637. }
  638. return err;
  639. }
  640. if (err != -EINPROGRESS)
  641. return err;
  642. return 0;
  643. }
  644. static struct stm32_hash_dev *stm32_hash_find_dev(struct stm32_hash_ctx *ctx)
  645. {
  646. struct stm32_hash_dev *hdev = NULL, *tmp;
  647. spin_lock_bh(&stm32_hash.lock);
  648. if (!ctx->hdev) {
  649. list_for_each_entry(tmp, &stm32_hash.dev_list, list) {
  650. hdev = tmp;
  651. break;
  652. }
  653. ctx->hdev = hdev;
  654. } else {
  655. hdev = ctx->hdev;
  656. }
  657. spin_unlock_bh(&stm32_hash.lock);
  658. return hdev;
  659. }
  660. static int stm32_hash_init(struct ahash_request *req)
  661. {
  662. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  663. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  664. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  665. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  666. struct stm32_hash_state *state = &rctx->state;
  667. bool sha3_mode = ctx->flags & HASH_FLAGS_SHA3_MODE;
  668. rctx->hdev = hdev;
  669. state->flags = 0;
  670. if (!(hdev->dma_lch && hdev->pdata->has_mdmat))
  671. state->flags |= HASH_FLAGS_CPU;
  672. if (sha3_mode)
  673. state->flags |= HASH_FLAGS_SHA3_MODE;
  674. rctx->digcnt = crypto_ahash_digestsize(tfm);
  675. switch (rctx->digcnt) {
  676. case MD5_DIGEST_SIZE:
  677. state->flags |= HASH_MD5 << HASH_FLAGS_ALGO_SHIFT;
  678. break;
  679. case SHA1_DIGEST_SIZE:
  680. if (hdev->pdata->ux500)
  681. state->flags |= HASH_SHA1_UX500 << HASH_FLAGS_ALGO_SHIFT;
  682. else
  683. state->flags |= HASH_SHA1 << HASH_FLAGS_ALGO_SHIFT;
  684. break;
  685. case SHA224_DIGEST_SIZE:
  686. if (sha3_mode)
  687. state->flags |= HASH_SHA3_224 << HASH_FLAGS_ALGO_SHIFT;
  688. else
  689. state->flags |= HASH_SHA224 << HASH_FLAGS_ALGO_SHIFT;
  690. break;
  691. case SHA256_DIGEST_SIZE:
  692. if (sha3_mode) {
  693. state->flags |= HASH_SHA3_256 << HASH_FLAGS_ALGO_SHIFT;
  694. } else {
  695. if (hdev->pdata->ux500)
  696. state->flags |= HASH_SHA256_UX500 << HASH_FLAGS_ALGO_SHIFT;
  697. else
  698. state->flags |= HASH_SHA256 << HASH_FLAGS_ALGO_SHIFT;
  699. }
  700. break;
  701. case SHA384_DIGEST_SIZE:
  702. if (sha3_mode)
  703. state->flags |= HASH_SHA3_384 << HASH_FLAGS_ALGO_SHIFT;
  704. else
  705. state->flags |= HASH_SHA384 << HASH_FLAGS_ALGO_SHIFT;
  706. break;
  707. case SHA512_DIGEST_SIZE:
  708. if (sha3_mode)
  709. state->flags |= HASH_SHA3_512 << HASH_FLAGS_ALGO_SHIFT;
  710. else
  711. state->flags |= HASH_SHA512 << HASH_FLAGS_ALGO_SHIFT;
  712. break;
  713. default:
  714. return -EINVAL;
  715. }
  716. rctx->state.bufcnt = 0;
  717. rctx->state.blocklen = crypto_ahash_blocksize(tfm) + sizeof(u32);
  718. if (rctx->state.blocklen > HASH_BUFLEN) {
  719. dev_err(hdev->dev, "Error, block too large");
  720. return -EINVAL;
  721. }
  722. rctx->nents = 0;
  723. rctx->total = 0;
  724. rctx->offset = 0;
  725. rctx->data_type = HASH_DATA_8_BITS;
  726. if (ctx->flags & HASH_FLAGS_HMAC)
  727. state->flags |= HASH_FLAGS_HMAC;
  728. dev_dbg(hdev->dev, "%s Flags %x\n", __func__, state->flags);
  729. return 0;
  730. }
  731. static int stm32_hash_update_req(struct stm32_hash_dev *hdev)
  732. {
  733. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(hdev->req);
  734. struct stm32_hash_state *state = &rctx->state;
  735. dev_dbg(hdev->dev, "update_req: total: %u, digcnt: %zd, final: 0",
  736. rctx->total, rctx->digcnt);
  737. if (!(state->flags & HASH_FLAGS_CPU))
  738. return stm32_hash_dma_send(hdev);
  739. return stm32_hash_update_cpu(hdev);
  740. }
  741. static int stm32_hash_final_req(struct stm32_hash_dev *hdev)
  742. {
  743. struct ahash_request *req = hdev->req;
  744. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  745. struct stm32_hash_state *state = &rctx->state;
  746. int buflen = state->bufcnt;
  747. if (!(state->flags & HASH_FLAGS_CPU)) {
  748. hdev->flags |= HASH_FLAGS_FINAL;
  749. return stm32_hash_dma_send(hdev);
  750. }
  751. if (state->flags & HASH_FLAGS_FINUP)
  752. return stm32_hash_update_req(hdev);
  753. state->bufcnt = 0;
  754. return stm32_hash_xmit_cpu(hdev, state->buffer, buflen, 1);
  755. }
  756. static void stm32_hash_emptymsg_fallback(struct ahash_request *req)
  757. {
  758. struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  759. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(ahash);
  760. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  761. struct stm32_hash_dev *hdev = rctx->hdev;
  762. int ret;
  763. dev_dbg(hdev->dev, "use fallback message size 0 key size %d\n",
  764. ctx->keylen);
  765. if (!ctx->xtfm) {
  766. dev_err(hdev->dev, "no fallback engine\n");
  767. return;
  768. }
  769. if (ctx->keylen) {
  770. ret = crypto_shash_setkey(ctx->xtfm, ctx->key, ctx->keylen);
  771. if (ret) {
  772. dev_err(hdev->dev, "failed to set key ret=%d\n", ret);
  773. return;
  774. }
  775. }
  776. ret = crypto_shash_tfm_digest(ctx->xtfm, NULL, 0, rctx->digest);
  777. if (ret)
  778. dev_err(hdev->dev, "shash digest error\n");
  779. }
  780. static void stm32_hash_copy_hash(struct ahash_request *req)
  781. {
  782. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  783. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  784. struct stm32_hash_state *state = &rctx->state;
  785. struct stm32_hash_dev *hdev = rctx->hdev;
  786. __be32 *hash = (void *)rctx->digest;
  787. unsigned int i, hashsize;
  788. if (hdev->pdata->broken_emptymsg && (state->flags & HASH_FLAGS_EMPTY))
  789. return stm32_hash_emptymsg_fallback(req);
  790. hashsize = crypto_ahash_digestsize(tfm);
  791. for (i = 0; i < hashsize / sizeof(u32); i++) {
  792. if (hdev->pdata->ux500)
  793. hash[i] = cpu_to_be32(stm32_hash_read(hdev,
  794. HASH_UX500_HREG(i)));
  795. else
  796. hash[i] = cpu_to_be32(stm32_hash_read(hdev,
  797. HASH_HREG(i)));
  798. }
  799. }
  800. static int stm32_hash_finish(struct ahash_request *req)
  801. {
  802. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  803. u32 reg;
  804. reg = stm32_hash_read(rctx->hdev, HASH_SR);
  805. reg &= ~HASH_SR_OUTPUT_READY;
  806. stm32_hash_write(rctx->hdev, HASH_SR, reg);
  807. if (!req->result)
  808. return -EINVAL;
  809. memcpy(req->result, rctx->digest, rctx->digcnt);
  810. return 0;
  811. }
  812. static void stm32_hash_finish_req(struct ahash_request *req, int err)
  813. {
  814. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  815. struct stm32_hash_state *state = &rctx->state;
  816. struct stm32_hash_dev *hdev = rctx->hdev;
  817. if (hdev->flags & HASH_FLAGS_DMA_ACTIVE)
  818. state->flags |= HASH_FLAGS_DMA_ACTIVE;
  819. else
  820. state->flags &= ~HASH_FLAGS_DMA_ACTIVE;
  821. if (!err && (HASH_FLAGS_FINAL & hdev->flags)) {
  822. stm32_hash_copy_hash(req);
  823. err = stm32_hash_finish(req);
  824. }
  825. /* Finalized request mist be unprepared here */
  826. stm32_hash_unprepare_request(req);
  827. crypto_finalize_hash_request(hdev->engine, req, err);
  828. }
  829. static int stm32_hash_handle_queue(struct stm32_hash_dev *hdev,
  830. struct ahash_request *req)
  831. {
  832. return crypto_transfer_hash_request_to_engine(hdev->engine, req);
  833. }
  834. static int stm32_hash_one_request(struct crypto_engine *engine, void *areq)
  835. {
  836. struct ahash_request *req = container_of(areq, struct ahash_request,
  837. base);
  838. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  839. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  840. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  841. struct stm32_hash_state *state = &rctx->state;
  842. int swap_reg;
  843. int err = 0;
  844. if (!hdev)
  845. return -ENODEV;
  846. dev_dbg(hdev->dev, "processing new req, op: %lu, nbytes %d\n",
  847. rctx->op, req->nbytes);
  848. pm_runtime_get_sync(hdev->dev);
  849. err = stm32_hash_prepare_request(req);
  850. if (err)
  851. return err;
  852. hdev->req = req;
  853. hdev->flags = 0;
  854. swap_reg = hash_swap_reg(rctx);
  855. if (state->flags & HASH_FLAGS_INIT) {
  856. u32 *preg = rctx->state.hw_context;
  857. u32 reg;
  858. int i;
  859. if (!hdev->pdata->ux500)
  860. stm32_hash_write(hdev, HASH_IMR, *preg++);
  861. stm32_hash_write(hdev, HASH_STR, *preg++);
  862. stm32_hash_write(hdev, HASH_CR, *preg);
  863. reg = *preg++ | HASH_CR_INIT;
  864. stm32_hash_write(hdev, HASH_CR, reg);
  865. for (i = 0; i < swap_reg; i++)
  866. stm32_hash_write(hdev, HASH_CSR(i), *preg++);
  867. hdev->flags |= HASH_FLAGS_INIT;
  868. if (state->flags & HASH_FLAGS_HMAC)
  869. hdev->flags |= HASH_FLAGS_HMAC |
  870. HASH_FLAGS_HMAC_KEY;
  871. if (state->flags & HASH_FLAGS_CPU)
  872. hdev->flags |= HASH_FLAGS_CPU;
  873. if (state->flags & HASH_FLAGS_DMA_ACTIVE)
  874. hdev->flags |= HASH_FLAGS_DMA_ACTIVE;
  875. }
  876. if (rctx->op == HASH_OP_UPDATE)
  877. err = stm32_hash_update_req(hdev);
  878. else if (rctx->op == HASH_OP_FINAL)
  879. err = stm32_hash_final_req(hdev);
  880. /* If we have an IRQ, wait for that, else poll for completion */
  881. if (err == -EINPROGRESS && hdev->polled) {
  882. if (stm32_hash_wait_busy(hdev))
  883. err = -ETIMEDOUT;
  884. else {
  885. hdev->flags |= HASH_FLAGS_OUTPUT_READY;
  886. err = 0;
  887. }
  888. }
  889. if (err != -EINPROGRESS)
  890. /* done task will not finish it, so do it here */
  891. stm32_hash_finish_req(req, err);
  892. return 0;
  893. }
  894. static int stm32_hash_copy_sgs(struct stm32_hash_request_ctx *rctx,
  895. struct scatterlist *sg, int bs,
  896. unsigned int new_len)
  897. {
  898. struct stm32_hash_state *state = &rctx->state;
  899. int pages;
  900. void *buf;
  901. pages = get_order(new_len);
  902. buf = (void *)__get_free_pages(GFP_ATOMIC, pages);
  903. if (!buf) {
  904. pr_err("Couldn't allocate pages for unaligned cases.\n");
  905. return -ENOMEM;
  906. }
  907. if (state->bufcnt)
  908. memcpy(buf, rctx->hdev->xmit_buf, state->bufcnt);
  909. scatterwalk_map_and_copy(buf + state->bufcnt, sg, rctx->offset,
  910. min(new_len, rctx->total) - state->bufcnt, 0);
  911. sg_init_table(rctx->sgl, 1);
  912. sg_set_buf(rctx->sgl, buf, new_len);
  913. rctx->sg = rctx->sgl;
  914. state->flags |= HASH_FLAGS_SGS_COPIED;
  915. rctx->nents = 1;
  916. rctx->offset += new_len - state->bufcnt;
  917. state->bufcnt = 0;
  918. rctx->total = new_len;
  919. return 0;
  920. }
  921. static int stm32_hash_align_sgs(struct scatterlist *sg,
  922. int nbytes, int bs, bool init, bool final,
  923. struct stm32_hash_request_ctx *rctx)
  924. {
  925. struct stm32_hash_state *state = &rctx->state;
  926. struct stm32_hash_dev *hdev = rctx->hdev;
  927. struct scatterlist *sg_tmp = sg;
  928. int offset = rctx->offset;
  929. int new_len;
  930. int n = 0;
  931. int bufcnt = state->bufcnt;
  932. bool secure_ctx = hdev->pdata->context_secured;
  933. bool aligned = true;
  934. if (!sg || !sg->length || !nbytes) {
  935. if (bufcnt) {
  936. bufcnt = DIV_ROUND_UP(bufcnt, bs) * bs;
  937. sg_init_table(rctx->sgl, 1);
  938. sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, bufcnt);
  939. rctx->sg = rctx->sgl;
  940. rctx->nents = 1;
  941. }
  942. return 0;
  943. }
  944. new_len = nbytes;
  945. if (offset)
  946. aligned = false;
  947. if (final) {
  948. new_len = DIV_ROUND_UP(new_len, bs) * bs;
  949. } else {
  950. new_len = (new_len - 1) / bs * bs; // return n block - 1 block
  951. /*
  952. * Context save in some version of HASH IP can only be done when the
  953. * FIFO is ready to get a new block. This implies to send n block plus a
  954. * 32 bit word in the first DMA send.
  955. */
  956. if (init && secure_ctx) {
  957. new_len += sizeof(u32);
  958. if (unlikely(new_len > nbytes))
  959. new_len -= bs;
  960. }
  961. }
  962. if (!new_len)
  963. return 0;
  964. if (nbytes != new_len)
  965. aligned = false;
  966. while (nbytes > 0 && sg_tmp) {
  967. n++;
  968. if (bufcnt) {
  969. if (!IS_ALIGNED(bufcnt, bs)) {
  970. aligned = false;
  971. break;
  972. }
  973. nbytes -= bufcnt;
  974. bufcnt = 0;
  975. if (!nbytes)
  976. aligned = false;
  977. continue;
  978. }
  979. if (offset < sg_tmp->length) {
  980. if (!IS_ALIGNED(offset + sg_tmp->offset, 4)) {
  981. aligned = false;
  982. break;
  983. }
  984. if (!IS_ALIGNED(sg_tmp->length - offset, bs)) {
  985. aligned = false;
  986. break;
  987. }
  988. }
  989. if (offset) {
  990. offset -= sg_tmp->length;
  991. if (offset < 0) {
  992. nbytes += offset;
  993. offset = 0;
  994. }
  995. } else {
  996. nbytes -= sg_tmp->length;
  997. }
  998. sg_tmp = sg_next(sg_tmp);
  999. if (nbytes < 0) {
  1000. aligned = false;
  1001. break;
  1002. }
  1003. }
  1004. if (!aligned)
  1005. return stm32_hash_copy_sgs(rctx, sg, bs, new_len);
  1006. rctx->total = new_len;
  1007. rctx->offset += new_len;
  1008. rctx->nents = n;
  1009. if (state->bufcnt) {
  1010. sg_init_table(rctx->sgl, 2);
  1011. sg_set_buf(rctx->sgl, rctx->hdev->xmit_buf, state->bufcnt);
  1012. sg_chain(rctx->sgl, 2, sg);
  1013. rctx->sg = rctx->sgl;
  1014. } else {
  1015. rctx->sg = sg;
  1016. }
  1017. return 0;
  1018. }
  1019. static int stm32_hash_prepare_request(struct ahash_request *req)
  1020. {
  1021. struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
  1022. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1023. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  1024. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  1025. struct stm32_hash_state *state = &rctx->state;
  1026. unsigned int nbytes;
  1027. int ret, hash_later, bs;
  1028. bool update = rctx->op & HASH_OP_UPDATE;
  1029. bool init = !(state->flags & HASH_FLAGS_INIT);
  1030. bool finup = state->flags & HASH_FLAGS_FINUP;
  1031. bool final = state->flags & HASH_FLAGS_FINAL;
  1032. if (!hdev->dma_lch || state->flags & HASH_FLAGS_CPU)
  1033. return 0;
  1034. bs = crypto_ahash_blocksize(tfm);
  1035. nbytes = state->bufcnt;
  1036. /*
  1037. * In case of update request nbytes must correspond to the content of the
  1038. * buffer + the offset minus the content of the request already in the
  1039. * buffer.
  1040. */
  1041. if (update || finup)
  1042. nbytes += req->nbytes - rctx->offset;
  1043. dev_dbg(hdev->dev,
  1044. "%s: nbytes=%d, bs=%d, total=%d, offset=%d, bufcnt=%d\n",
  1045. __func__, nbytes, bs, rctx->total, rctx->offset, state->bufcnt);
  1046. if (!nbytes)
  1047. return 0;
  1048. rctx->total = nbytes;
  1049. if (update && req->nbytes && (!IS_ALIGNED(state->bufcnt, bs))) {
  1050. int len = bs - state->bufcnt % bs;
  1051. if (len > req->nbytes)
  1052. len = req->nbytes;
  1053. scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
  1054. 0, len, 0);
  1055. state->bufcnt += len;
  1056. rctx->offset = len;
  1057. }
  1058. /* copy buffer in a temporary one that is used for sg alignment */
  1059. if (state->bufcnt)
  1060. memcpy(hdev->xmit_buf, state->buffer, state->bufcnt);
  1061. ret = stm32_hash_align_sgs(req->src, nbytes, bs, init, final, rctx);
  1062. if (ret)
  1063. return ret;
  1064. hash_later = nbytes - rctx->total;
  1065. if (hash_later < 0)
  1066. hash_later = 0;
  1067. if (hash_later && hash_later <= state->blocklen) {
  1068. scatterwalk_map_and_copy(state->buffer,
  1069. req->src,
  1070. req->nbytes - hash_later,
  1071. hash_later, 0);
  1072. state->bufcnt = hash_later;
  1073. } else {
  1074. state->bufcnt = 0;
  1075. }
  1076. if (hash_later > state->blocklen) {
  1077. /* FIXME: add support of this case */
  1078. pr_err("Buffer contains more than one block.\n");
  1079. return -ENOMEM;
  1080. }
  1081. rctx->total = min(nbytes, rctx->total);
  1082. return 0;
  1083. }
  1084. static void stm32_hash_unprepare_request(struct ahash_request *req)
  1085. {
  1086. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  1087. struct stm32_hash_state *state = &rctx->state;
  1088. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(req));
  1089. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  1090. u32 *preg = state->hw_context;
  1091. int swap_reg, i;
  1092. if (hdev->dma_lch)
  1093. dmaengine_terminate_sync(hdev->dma_lch);
  1094. if (state->flags & HASH_FLAGS_SGS_COPIED)
  1095. free_pages((unsigned long)sg_virt(rctx->sg), get_order(rctx->sg->length));
  1096. rctx->sg = NULL;
  1097. rctx->offset = 0;
  1098. state->flags &= ~(HASH_FLAGS_SGS_COPIED);
  1099. if (!(hdev->flags & HASH_FLAGS_INIT))
  1100. goto pm_runtime;
  1101. state->flags |= HASH_FLAGS_INIT;
  1102. if (stm32_hash_wait_busy(hdev)) {
  1103. dev_warn(hdev->dev, "Wait busy failed.");
  1104. return;
  1105. }
  1106. swap_reg = hash_swap_reg(rctx);
  1107. if (!hdev->pdata->ux500)
  1108. *preg++ = stm32_hash_read(hdev, HASH_IMR);
  1109. *preg++ = stm32_hash_read(hdev, HASH_STR);
  1110. *preg++ = stm32_hash_read(hdev, HASH_CR);
  1111. for (i = 0; i < swap_reg; i++)
  1112. *preg++ = stm32_hash_read(hdev, HASH_CSR(i));
  1113. pm_runtime:
  1114. pm_runtime_mark_last_busy(hdev->dev);
  1115. pm_runtime_put_autosuspend(hdev->dev);
  1116. }
  1117. static int stm32_hash_enqueue(struct ahash_request *req, unsigned int op)
  1118. {
  1119. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  1120. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
  1121. struct stm32_hash_dev *hdev = ctx->hdev;
  1122. rctx->op = op;
  1123. return stm32_hash_handle_queue(hdev, req);
  1124. }
  1125. static int stm32_hash_update(struct ahash_request *req)
  1126. {
  1127. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  1128. struct stm32_hash_state *state = &rctx->state;
  1129. if (!req->nbytes)
  1130. return 0;
  1131. if (state->flags & HASH_FLAGS_CPU) {
  1132. rctx->total = req->nbytes;
  1133. rctx->sg = req->src;
  1134. rctx->offset = 0;
  1135. if ((state->bufcnt + rctx->total < state->blocklen)) {
  1136. stm32_hash_append_sg(rctx);
  1137. return 0;
  1138. }
  1139. } else { /* DMA mode */
  1140. if (state->bufcnt + req->nbytes <= state->blocklen) {
  1141. scatterwalk_map_and_copy(state->buffer + state->bufcnt, req->src,
  1142. 0, req->nbytes, 0);
  1143. state->bufcnt += req->nbytes;
  1144. return 0;
  1145. }
  1146. }
  1147. return stm32_hash_enqueue(req, HASH_OP_UPDATE);
  1148. }
  1149. static int stm32_hash_final(struct ahash_request *req)
  1150. {
  1151. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  1152. struct stm32_hash_state *state = &rctx->state;
  1153. state->flags |= HASH_FLAGS_FINAL;
  1154. return stm32_hash_enqueue(req, HASH_OP_FINAL);
  1155. }
  1156. static int stm32_hash_finup(struct ahash_request *req)
  1157. {
  1158. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  1159. struct stm32_hash_state *state = &rctx->state;
  1160. if (!req->nbytes)
  1161. goto out;
  1162. state->flags |= HASH_FLAGS_FINUP;
  1163. if ((state->flags & HASH_FLAGS_CPU)) {
  1164. rctx->total = req->nbytes;
  1165. rctx->sg = req->src;
  1166. rctx->offset = 0;
  1167. }
  1168. out:
  1169. return stm32_hash_final(req);
  1170. }
  1171. static int stm32_hash_digest(struct ahash_request *req)
  1172. {
  1173. return stm32_hash_init(req) ?: stm32_hash_finup(req);
  1174. }
  1175. static int stm32_hash_export(struct ahash_request *req, void *out)
  1176. {
  1177. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  1178. memcpy(out, &rctx->state, sizeof(rctx->state));
  1179. return 0;
  1180. }
  1181. static int stm32_hash_import(struct ahash_request *req, const void *in)
  1182. {
  1183. struct stm32_hash_request_ctx *rctx = ahash_request_ctx(req);
  1184. stm32_hash_init(req);
  1185. memcpy(&rctx->state, in, sizeof(rctx->state));
  1186. return 0;
  1187. }
  1188. static int stm32_hash_setkey(struct crypto_ahash *tfm,
  1189. const u8 *key, unsigned int keylen)
  1190. {
  1191. struct stm32_hash_ctx *ctx = crypto_ahash_ctx(tfm);
  1192. if (keylen <= HASH_MAX_KEY_SIZE) {
  1193. memcpy(ctx->key, key, keylen);
  1194. ctx->keylen = keylen;
  1195. } else {
  1196. return -ENOMEM;
  1197. }
  1198. return 0;
  1199. }
  1200. static int stm32_hash_init_fallback(struct crypto_tfm *tfm)
  1201. {
  1202. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1203. struct stm32_hash_dev *hdev = stm32_hash_find_dev(ctx);
  1204. const char *name = crypto_tfm_alg_name(tfm);
  1205. struct crypto_shash *xtfm;
  1206. /* The fallback is only needed on Ux500 */
  1207. if (!hdev->pdata->ux500)
  1208. return 0;
  1209. xtfm = crypto_alloc_shash(name, 0, CRYPTO_ALG_NEED_FALLBACK);
  1210. if (IS_ERR(xtfm)) {
  1211. dev_err(hdev->dev, "failed to allocate %s fallback\n",
  1212. name);
  1213. return PTR_ERR(xtfm);
  1214. }
  1215. dev_info(hdev->dev, "allocated %s fallback\n", name);
  1216. ctx->xtfm = xtfm;
  1217. return 0;
  1218. }
  1219. static int stm32_hash_cra_init_algs(struct crypto_tfm *tfm, u32 algs_flags)
  1220. {
  1221. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1222. crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
  1223. sizeof(struct stm32_hash_request_ctx));
  1224. ctx->keylen = 0;
  1225. if (algs_flags)
  1226. ctx->flags |= algs_flags;
  1227. return stm32_hash_init_fallback(tfm);
  1228. }
  1229. static int stm32_hash_cra_init(struct crypto_tfm *tfm)
  1230. {
  1231. return stm32_hash_cra_init_algs(tfm, 0);
  1232. }
  1233. static int stm32_hash_cra_hmac_init(struct crypto_tfm *tfm)
  1234. {
  1235. return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_HMAC);
  1236. }
  1237. static int stm32_hash_cra_sha3_init(struct crypto_tfm *tfm)
  1238. {
  1239. return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE);
  1240. }
  1241. static int stm32_hash_cra_sha3_hmac_init(struct crypto_tfm *tfm)
  1242. {
  1243. return stm32_hash_cra_init_algs(tfm, HASH_FLAGS_SHA3_MODE |
  1244. HASH_FLAGS_HMAC);
  1245. }
  1246. static void stm32_hash_cra_exit(struct crypto_tfm *tfm)
  1247. {
  1248. struct stm32_hash_ctx *ctx = crypto_tfm_ctx(tfm);
  1249. if (ctx->xtfm)
  1250. crypto_free_shash(ctx->xtfm);
  1251. }
  1252. static irqreturn_t stm32_hash_irq_thread(int irq, void *dev_id)
  1253. {
  1254. struct stm32_hash_dev *hdev = dev_id;
  1255. if (HASH_FLAGS_OUTPUT_READY & hdev->flags) {
  1256. hdev->flags &= ~HASH_FLAGS_OUTPUT_READY;
  1257. goto finish;
  1258. }
  1259. return IRQ_HANDLED;
  1260. finish:
  1261. /* Finish current request */
  1262. stm32_hash_finish_req(hdev->req, 0);
  1263. return IRQ_HANDLED;
  1264. }
  1265. static irqreturn_t stm32_hash_irq_handler(int irq, void *dev_id)
  1266. {
  1267. struct stm32_hash_dev *hdev = dev_id;
  1268. u32 reg;
  1269. reg = stm32_hash_read(hdev, HASH_SR);
  1270. if (reg & HASH_SR_OUTPUT_READY) {
  1271. hdev->flags |= HASH_FLAGS_OUTPUT_READY;
  1272. /* Disable IT*/
  1273. stm32_hash_write(hdev, HASH_IMR, 0);
  1274. return IRQ_WAKE_THREAD;
  1275. }
  1276. return IRQ_NONE;
  1277. }
  1278. static struct ahash_engine_alg algs_md5[] = {
  1279. {
  1280. .base.init = stm32_hash_init,
  1281. .base.update = stm32_hash_update,
  1282. .base.final = stm32_hash_final,
  1283. .base.finup = stm32_hash_finup,
  1284. .base.digest = stm32_hash_digest,
  1285. .base.export = stm32_hash_export,
  1286. .base.import = stm32_hash_import,
  1287. .base.halg = {
  1288. .digestsize = MD5_DIGEST_SIZE,
  1289. .statesize = sizeof(struct stm32_hash_state),
  1290. .base = {
  1291. .cra_name = "md5",
  1292. .cra_driver_name = "stm32-md5",
  1293. .cra_priority = 200,
  1294. .cra_flags = CRYPTO_ALG_ASYNC |
  1295. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1296. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  1297. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1298. .cra_init = stm32_hash_cra_init,
  1299. .cra_exit = stm32_hash_cra_exit,
  1300. .cra_module = THIS_MODULE,
  1301. }
  1302. },
  1303. .op = {
  1304. .do_one_request = stm32_hash_one_request,
  1305. },
  1306. },
  1307. {
  1308. .base.init = stm32_hash_init,
  1309. .base.update = stm32_hash_update,
  1310. .base.final = stm32_hash_final,
  1311. .base.finup = stm32_hash_finup,
  1312. .base.digest = stm32_hash_digest,
  1313. .base.export = stm32_hash_export,
  1314. .base.import = stm32_hash_import,
  1315. .base.setkey = stm32_hash_setkey,
  1316. .base.halg = {
  1317. .digestsize = MD5_DIGEST_SIZE,
  1318. .statesize = sizeof(struct stm32_hash_state),
  1319. .base = {
  1320. .cra_name = "hmac(md5)",
  1321. .cra_driver_name = "stm32-hmac-md5",
  1322. .cra_priority = 200,
  1323. .cra_flags = CRYPTO_ALG_ASYNC |
  1324. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1325. .cra_blocksize = MD5_HMAC_BLOCK_SIZE,
  1326. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1327. .cra_init = stm32_hash_cra_hmac_init,
  1328. .cra_exit = stm32_hash_cra_exit,
  1329. .cra_module = THIS_MODULE,
  1330. }
  1331. },
  1332. .op = {
  1333. .do_one_request = stm32_hash_one_request,
  1334. },
  1335. }
  1336. };
  1337. static struct ahash_engine_alg algs_sha1[] = {
  1338. {
  1339. .base.init = stm32_hash_init,
  1340. .base.update = stm32_hash_update,
  1341. .base.final = stm32_hash_final,
  1342. .base.finup = stm32_hash_finup,
  1343. .base.digest = stm32_hash_digest,
  1344. .base.export = stm32_hash_export,
  1345. .base.import = stm32_hash_import,
  1346. .base.halg = {
  1347. .digestsize = SHA1_DIGEST_SIZE,
  1348. .statesize = sizeof(struct stm32_hash_state),
  1349. .base = {
  1350. .cra_name = "sha1",
  1351. .cra_driver_name = "stm32-sha1",
  1352. .cra_priority = 200,
  1353. .cra_flags = CRYPTO_ALG_ASYNC |
  1354. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1355. .cra_blocksize = SHA1_BLOCK_SIZE,
  1356. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1357. .cra_init = stm32_hash_cra_init,
  1358. .cra_exit = stm32_hash_cra_exit,
  1359. .cra_module = THIS_MODULE,
  1360. }
  1361. },
  1362. .op = {
  1363. .do_one_request = stm32_hash_one_request,
  1364. },
  1365. },
  1366. {
  1367. .base.init = stm32_hash_init,
  1368. .base.update = stm32_hash_update,
  1369. .base.final = stm32_hash_final,
  1370. .base.finup = stm32_hash_finup,
  1371. .base.digest = stm32_hash_digest,
  1372. .base.export = stm32_hash_export,
  1373. .base.import = stm32_hash_import,
  1374. .base.setkey = stm32_hash_setkey,
  1375. .base.halg = {
  1376. .digestsize = SHA1_DIGEST_SIZE,
  1377. .statesize = sizeof(struct stm32_hash_state),
  1378. .base = {
  1379. .cra_name = "hmac(sha1)",
  1380. .cra_driver_name = "stm32-hmac-sha1",
  1381. .cra_priority = 200,
  1382. .cra_flags = CRYPTO_ALG_ASYNC |
  1383. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1384. .cra_blocksize = SHA1_BLOCK_SIZE,
  1385. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1386. .cra_init = stm32_hash_cra_hmac_init,
  1387. .cra_exit = stm32_hash_cra_exit,
  1388. .cra_module = THIS_MODULE,
  1389. }
  1390. },
  1391. .op = {
  1392. .do_one_request = stm32_hash_one_request,
  1393. },
  1394. },
  1395. };
  1396. static struct ahash_engine_alg algs_sha224[] = {
  1397. {
  1398. .base.init = stm32_hash_init,
  1399. .base.update = stm32_hash_update,
  1400. .base.final = stm32_hash_final,
  1401. .base.finup = stm32_hash_finup,
  1402. .base.digest = stm32_hash_digest,
  1403. .base.export = stm32_hash_export,
  1404. .base.import = stm32_hash_import,
  1405. .base.halg = {
  1406. .digestsize = SHA224_DIGEST_SIZE,
  1407. .statesize = sizeof(struct stm32_hash_state),
  1408. .base = {
  1409. .cra_name = "sha224",
  1410. .cra_driver_name = "stm32-sha224",
  1411. .cra_priority = 200,
  1412. .cra_flags = CRYPTO_ALG_ASYNC |
  1413. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1414. .cra_blocksize = SHA224_BLOCK_SIZE,
  1415. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1416. .cra_init = stm32_hash_cra_init,
  1417. .cra_exit = stm32_hash_cra_exit,
  1418. .cra_module = THIS_MODULE,
  1419. }
  1420. },
  1421. .op = {
  1422. .do_one_request = stm32_hash_one_request,
  1423. },
  1424. },
  1425. {
  1426. .base.init = stm32_hash_init,
  1427. .base.update = stm32_hash_update,
  1428. .base.final = stm32_hash_final,
  1429. .base.finup = stm32_hash_finup,
  1430. .base.digest = stm32_hash_digest,
  1431. .base.setkey = stm32_hash_setkey,
  1432. .base.export = stm32_hash_export,
  1433. .base.import = stm32_hash_import,
  1434. .base.halg = {
  1435. .digestsize = SHA224_DIGEST_SIZE,
  1436. .statesize = sizeof(struct stm32_hash_state),
  1437. .base = {
  1438. .cra_name = "hmac(sha224)",
  1439. .cra_driver_name = "stm32-hmac-sha224",
  1440. .cra_priority = 200,
  1441. .cra_flags = CRYPTO_ALG_ASYNC |
  1442. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1443. .cra_blocksize = SHA224_BLOCK_SIZE,
  1444. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1445. .cra_init = stm32_hash_cra_hmac_init,
  1446. .cra_exit = stm32_hash_cra_exit,
  1447. .cra_module = THIS_MODULE,
  1448. }
  1449. },
  1450. .op = {
  1451. .do_one_request = stm32_hash_one_request,
  1452. },
  1453. },
  1454. };
  1455. static struct ahash_engine_alg algs_sha256[] = {
  1456. {
  1457. .base.init = stm32_hash_init,
  1458. .base.update = stm32_hash_update,
  1459. .base.final = stm32_hash_final,
  1460. .base.finup = stm32_hash_finup,
  1461. .base.digest = stm32_hash_digest,
  1462. .base.export = stm32_hash_export,
  1463. .base.import = stm32_hash_import,
  1464. .base.halg = {
  1465. .digestsize = SHA256_DIGEST_SIZE,
  1466. .statesize = sizeof(struct stm32_hash_state),
  1467. .base = {
  1468. .cra_name = "sha256",
  1469. .cra_driver_name = "stm32-sha256",
  1470. .cra_priority = 200,
  1471. .cra_flags = CRYPTO_ALG_ASYNC |
  1472. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1473. .cra_blocksize = SHA256_BLOCK_SIZE,
  1474. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1475. .cra_init = stm32_hash_cra_init,
  1476. .cra_exit = stm32_hash_cra_exit,
  1477. .cra_module = THIS_MODULE,
  1478. }
  1479. },
  1480. .op = {
  1481. .do_one_request = stm32_hash_one_request,
  1482. },
  1483. },
  1484. {
  1485. .base.init = stm32_hash_init,
  1486. .base.update = stm32_hash_update,
  1487. .base.final = stm32_hash_final,
  1488. .base.finup = stm32_hash_finup,
  1489. .base.digest = stm32_hash_digest,
  1490. .base.export = stm32_hash_export,
  1491. .base.import = stm32_hash_import,
  1492. .base.setkey = stm32_hash_setkey,
  1493. .base.halg = {
  1494. .digestsize = SHA256_DIGEST_SIZE,
  1495. .statesize = sizeof(struct stm32_hash_state),
  1496. .base = {
  1497. .cra_name = "hmac(sha256)",
  1498. .cra_driver_name = "stm32-hmac-sha256",
  1499. .cra_priority = 200,
  1500. .cra_flags = CRYPTO_ALG_ASYNC |
  1501. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1502. .cra_blocksize = SHA256_BLOCK_SIZE,
  1503. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1504. .cra_init = stm32_hash_cra_hmac_init,
  1505. .cra_exit = stm32_hash_cra_exit,
  1506. .cra_module = THIS_MODULE,
  1507. }
  1508. },
  1509. .op = {
  1510. .do_one_request = stm32_hash_one_request,
  1511. },
  1512. },
  1513. };
  1514. static struct ahash_engine_alg algs_sha384_sha512[] = {
  1515. {
  1516. .base.init = stm32_hash_init,
  1517. .base.update = stm32_hash_update,
  1518. .base.final = stm32_hash_final,
  1519. .base.finup = stm32_hash_finup,
  1520. .base.digest = stm32_hash_digest,
  1521. .base.export = stm32_hash_export,
  1522. .base.import = stm32_hash_import,
  1523. .base.halg = {
  1524. .digestsize = SHA384_DIGEST_SIZE,
  1525. .statesize = sizeof(struct stm32_hash_state),
  1526. .base = {
  1527. .cra_name = "sha384",
  1528. .cra_driver_name = "stm32-sha384",
  1529. .cra_priority = 200,
  1530. .cra_flags = CRYPTO_ALG_ASYNC |
  1531. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1532. .cra_blocksize = SHA384_BLOCK_SIZE,
  1533. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1534. .cra_init = stm32_hash_cra_init,
  1535. .cra_exit = stm32_hash_cra_exit,
  1536. .cra_module = THIS_MODULE,
  1537. }
  1538. },
  1539. .op = {
  1540. .do_one_request = stm32_hash_one_request,
  1541. },
  1542. },
  1543. {
  1544. .base.init = stm32_hash_init,
  1545. .base.update = stm32_hash_update,
  1546. .base.final = stm32_hash_final,
  1547. .base.finup = stm32_hash_finup,
  1548. .base.digest = stm32_hash_digest,
  1549. .base.setkey = stm32_hash_setkey,
  1550. .base.export = stm32_hash_export,
  1551. .base.import = stm32_hash_import,
  1552. .base.halg = {
  1553. .digestsize = SHA384_DIGEST_SIZE,
  1554. .statesize = sizeof(struct stm32_hash_state),
  1555. .base = {
  1556. .cra_name = "hmac(sha384)",
  1557. .cra_driver_name = "stm32-hmac-sha384",
  1558. .cra_priority = 200,
  1559. .cra_flags = CRYPTO_ALG_ASYNC |
  1560. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1561. .cra_blocksize = SHA384_BLOCK_SIZE,
  1562. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1563. .cra_init = stm32_hash_cra_hmac_init,
  1564. .cra_exit = stm32_hash_cra_exit,
  1565. .cra_module = THIS_MODULE,
  1566. }
  1567. },
  1568. .op = {
  1569. .do_one_request = stm32_hash_one_request,
  1570. },
  1571. },
  1572. {
  1573. .base.init = stm32_hash_init,
  1574. .base.update = stm32_hash_update,
  1575. .base.final = stm32_hash_final,
  1576. .base.finup = stm32_hash_finup,
  1577. .base.digest = stm32_hash_digest,
  1578. .base.export = stm32_hash_export,
  1579. .base.import = stm32_hash_import,
  1580. .base.halg = {
  1581. .digestsize = SHA512_DIGEST_SIZE,
  1582. .statesize = sizeof(struct stm32_hash_state),
  1583. .base = {
  1584. .cra_name = "sha512",
  1585. .cra_driver_name = "stm32-sha512",
  1586. .cra_priority = 200,
  1587. .cra_flags = CRYPTO_ALG_ASYNC |
  1588. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1589. .cra_blocksize = SHA512_BLOCK_SIZE,
  1590. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1591. .cra_init = stm32_hash_cra_init,
  1592. .cra_exit = stm32_hash_cra_exit,
  1593. .cra_module = THIS_MODULE,
  1594. }
  1595. },
  1596. .op = {
  1597. .do_one_request = stm32_hash_one_request,
  1598. },
  1599. },
  1600. {
  1601. .base.init = stm32_hash_init,
  1602. .base.update = stm32_hash_update,
  1603. .base.final = stm32_hash_final,
  1604. .base.finup = stm32_hash_finup,
  1605. .base.digest = stm32_hash_digest,
  1606. .base.export = stm32_hash_export,
  1607. .base.import = stm32_hash_import,
  1608. .base.setkey = stm32_hash_setkey,
  1609. .base.halg = {
  1610. .digestsize = SHA512_DIGEST_SIZE,
  1611. .statesize = sizeof(struct stm32_hash_state),
  1612. .base = {
  1613. .cra_name = "hmac(sha512)",
  1614. .cra_driver_name = "stm32-hmac-sha512",
  1615. .cra_priority = 200,
  1616. .cra_flags = CRYPTO_ALG_ASYNC |
  1617. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1618. .cra_blocksize = SHA512_BLOCK_SIZE,
  1619. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1620. .cra_init = stm32_hash_cra_hmac_init,
  1621. .cra_exit = stm32_hash_cra_exit,
  1622. .cra_module = THIS_MODULE,
  1623. }
  1624. },
  1625. .op = {
  1626. .do_one_request = stm32_hash_one_request,
  1627. },
  1628. },
  1629. };
  1630. static struct ahash_engine_alg algs_sha3[] = {
  1631. {
  1632. .base.init = stm32_hash_init,
  1633. .base.update = stm32_hash_update,
  1634. .base.final = stm32_hash_final,
  1635. .base.finup = stm32_hash_finup,
  1636. .base.digest = stm32_hash_digest,
  1637. .base.export = stm32_hash_export,
  1638. .base.import = stm32_hash_import,
  1639. .base.halg = {
  1640. .digestsize = SHA3_224_DIGEST_SIZE,
  1641. .statesize = sizeof(struct stm32_hash_state),
  1642. .base = {
  1643. .cra_name = "sha3-224",
  1644. .cra_driver_name = "stm32-sha3-224",
  1645. .cra_priority = 200,
  1646. .cra_flags = CRYPTO_ALG_ASYNC |
  1647. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1648. .cra_blocksize = SHA3_224_BLOCK_SIZE,
  1649. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1650. .cra_init = stm32_hash_cra_sha3_init,
  1651. .cra_exit = stm32_hash_cra_exit,
  1652. .cra_module = THIS_MODULE,
  1653. }
  1654. },
  1655. .op = {
  1656. .do_one_request = stm32_hash_one_request,
  1657. },
  1658. },
  1659. {
  1660. .base.init = stm32_hash_init,
  1661. .base.update = stm32_hash_update,
  1662. .base.final = stm32_hash_final,
  1663. .base.finup = stm32_hash_finup,
  1664. .base.digest = stm32_hash_digest,
  1665. .base.export = stm32_hash_export,
  1666. .base.import = stm32_hash_import,
  1667. .base.setkey = stm32_hash_setkey,
  1668. .base.halg = {
  1669. .digestsize = SHA3_224_DIGEST_SIZE,
  1670. .statesize = sizeof(struct stm32_hash_state),
  1671. .base = {
  1672. .cra_name = "hmac(sha3-224)",
  1673. .cra_driver_name = "stm32-hmac-sha3-224",
  1674. .cra_priority = 200,
  1675. .cra_flags = CRYPTO_ALG_ASYNC |
  1676. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1677. .cra_blocksize = SHA3_224_BLOCK_SIZE,
  1678. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1679. .cra_init = stm32_hash_cra_sha3_hmac_init,
  1680. .cra_exit = stm32_hash_cra_exit,
  1681. .cra_module = THIS_MODULE,
  1682. }
  1683. },
  1684. .op = {
  1685. .do_one_request = stm32_hash_one_request,
  1686. },
  1687. },
  1688. {
  1689. .base.init = stm32_hash_init,
  1690. .base.update = stm32_hash_update,
  1691. .base.final = stm32_hash_final,
  1692. .base.finup = stm32_hash_finup,
  1693. .base.digest = stm32_hash_digest,
  1694. .base.export = stm32_hash_export,
  1695. .base.import = stm32_hash_import,
  1696. .base.halg = {
  1697. .digestsize = SHA3_256_DIGEST_SIZE,
  1698. .statesize = sizeof(struct stm32_hash_state),
  1699. .base = {
  1700. .cra_name = "sha3-256",
  1701. .cra_driver_name = "stm32-sha3-256",
  1702. .cra_priority = 200,
  1703. .cra_flags = CRYPTO_ALG_ASYNC |
  1704. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1705. .cra_blocksize = SHA3_256_BLOCK_SIZE,
  1706. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1707. .cra_init = stm32_hash_cra_sha3_init,
  1708. .cra_exit = stm32_hash_cra_exit,
  1709. .cra_module = THIS_MODULE,
  1710. }
  1711. },
  1712. .op = {
  1713. .do_one_request = stm32_hash_one_request,
  1714. },
  1715. },
  1716. {
  1717. .base.init = stm32_hash_init,
  1718. .base.update = stm32_hash_update,
  1719. .base.final = stm32_hash_final,
  1720. .base.finup = stm32_hash_finup,
  1721. .base.digest = stm32_hash_digest,
  1722. .base.export = stm32_hash_export,
  1723. .base.import = stm32_hash_import,
  1724. .base.setkey = stm32_hash_setkey,
  1725. .base.halg = {
  1726. .digestsize = SHA3_256_DIGEST_SIZE,
  1727. .statesize = sizeof(struct stm32_hash_state),
  1728. .base = {
  1729. .cra_name = "hmac(sha3-256)",
  1730. .cra_driver_name = "stm32-hmac-sha3-256",
  1731. .cra_priority = 200,
  1732. .cra_flags = CRYPTO_ALG_ASYNC |
  1733. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1734. .cra_blocksize = SHA3_256_BLOCK_SIZE,
  1735. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1736. .cra_init = stm32_hash_cra_sha3_hmac_init,
  1737. .cra_exit = stm32_hash_cra_exit,
  1738. .cra_module = THIS_MODULE,
  1739. }
  1740. },
  1741. .op = {
  1742. .do_one_request = stm32_hash_one_request,
  1743. },
  1744. },
  1745. {
  1746. .base.init = stm32_hash_init,
  1747. .base.update = stm32_hash_update,
  1748. .base.final = stm32_hash_final,
  1749. .base.finup = stm32_hash_finup,
  1750. .base.digest = stm32_hash_digest,
  1751. .base.export = stm32_hash_export,
  1752. .base.import = stm32_hash_import,
  1753. .base.halg = {
  1754. .digestsize = SHA3_384_DIGEST_SIZE,
  1755. .statesize = sizeof(struct stm32_hash_state),
  1756. .base = {
  1757. .cra_name = "sha3-384",
  1758. .cra_driver_name = "stm32-sha3-384",
  1759. .cra_priority = 200,
  1760. .cra_flags = CRYPTO_ALG_ASYNC |
  1761. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1762. .cra_blocksize = SHA3_384_BLOCK_SIZE,
  1763. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1764. .cra_init = stm32_hash_cra_sha3_init,
  1765. .cra_exit = stm32_hash_cra_exit,
  1766. .cra_module = THIS_MODULE,
  1767. }
  1768. },
  1769. .op = {
  1770. .do_one_request = stm32_hash_one_request,
  1771. },
  1772. },
  1773. {
  1774. .base.init = stm32_hash_init,
  1775. .base.update = stm32_hash_update,
  1776. .base.final = stm32_hash_final,
  1777. .base.finup = stm32_hash_finup,
  1778. .base.digest = stm32_hash_digest,
  1779. .base.export = stm32_hash_export,
  1780. .base.import = stm32_hash_import,
  1781. .base.setkey = stm32_hash_setkey,
  1782. .base.halg = {
  1783. .digestsize = SHA3_384_DIGEST_SIZE,
  1784. .statesize = sizeof(struct stm32_hash_state),
  1785. .base = {
  1786. .cra_name = "hmac(sha3-384)",
  1787. .cra_driver_name = "stm32-hmac-sha3-384",
  1788. .cra_priority = 200,
  1789. .cra_flags = CRYPTO_ALG_ASYNC |
  1790. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1791. .cra_blocksize = SHA3_384_BLOCK_SIZE,
  1792. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1793. .cra_init = stm32_hash_cra_sha3_hmac_init,
  1794. .cra_exit = stm32_hash_cra_exit,
  1795. .cra_module = THIS_MODULE,
  1796. }
  1797. },
  1798. .op = {
  1799. .do_one_request = stm32_hash_one_request,
  1800. },
  1801. },
  1802. {
  1803. .base.init = stm32_hash_init,
  1804. .base.update = stm32_hash_update,
  1805. .base.final = stm32_hash_final,
  1806. .base.finup = stm32_hash_finup,
  1807. .base.digest = stm32_hash_digest,
  1808. .base.export = stm32_hash_export,
  1809. .base.import = stm32_hash_import,
  1810. .base.halg = {
  1811. .digestsize = SHA3_512_DIGEST_SIZE,
  1812. .statesize = sizeof(struct stm32_hash_state),
  1813. .base = {
  1814. .cra_name = "sha3-512",
  1815. .cra_driver_name = "stm32-sha3-512",
  1816. .cra_priority = 200,
  1817. .cra_flags = CRYPTO_ALG_ASYNC |
  1818. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1819. .cra_blocksize = SHA3_512_BLOCK_SIZE,
  1820. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1821. .cra_init = stm32_hash_cra_sha3_init,
  1822. .cra_exit = stm32_hash_cra_exit,
  1823. .cra_module = THIS_MODULE,
  1824. }
  1825. },
  1826. .op = {
  1827. .do_one_request = stm32_hash_one_request,
  1828. },
  1829. },
  1830. {
  1831. .base.init = stm32_hash_init,
  1832. .base.update = stm32_hash_update,
  1833. .base.final = stm32_hash_final,
  1834. .base.finup = stm32_hash_finup,
  1835. .base.digest = stm32_hash_digest,
  1836. .base.export = stm32_hash_export,
  1837. .base.import = stm32_hash_import,
  1838. .base.setkey = stm32_hash_setkey,
  1839. .base.halg = {
  1840. .digestsize = SHA3_512_DIGEST_SIZE,
  1841. .statesize = sizeof(struct stm32_hash_state),
  1842. .base = {
  1843. .cra_name = "hmac(sha3-512)",
  1844. .cra_driver_name = "stm32-hmac-sha3-512",
  1845. .cra_priority = 200,
  1846. .cra_flags = CRYPTO_ALG_ASYNC |
  1847. CRYPTO_ALG_KERN_DRIVER_ONLY,
  1848. .cra_blocksize = SHA3_512_BLOCK_SIZE,
  1849. .cra_ctxsize = sizeof(struct stm32_hash_ctx),
  1850. .cra_init = stm32_hash_cra_sha3_hmac_init,
  1851. .cra_exit = stm32_hash_cra_exit,
  1852. .cra_module = THIS_MODULE,
  1853. }
  1854. },
  1855. .op = {
  1856. .do_one_request = stm32_hash_one_request,
  1857. },
  1858. }
  1859. };
  1860. static int stm32_hash_register_algs(struct stm32_hash_dev *hdev)
  1861. {
  1862. unsigned int i, j;
  1863. int err;
  1864. for (i = 0; i < hdev->pdata->algs_info_size; i++) {
  1865. for (j = 0; j < hdev->pdata->algs_info[i].size; j++) {
  1866. err = crypto_engine_register_ahash(
  1867. &hdev->pdata->algs_info[i].algs_list[j]);
  1868. if (err)
  1869. goto err_algs;
  1870. }
  1871. }
  1872. return 0;
  1873. err_algs:
  1874. dev_err(hdev->dev, "Algo %d : %d failed\n", i, j);
  1875. for (; i--; ) {
  1876. for (; j--;)
  1877. crypto_engine_unregister_ahash(
  1878. &hdev->pdata->algs_info[i].algs_list[j]);
  1879. }
  1880. return err;
  1881. }
  1882. static int stm32_hash_unregister_algs(struct stm32_hash_dev *hdev)
  1883. {
  1884. unsigned int i, j;
  1885. for (i = 0; i < hdev->pdata->algs_info_size; i++) {
  1886. for (j = 0; j < hdev->pdata->algs_info[i].size; j++)
  1887. crypto_engine_unregister_ahash(
  1888. &hdev->pdata->algs_info[i].algs_list[j]);
  1889. }
  1890. return 0;
  1891. }
  1892. static struct stm32_hash_algs_info stm32_hash_algs_info_ux500[] = {
  1893. {
  1894. .algs_list = algs_sha1,
  1895. .size = ARRAY_SIZE(algs_sha1),
  1896. },
  1897. {
  1898. .algs_list = algs_sha256,
  1899. .size = ARRAY_SIZE(algs_sha256),
  1900. },
  1901. };
  1902. static const struct stm32_hash_pdata stm32_hash_pdata_ux500 = {
  1903. .alg_shift = 7,
  1904. .algs_info = stm32_hash_algs_info_ux500,
  1905. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_ux500),
  1906. .broken_emptymsg = true,
  1907. .ux500 = true,
  1908. };
  1909. static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f4[] = {
  1910. {
  1911. .algs_list = algs_md5,
  1912. .size = ARRAY_SIZE(algs_md5),
  1913. },
  1914. {
  1915. .algs_list = algs_sha1,
  1916. .size = ARRAY_SIZE(algs_sha1),
  1917. },
  1918. };
  1919. static const struct stm32_hash_pdata stm32_hash_pdata_stm32f4 = {
  1920. .alg_shift = 7,
  1921. .algs_info = stm32_hash_algs_info_stm32f4,
  1922. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f4),
  1923. .has_sr = true,
  1924. .has_mdmat = true,
  1925. };
  1926. static struct stm32_hash_algs_info stm32_hash_algs_info_stm32f7[] = {
  1927. {
  1928. .algs_list = algs_md5,
  1929. .size = ARRAY_SIZE(algs_md5),
  1930. },
  1931. {
  1932. .algs_list = algs_sha1,
  1933. .size = ARRAY_SIZE(algs_sha1),
  1934. },
  1935. {
  1936. .algs_list = algs_sha224,
  1937. .size = ARRAY_SIZE(algs_sha224),
  1938. },
  1939. {
  1940. .algs_list = algs_sha256,
  1941. .size = ARRAY_SIZE(algs_sha256),
  1942. },
  1943. };
  1944. static const struct stm32_hash_pdata stm32_hash_pdata_stm32f7 = {
  1945. .alg_shift = 7,
  1946. .algs_info = stm32_hash_algs_info_stm32f7,
  1947. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32f7),
  1948. .has_sr = true,
  1949. .has_mdmat = true,
  1950. };
  1951. static struct stm32_hash_algs_info stm32_hash_algs_info_stm32mp13[] = {
  1952. {
  1953. .algs_list = algs_sha1,
  1954. .size = ARRAY_SIZE(algs_sha1),
  1955. },
  1956. {
  1957. .algs_list = algs_sha224,
  1958. .size = ARRAY_SIZE(algs_sha224),
  1959. },
  1960. {
  1961. .algs_list = algs_sha256,
  1962. .size = ARRAY_SIZE(algs_sha256),
  1963. },
  1964. {
  1965. .algs_list = algs_sha384_sha512,
  1966. .size = ARRAY_SIZE(algs_sha384_sha512),
  1967. },
  1968. {
  1969. .algs_list = algs_sha3,
  1970. .size = ARRAY_SIZE(algs_sha3),
  1971. },
  1972. };
  1973. static const struct stm32_hash_pdata stm32_hash_pdata_stm32mp13 = {
  1974. .alg_shift = 17,
  1975. .algs_info = stm32_hash_algs_info_stm32mp13,
  1976. .algs_info_size = ARRAY_SIZE(stm32_hash_algs_info_stm32mp13),
  1977. .has_sr = true,
  1978. .has_mdmat = true,
  1979. .context_secured = true,
  1980. };
  1981. static const struct of_device_id stm32_hash_of_match[] = {
  1982. { .compatible = "stericsson,ux500-hash", .data = &stm32_hash_pdata_ux500 },
  1983. { .compatible = "st,stm32f456-hash", .data = &stm32_hash_pdata_stm32f4 },
  1984. { .compatible = "st,stm32f756-hash", .data = &stm32_hash_pdata_stm32f7 },
  1985. { .compatible = "st,stm32mp13-hash", .data = &stm32_hash_pdata_stm32mp13 },
  1986. {},
  1987. };
  1988. MODULE_DEVICE_TABLE(of, stm32_hash_of_match);
  1989. static int stm32_hash_get_of_match(struct stm32_hash_dev *hdev,
  1990. struct device *dev)
  1991. {
  1992. hdev->pdata = of_device_get_match_data(dev);
  1993. if (!hdev->pdata) {
  1994. dev_err(dev, "no compatible OF match\n");
  1995. return -EINVAL;
  1996. }
  1997. return 0;
  1998. }
  1999. static int stm32_hash_probe(struct platform_device *pdev)
  2000. {
  2001. struct stm32_hash_dev *hdev;
  2002. struct device *dev = &pdev->dev;
  2003. struct resource *res;
  2004. int ret, irq;
  2005. hdev = devm_kzalloc(dev, sizeof(*hdev), GFP_KERNEL);
  2006. if (!hdev)
  2007. return -ENOMEM;
  2008. hdev->io_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
  2009. if (IS_ERR(hdev->io_base))
  2010. return PTR_ERR(hdev->io_base);
  2011. hdev->phys_base = res->start;
  2012. ret = stm32_hash_get_of_match(hdev, dev);
  2013. if (ret)
  2014. return ret;
  2015. irq = platform_get_irq_optional(pdev, 0);
  2016. if (irq < 0 && irq != -ENXIO)
  2017. return irq;
  2018. if (irq > 0) {
  2019. ret = devm_request_threaded_irq(dev, irq,
  2020. stm32_hash_irq_handler,
  2021. stm32_hash_irq_thread,
  2022. IRQF_ONESHOT,
  2023. dev_name(dev), hdev);
  2024. if (ret) {
  2025. dev_err(dev, "Cannot grab IRQ\n");
  2026. return ret;
  2027. }
  2028. } else {
  2029. dev_info(dev, "No IRQ, use polling mode\n");
  2030. hdev->polled = true;
  2031. }
  2032. hdev->clk = devm_clk_get(&pdev->dev, NULL);
  2033. if (IS_ERR(hdev->clk))
  2034. return dev_err_probe(dev, PTR_ERR(hdev->clk),
  2035. "failed to get clock for hash\n");
  2036. ret = clk_prepare_enable(hdev->clk);
  2037. if (ret) {
  2038. dev_err(dev, "failed to enable hash clock (%d)\n", ret);
  2039. return ret;
  2040. }
  2041. pm_runtime_set_autosuspend_delay(dev, HASH_AUTOSUSPEND_DELAY);
  2042. pm_runtime_use_autosuspend(dev);
  2043. pm_runtime_get_noresume(dev);
  2044. pm_runtime_set_active(dev);
  2045. pm_runtime_enable(dev);
  2046. hdev->rst = devm_reset_control_get(&pdev->dev, NULL);
  2047. if (IS_ERR(hdev->rst)) {
  2048. if (PTR_ERR(hdev->rst) == -EPROBE_DEFER) {
  2049. ret = -EPROBE_DEFER;
  2050. goto err_reset;
  2051. }
  2052. } else {
  2053. reset_control_assert(hdev->rst);
  2054. udelay(2);
  2055. reset_control_deassert(hdev->rst);
  2056. }
  2057. hdev->dev = dev;
  2058. platform_set_drvdata(pdev, hdev);
  2059. ret = stm32_hash_dma_init(hdev);
  2060. switch (ret) {
  2061. case 0:
  2062. break;
  2063. case -ENOENT:
  2064. case -ENODEV:
  2065. dev_info(dev, "DMA mode not available\n");
  2066. break;
  2067. default:
  2068. dev_err(dev, "DMA init error %d\n", ret);
  2069. goto err_dma;
  2070. }
  2071. spin_lock(&stm32_hash.lock);
  2072. list_add_tail(&hdev->list, &stm32_hash.dev_list);
  2073. spin_unlock(&stm32_hash.lock);
  2074. /* Initialize crypto engine */
  2075. hdev->engine = crypto_engine_alloc_init(dev, 1);
  2076. if (!hdev->engine) {
  2077. ret = -ENOMEM;
  2078. goto err_engine;
  2079. }
  2080. ret = crypto_engine_start(hdev->engine);
  2081. if (ret)
  2082. goto err_engine_start;
  2083. if (hdev->pdata->ux500)
  2084. /* FIXME: implement DMA mode for Ux500 */
  2085. hdev->dma_mode = 0;
  2086. else
  2087. hdev->dma_mode = stm32_hash_read(hdev, HASH_HWCFGR) & HASH_HWCFG_DMA_MASK;
  2088. /* Register algos */
  2089. ret = stm32_hash_register_algs(hdev);
  2090. if (ret)
  2091. goto err_algs;
  2092. dev_info(dev, "Init HASH done HW ver %x DMA mode %u\n",
  2093. stm32_hash_read(hdev, HASH_VER), hdev->dma_mode);
  2094. pm_runtime_put_sync(dev);
  2095. return 0;
  2096. err_algs:
  2097. err_engine_start:
  2098. crypto_engine_exit(hdev->engine);
  2099. err_engine:
  2100. spin_lock(&stm32_hash.lock);
  2101. list_del(&hdev->list);
  2102. spin_unlock(&stm32_hash.lock);
  2103. err_dma:
  2104. if (hdev->dma_lch)
  2105. dma_release_channel(hdev->dma_lch);
  2106. err_reset:
  2107. pm_runtime_disable(dev);
  2108. pm_runtime_put_noidle(dev);
  2109. clk_disable_unprepare(hdev->clk);
  2110. return ret;
  2111. }
  2112. static void stm32_hash_remove(struct platform_device *pdev)
  2113. {
  2114. struct stm32_hash_dev *hdev = platform_get_drvdata(pdev);
  2115. int ret;
  2116. ret = pm_runtime_get_sync(hdev->dev);
  2117. stm32_hash_unregister_algs(hdev);
  2118. crypto_engine_exit(hdev->engine);
  2119. spin_lock(&stm32_hash.lock);
  2120. list_del(&hdev->list);
  2121. spin_unlock(&stm32_hash.lock);
  2122. if (hdev->dma_lch)
  2123. dma_release_channel(hdev->dma_lch);
  2124. pm_runtime_disable(hdev->dev);
  2125. pm_runtime_put_noidle(hdev->dev);
  2126. if (ret >= 0)
  2127. clk_disable_unprepare(hdev->clk);
  2128. }
  2129. #ifdef CONFIG_PM
  2130. static int stm32_hash_runtime_suspend(struct device *dev)
  2131. {
  2132. struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
  2133. clk_disable_unprepare(hdev->clk);
  2134. return 0;
  2135. }
  2136. static int stm32_hash_runtime_resume(struct device *dev)
  2137. {
  2138. struct stm32_hash_dev *hdev = dev_get_drvdata(dev);
  2139. int ret;
  2140. ret = clk_prepare_enable(hdev->clk);
  2141. if (ret) {
  2142. dev_err(hdev->dev, "Failed to prepare_enable clock\n");
  2143. return ret;
  2144. }
  2145. return 0;
  2146. }
  2147. #endif
  2148. static const struct dev_pm_ops stm32_hash_pm_ops = {
  2149. SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
  2150. pm_runtime_force_resume)
  2151. SET_RUNTIME_PM_OPS(stm32_hash_runtime_suspend,
  2152. stm32_hash_runtime_resume, NULL)
  2153. };
  2154. static struct platform_driver stm32_hash_driver = {
  2155. .probe = stm32_hash_probe,
  2156. .remove_new = stm32_hash_remove,
  2157. .driver = {
  2158. .name = "stm32-hash",
  2159. .pm = &stm32_hash_pm_ops,
  2160. .of_match_table = stm32_hash_of_match,
  2161. }
  2162. };
  2163. module_platform_driver(stm32_hash_driver);
  2164. MODULE_DESCRIPTION("STM32 SHA1/SHA2/SHA3 & MD5 (HMAC) hw accelerator driver");
  2165. MODULE_AUTHOR("Lionel Debieve <lionel.debieve@st.com>");
  2166. MODULE_LICENSE("GPL v2");