st-dma-fence-chain.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706
  1. // SPDX-License-Identifier: MIT
  2. /*
  3. * Copyright © 2019 Intel Corporation
  4. */
  5. #include <linux/delay.h>
  6. #include <linux/dma-fence.h>
  7. #include <linux/dma-fence-chain.h>
  8. #include <linux/kernel.h>
  9. #include <linux/kthread.h>
  10. #include <linux/mm.h>
  11. #include <linux/sched/signal.h>
  12. #include <linux/slab.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/random.h>
  15. #include "selftest.h"
  16. #define CHAIN_SZ (4 << 10)
  17. static struct kmem_cache *slab_fences;
  18. static inline struct mock_fence {
  19. struct dma_fence base;
  20. spinlock_t lock;
  21. } *to_mock_fence(struct dma_fence *f) {
  22. return container_of(f, struct mock_fence, base);
  23. }
  24. static const char *mock_name(struct dma_fence *f)
  25. {
  26. return "mock";
  27. }
  28. static void mock_fence_release(struct dma_fence *f)
  29. {
  30. kmem_cache_free(slab_fences, to_mock_fence(f));
  31. }
  32. static const struct dma_fence_ops mock_ops = {
  33. .get_driver_name = mock_name,
  34. .get_timeline_name = mock_name,
  35. .release = mock_fence_release,
  36. };
  37. static struct dma_fence *mock_fence(void)
  38. {
  39. struct mock_fence *f;
  40. f = kmem_cache_alloc(slab_fences, GFP_KERNEL);
  41. if (!f)
  42. return NULL;
  43. spin_lock_init(&f->lock);
  44. dma_fence_init(&f->base, &mock_ops, &f->lock, 0, 0);
  45. return &f->base;
  46. }
  47. static struct dma_fence *mock_chain(struct dma_fence *prev,
  48. struct dma_fence *fence,
  49. u64 seqno)
  50. {
  51. struct dma_fence_chain *f;
  52. f = dma_fence_chain_alloc();
  53. if (!f)
  54. return NULL;
  55. dma_fence_chain_init(f, dma_fence_get(prev), dma_fence_get(fence),
  56. seqno);
  57. return &f->base;
  58. }
  59. static int sanitycheck(void *arg)
  60. {
  61. struct dma_fence *f, *chain;
  62. int err = 0;
  63. f = mock_fence();
  64. if (!f)
  65. return -ENOMEM;
  66. chain = mock_chain(NULL, f, 1);
  67. if (chain)
  68. dma_fence_enable_sw_signaling(chain);
  69. else
  70. err = -ENOMEM;
  71. dma_fence_signal(f);
  72. dma_fence_put(f);
  73. dma_fence_put(chain);
  74. return err;
  75. }
  76. struct fence_chains {
  77. unsigned int chain_length;
  78. struct dma_fence **fences;
  79. struct dma_fence **chains;
  80. struct dma_fence *tail;
  81. };
  82. static uint64_t seqno_inc(unsigned int i)
  83. {
  84. return i + 1;
  85. }
  86. static int fence_chains_init(struct fence_chains *fc, unsigned int count,
  87. uint64_t (*seqno_fn)(unsigned int))
  88. {
  89. unsigned int i;
  90. int err = 0;
  91. fc->chains = kvmalloc_array(count, sizeof(*fc->chains),
  92. GFP_KERNEL | __GFP_ZERO);
  93. if (!fc->chains)
  94. return -ENOMEM;
  95. fc->fences = kvmalloc_array(count, sizeof(*fc->fences),
  96. GFP_KERNEL | __GFP_ZERO);
  97. if (!fc->fences) {
  98. err = -ENOMEM;
  99. goto err_chains;
  100. }
  101. fc->tail = NULL;
  102. for (i = 0; i < count; i++) {
  103. fc->fences[i] = mock_fence();
  104. if (!fc->fences[i]) {
  105. err = -ENOMEM;
  106. goto unwind;
  107. }
  108. fc->chains[i] = mock_chain(fc->tail,
  109. fc->fences[i],
  110. seqno_fn(i));
  111. if (!fc->chains[i]) {
  112. err = -ENOMEM;
  113. goto unwind;
  114. }
  115. fc->tail = fc->chains[i];
  116. dma_fence_enable_sw_signaling(fc->chains[i]);
  117. }
  118. fc->chain_length = i;
  119. return 0;
  120. unwind:
  121. for (i = 0; i < count; i++) {
  122. dma_fence_put(fc->fences[i]);
  123. dma_fence_put(fc->chains[i]);
  124. }
  125. kvfree(fc->fences);
  126. err_chains:
  127. kvfree(fc->chains);
  128. return err;
  129. }
  130. static void fence_chains_fini(struct fence_chains *fc)
  131. {
  132. unsigned int i;
  133. for (i = 0; i < fc->chain_length; i++) {
  134. dma_fence_signal(fc->fences[i]);
  135. dma_fence_put(fc->fences[i]);
  136. }
  137. kvfree(fc->fences);
  138. for (i = 0; i < fc->chain_length; i++)
  139. dma_fence_put(fc->chains[i]);
  140. kvfree(fc->chains);
  141. }
  142. static int find_seqno(void *arg)
  143. {
  144. struct fence_chains fc;
  145. struct dma_fence *fence;
  146. int err;
  147. int i;
  148. err = fence_chains_init(&fc, 64, seqno_inc);
  149. if (err)
  150. return err;
  151. fence = dma_fence_get(fc.tail);
  152. err = dma_fence_chain_find_seqno(&fence, 0);
  153. dma_fence_put(fence);
  154. if (err) {
  155. pr_err("Reported %d for find_seqno(0)!\n", err);
  156. goto err;
  157. }
  158. for (i = 0; i < fc.chain_length; i++) {
  159. fence = dma_fence_get(fc.tail);
  160. err = dma_fence_chain_find_seqno(&fence, i + 1);
  161. dma_fence_put(fence);
  162. if (err) {
  163. pr_err("Reported %d for find_seqno(%d:%d)!\n",
  164. err, fc.chain_length + 1, i + 1);
  165. goto err;
  166. }
  167. if (fence != fc.chains[i]) {
  168. pr_err("Incorrect fence reported by find_seqno(%d:%d)\n",
  169. fc.chain_length + 1, i + 1);
  170. err = -EINVAL;
  171. goto err;
  172. }
  173. dma_fence_get(fence);
  174. err = dma_fence_chain_find_seqno(&fence, i + 1);
  175. dma_fence_put(fence);
  176. if (err) {
  177. pr_err("Error reported for finding self\n");
  178. goto err;
  179. }
  180. if (fence != fc.chains[i]) {
  181. pr_err("Incorrect fence reported by find self\n");
  182. err = -EINVAL;
  183. goto err;
  184. }
  185. dma_fence_get(fence);
  186. err = dma_fence_chain_find_seqno(&fence, i + 2);
  187. dma_fence_put(fence);
  188. if (!err) {
  189. pr_err("Error not reported for future fence: find_seqno(%d:%d)!\n",
  190. i + 1, i + 2);
  191. err = -EINVAL;
  192. goto err;
  193. }
  194. dma_fence_get(fence);
  195. err = dma_fence_chain_find_seqno(&fence, i);
  196. dma_fence_put(fence);
  197. if (err) {
  198. pr_err("Error reported for previous fence!\n");
  199. goto err;
  200. }
  201. if (i > 0 && fence != fc.chains[i - 1]) {
  202. pr_err("Incorrect fence reported by find_seqno(%d:%d)\n",
  203. i + 1, i);
  204. err = -EINVAL;
  205. goto err;
  206. }
  207. }
  208. err:
  209. fence_chains_fini(&fc);
  210. return err;
  211. }
  212. static int find_signaled(void *arg)
  213. {
  214. struct fence_chains fc;
  215. struct dma_fence *fence;
  216. int err;
  217. err = fence_chains_init(&fc, 2, seqno_inc);
  218. if (err)
  219. return err;
  220. dma_fence_signal(fc.fences[0]);
  221. fence = dma_fence_get(fc.tail);
  222. err = dma_fence_chain_find_seqno(&fence, 1);
  223. dma_fence_put(fence);
  224. if (err) {
  225. pr_err("Reported %d for find_seqno()!\n", err);
  226. goto err;
  227. }
  228. if (fence && fence != fc.chains[0]) {
  229. pr_err("Incorrect chain-fence.seqno:%lld reported for completed seqno:1\n",
  230. fence->seqno);
  231. dma_fence_get(fence);
  232. err = dma_fence_chain_find_seqno(&fence, 1);
  233. dma_fence_put(fence);
  234. if (err)
  235. pr_err("Reported %d for finding self!\n", err);
  236. err = -EINVAL;
  237. }
  238. err:
  239. fence_chains_fini(&fc);
  240. return err;
  241. }
  242. static int find_out_of_order(void *arg)
  243. {
  244. struct fence_chains fc;
  245. struct dma_fence *fence;
  246. int err;
  247. err = fence_chains_init(&fc, 3, seqno_inc);
  248. if (err)
  249. return err;
  250. dma_fence_signal(fc.fences[1]);
  251. fence = dma_fence_get(fc.tail);
  252. err = dma_fence_chain_find_seqno(&fence, 2);
  253. dma_fence_put(fence);
  254. if (err) {
  255. pr_err("Reported %d for find_seqno()!\n", err);
  256. goto err;
  257. }
  258. /*
  259. * We signaled the middle fence (2) of the 1-2-3 chain. The behavior
  260. * of the dma-fence-chain is to make us wait for all the fences up to
  261. * the point we want. Since fence 1 is still not signaled, this what
  262. * we should get as fence to wait upon (fence 2 being garbage
  263. * collected during the traversal of the chain).
  264. */
  265. if (fence != fc.chains[0]) {
  266. pr_err("Incorrect chain-fence.seqno:%lld reported for completed seqno:2\n",
  267. fence ? fence->seqno : 0);
  268. err = -EINVAL;
  269. }
  270. err:
  271. fence_chains_fini(&fc);
  272. return err;
  273. }
  274. static uint64_t seqno_inc2(unsigned int i)
  275. {
  276. return 2 * i + 2;
  277. }
  278. static int find_gap(void *arg)
  279. {
  280. struct fence_chains fc;
  281. struct dma_fence *fence;
  282. int err;
  283. int i;
  284. err = fence_chains_init(&fc, 64, seqno_inc2);
  285. if (err)
  286. return err;
  287. for (i = 0; i < fc.chain_length; i++) {
  288. fence = dma_fence_get(fc.tail);
  289. err = dma_fence_chain_find_seqno(&fence, 2 * i + 1);
  290. dma_fence_put(fence);
  291. if (err) {
  292. pr_err("Reported %d for find_seqno(%d:%d)!\n",
  293. err, fc.chain_length + 1, 2 * i + 1);
  294. goto err;
  295. }
  296. if (fence != fc.chains[i]) {
  297. pr_err("Incorrect fence.seqno:%lld reported by find_seqno(%d:%d)\n",
  298. fence->seqno,
  299. fc.chain_length + 1,
  300. 2 * i + 1);
  301. err = -EINVAL;
  302. goto err;
  303. }
  304. dma_fence_get(fence);
  305. err = dma_fence_chain_find_seqno(&fence, 2 * i + 2);
  306. dma_fence_put(fence);
  307. if (err) {
  308. pr_err("Error reported for finding self\n");
  309. goto err;
  310. }
  311. if (fence != fc.chains[i]) {
  312. pr_err("Incorrect fence reported by find self\n");
  313. err = -EINVAL;
  314. goto err;
  315. }
  316. }
  317. err:
  318. fence_chains_fini(&fc);
  319. return err;
  320. }
  321. struct find_race {
  322. struct fence_chains fc;
  323. atomic_t children;
  324. };
  325. static int __find_race(void *arg)
  326. {
  327. struct find_race *data = arg;
  328. int err = 0;
  329. while (!kthread_should_stop()) {
  330. struct dma_fence *fence = dma_fence_get(data->fc.tail);
  331. int seqno;
  332. seqno = get_random_u32_inclusive(1, data->fc.chain_length);
  333. err = dma_fence_chain_find_seqno(&fence, seqno);
  334. if (err) {
  335. pr_err("Failed to find fence seqno:%d\n",
  336. seqno);
  337. dma_fence_put(fence);
  338. break;
  339. }
  340. if (!fence)
  341. goto signal;
  342. /*
  343. * We can only find ourselves if we are on fence we were
  344. * looking for.
  345. */
  346. if (fence->seqno == seqno) {
  347. err = dma_fence_chain_find_seqno(&fence, seqno);
  348. if (err) {
  349. pr_err("Reported an invalid fence for find-self:%d\n",
  350. seqno);
  351. dma_fence_put(fence);
  352. break;
  353. }
  354. }
  355. dma_fence_put(fence);
  356. signal:
  357. seqno = get_random_u32_below(data->fc.chain_length - 1);
  358. dma_fence_signal(data->fc.fences[seqno]);
  359. cond_resched();
  360. }
  361. if (atomic_dec_and_test(&data->children))
  362. wake_up_var(&data->children);
  363. return err;
  364. }
  365. static int find_race(void *arg)
  366. {
  367. struct find_race data;
  368. int ncpus = num_online_cpus();
  369. struct task_struct **threads;
  370. unsigned long count;
  371. int err;
  372. int i;
  373. err = fence_chains_init(&data.fc, CHAIN_SZ, seqno_inc);
  374. if (err)
  375. return err;
  376. threads = kmalloc_array(ncpus, sizeof(*threads), GFP_KERNEL);
  377. if (!threads) {
  378. err = -ENOMEM;
  379. goto err;
  380. }
  381. atomic_set(&data.children, 0);
  382. for (i = 0; i < ncpus; i++) {
  383. threads[i] = kthread_run(__find_race, &data, "dmabuf/%d", i);
  384. if (IS_ERR(threads[i])) {
  385. ncpus = i;
  386. break;
  387. }
  388. atomic_inc(&data.children);
  389. get_task_struct(threads[i]);
  390. }
  391. wait_var_event_timeout(&data.children,
  392. !atomic_read(&data.children),
  393. 5 * HZ);
  394. for (i = 0; i < ncpus; i++) {
  395. int ret;
  396. ret = kthread_stop_put(threads[i]);
  397. if (ret && !err)
  398. err = ret;
  399. }
  400. kfree(threads);
  401. count = 0;
  402. for (i = 0; i < data.fc.chain_length; i++)
  403. if (dma_fence_is_signaled(data.fc.fences[i]))
  404. count++;
  405. pr_info("Completed %lu cycles\n", count);
  406. err:
  407. fence_chains_fini(&data.fc);
  408. return err;
  409. }
  410. static int signal_forward(void *arg)
  411. {
  412. struct fence_chains fc;
  413. int err;
  414. int i;
  415. err = fence_chains_init(&fc, 64, seqno_inc);
  416. if (err)
  417. return err;
  418. for (i = 0; i < fc.chain_length; i++) {
  419. dma_fence_signal(fc.fences[i]);
  420. if (!dma_fence_is_signaled(fc.chains[i])) {
  421. pr_err("chain[%d] not signaled!\n", i);
  422. err = -EINVAL;
  423. goto err;
  424. }
  425. if (i + 1 < fc.chain_length &&
  426. dma_fence_is_signaled(fc.chains[i + 1])) {
  427. pr_err("chain[%d] is signaled!\n", i);
  428. err = -EINVAL;
  429. goto err;
  430. }
  431. }
  432. err:
  433. fence_chains_fini(&fc);
  434. return err;
  435. }
  436. static int signal_backward(void *arg)
  437. {
  438. struct fence_chains fc;
  439. int err;
  440. int i;
  441. err = fence_chains_init(&fc, 64, seqno_inc);
  442. if (err)
  443. return err;
  444. for (i = fc.chain_length; i--; ) {
  445. dma_fence_signal(fc.fences[i]);
  446. if (i > 0 && dma_fence_is_signaled(fc.chains[i])) {
  447. pr_err("chain[%d] is signaled!\n", i);
  448. err = -EINVAL;
  449. goto err;
  450. }
  451. }
  452. for (i = 0; i < fc.chain_length; i++) {
  453. if (!dma_fence_is_signaled(fc.chains[i])) {
  454. pr_err("chain[%d] was not signaled!\n", i);
  455. err = -EINVAL;
  456. goto err;
  457. }
  458. }
  459. err:
  460. fence_chains_fini(&fc);
  461. return err;
  462. }
  463. static int __wait_fence_chains(void *arg)
  464. {
  465. struct fence_chains *fc = arg;
  466. if (dma_fence_wait(fc->tail, false))
  467. return -EIO;
  468. return 0;
  469. }
  470. static int wait_forward(void *arg)
  471. {
  472. struct fence_chains fc;
  473. struct task_struct *tsk;
  474. int err;
  475. int i;
  476. err = fence_chains_init(&fc, CHAIN_SZ, seqno_inc);
  477. if (err)
  478. return err;
  479. tsk = kthread_run(__wait_fence_chains, &fc, "dmabuf/wait");
  480. if (IS_ERR(tsk)) {
  481. err = PTR_ERR(tsk);
  482. goto err;
  483. }
  484. get_task_struct(tsk);
  485. yield_to(tsk, true);
  486. for (i = 0; i < fc.chain_length; i++)
  487. dma_fence_signal(fc.fences[i]);
  488. err = kthread_stop_put(tsk);
  489. err:
  490. fence_chains_fini(&fc);
  491. return err;
  492. }
  493. static int wait_backward(void *arg)
  494. {
  495. struct fence_chains fc;
  496. struct task_struct *tsk;
  497. int err;
  498. int i;
  499. err = fence_chains_init(&fc, CHAIN_SZ, seqno_inc);
  500. if (err)
  501. return err;
  502. tsk = kthread_run(__wait_fence_chains, &fc, "dmabuf/wait");
  503. if (IS_ERR(tsk)) {
  504. err = PTR_ERR(tsk);
  505. goto err;
  506. }
  507. get_task_struct(tsk);
  508. yield_to(tsk, true);
  509. for (i = fc.chain_length; i--; )
  510. dma_fence_signal(fc.fences[i]);
  511. err = kthread_stop_put(tsk);
  512. err:
  513. fence_chains_fini(&fc);
  514. return err;
  515. }
  516. static void randomise_fences(struct fence_chains *fc)
  517. {
  518. unsigned int count = fc->chain_length;
  519. /* Fisher-Yates shuffle courtesy of Knuth */
  520. while (--count) {
  521. unsigned int swp;
  522. swp = get_random_u32_below(count + 1);
  523. if (swp == count)
  524. continue;
  525. swap(fc->fences[count], fc->fences[swp]);
  526. }
  527. }
  528. static int wait_random(void *arg)
  529. {
  530. struct fence_chains fc;
  531. struct task_struct *tsk;
  532. int err;
  533. int i;
  534. err = fence_chains_init(&fc, CHAIN_SZ, seqno_inc);
  535. if (err)
  536. return err;
  537. randomise_fences(&fc);
  538. tsk = kthread_run(__wait_fence_chains, &fc, "dmabuf/wait");
  539. if (IS_ERR(tsk)) {
  540. err = PTR_ERR(tsk);
  541. goto err;
  542. }
  543. get_task_struct(tsk);
  544. yield_to(tsk, true);
  545. for (i = 0; i < fc.chain_length; i++)
  546. dma_fence_signal(fc.fences[i]);
  547. err = kthread_stop_put(tsk);
  548. err:
  549. fence_chains_fini(&fc);
  550. return err;
  551. }
  552. int dma_fence_chain(void)
  553. {
  554. static const struct subtest tests[] = {
  555. SUBTEST(sanitycheck),
  556. SUBTEST(find_seqno),
  557. SUBTEST(find_signaled),
  558. SUBTEST(find_out_of_order),
  559. SUBTEST(find_gap),
  560. SUBTEST(find_race),
  561. SUBTEST(signal_forward),
  562. SUBTEST(signal_backward),
  563. SUBTEST(wait_forward),
  564. SUBTEST(wait_backward),
  565. SUBTEST(wait_random),
  566. };
  567. int ret;
  568. pr_info("sizeof(dma_fence_chain)=%zu\n",
  569. sizeof(struct dma_fence_chain));
  570. slab_fences = KMEM_CACHE(mock_fence,
  571. SLAB_TYPESAFE_BY_RCU |
  572. SLAB_HWCACHE_ALIGN);
  573. if (!slab_fences)
  574. return -ENOMEM;
  575. ret = subtests(tests, NULL);
  576. kmem_cache_destroy(slab_fences);
  577. return ret;
  578. }