sb_edac.c 97 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
  3. *
  4. * This driver supports the memory controllers found on the Intel
  5. * processor family Sandy Bridge.
  6. *
  7. * Copyright (c) 2011 by:
  8. * Mauro Carvalho Chehab
  9. */
  10. #include <linux/module.h>
  11. #include <linux/init.h>
  12. #include <linux/pci.h>
  13. #include <linux/pci_ids.h>
  14. #include <linux/slab.h>
  15. #include <linux/delay.h>
  16. #include <linux/edac.h>
  17. #include <linux/mmzone.h>
  18. #include <linux/smp.h>
  19. #include <linux/bitmap.h>
  20. #include <linux/math64.h>
  21. #include <linux/mod_devicetable.h>
  22. #include <asm/cpu_device_id.h>
  23. #include <asm/intel-family.h>
  24. #include <asm/processor.h>
  25. #include <asm/mce.h>
  26. #include "edac_module.h"
  27. /* Static vars */
  28. static LIST_HEAD(sbridge_edac_list);
  29. static char sb_msg[256];
  30. static char sb_msg_full[512];
  31. /*
  32. * Alter this version for the module when modifications are made
  33. */
  34. #define SBRIDGE_REVISION " Ver: 1.1.2 "
  35. #define EDAC_MOD_STR "sb_edac"
  36. /*
  37. * Debug macros
  38. */
  39. #define sbridge_printk(level, fmt, arg...) \
  40. edac_printk(level, "sbridge", fmt, ##arg)
  41. #define sbridge_mc_printk(mci, level, fmt, arg...) \
  42. edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
  43. /*
  44. * Get a bit field at register value <v>, from bit <lo> to bit <hi>
  45. */
  46. #define GET_BITFIELD(v, lo, hi) \
  47. (((v) & GENMASK_ULL(hi, lo)) >> (lo))
  48. /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
  49. static const u32 sbridge_dram_rule[] = {
  50. 0x80, 0x88, 0x90, 0x98, 0xa0,
  51. 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
  52. };
  53. static const u32 ibridge_dram_rule[] = {
  54. 0x60, 0x68, 0x70, 0x78, 0x80,
  55. 0x88, 0x90, 0x98, 0xa0, 0xa8,
  56. 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
  57. 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
  58. };
  59. static const u32 knl_dram_rule[] = {
  60. 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
  61. 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
  62. 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
  63. 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
  64. 0x100, 0x108, 0x110, 0x118, /* 20-23 */
  65. };
  66. #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
  67. #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
  68. static char *show_dram_attr(u32 attr)
  69. {
  70. switch (attr) {
  71. case 0:
  72. return "DRAM";
  73. case 1:
  74. return "MMCFG";
  75. case 2:
  76. return "NXM";
  77. default:
  78. return "unknown";
  79. }
  80. }
  81. static const u32 sbridge_interleave_list[] = {
  82. 0x84, 0x8c, 0x94, 0x9c, 0xa4,
  83. 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
  84. };
  85. static const u32 ibridge_interleave_list[] = {
  86. 0x64, 0x6c, 0x74, 0x7c, 0x84,
  87. 0x8c, 0x94, 0x9c, 0xa4, 0xac,
  88. 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
  89. 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
  90. };
  91. static const u32 knl_interleave_list[] = {
  92. 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
  93. 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
  94. 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
  95. 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
  96. 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
  97. };
  98. #define MAX_INTERLEAVE \
  99. (MAX_T(unsigned int, ARRAY_SIZE(sbridge_interleave_list), \
  100. MAX_T(unsigned int, ARRAY_SIZE(ibridge_interleave_list), \
  101. ARRAY_SIZE(knl_interleave_list))))
  102. struct interleave_pkg {
  103. unsigned char start;
  104. unsigned char end;
  105. };
  106. static const struct interleave_pkg sbridge_interleave_pkg[] = {
  107. { 0, 2 },
  108. { 3, 5 },
  109. { 8, 10 },
  110. { 11, 13 },
  111. { 16, 18 },
  112. { 19, 21 },
  113. { 24, 26 },
  114. { 27, 29 },
  115. };
  116. static const struct interleave_pkg ibridge_interleave_pkg[] = {
  117. { 0, 3 },
  118. { 4, 7 },
  119. { 8, 11 },
  120. { 12, 15 },
  121. { 16, 19 },
  122. { 20, 23 },
  123. { 24, 27 },
  124. { 28, 31 },
  125. };
  126. static inline int sad_pkg(const struct interleave_pkg *table, u32 reg,
  127. int interleave)
  128. {
  129. return GET_BITFIELD(reg, table[interleave].start,
  130. table[interleave].end);
  131. }
  132. /* Devices 12 Function 7 */
  133. #define TOLM 0x80
  134. #define TOHM 0x84
  135. #define HASWELL_TOLM 0xd0
  136. #define HASWELL_TOHM_0 0xd4
  137. #define HASWELL_TOHM_1 0xd8
  138. #define KNL_TOLM 0xd0
  139. #define KNL_TOHM_0 0xd4
  140. #define KNL_TOHM_1 0xd8
  141. #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
  142. #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
  143. /* Device 13 Function 6 */
  144. #define SAD_TARGET 0xf0
  145. #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
  146. #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
  147. #define SAD_CONTROL 0xf4
  148. /* Device 14 function 0 */
  149. static const u32 tad_dram_rule[] = {
  150. 0x40, 0x44, 0x48, 0x4c,
  151. 0x50, 0x54, 0x58, 0x5c,
  152. 0x60, 0x64, 0x68, 0x6c,
  153. };
  154. #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
  155. #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
  156. #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
  157. #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
  158. #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
  159. #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
  160. #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
  161. #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
  162. /* Device 15, function 0 */
  163. #define MCMTR 0x7c
  164. #define KNL_MCMTR 0x624
  165. #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
  166. #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
  167. #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
  168. /* Device 15, function 1 */
  169. #define RASENABLES 0xac
  170. #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
  171. /* Device 15, functions 2-5 */
  172. static const int mtr_regs[] = {
  173. 0x80, 0x84, 0x88,
  174. };
  175. static const int knl_mtr_reg = 0xb60;
  176. #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
  177. #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
  178. #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
  179. #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
  180. #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
  181. static const u32 tad_ch_nilv_offset[] = {
  182. 0x90, 0x94, 0x98, 0x9c,
  183. 0xa0, 0xa4, 0xa8, 0xac,
  184. 0xb0, 0xb4, 0xb8, 0xbc,
  185. };
  186. #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
  187. #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
  188. static const u32 rir_way_limit[] = {
  189. 0x108, 0x10c, 0x110, 0x114, 0x118,
  190. };
  191. #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
  192. #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
  193. #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
  194. #define MAX_RIR_WAY 8
  195. static const u32 rir_offset[MAX_RIR_RANGES][MAX_RIR_WAY] = {
  196. { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
  197. { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
  198. { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
  199. { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
  200. { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
  201. };
  202. #define RIR_RNK_TGT(type, reg) (((type) == BROADWELL) ? \
  203. GET_BITFIELD(reg, 20, 23) : GET_BITFIELD(reg, 16, 19))
  204. #define RIR_OFFSET(type, reg) (((type) == HASWELL || (type) == BROADWELL) ? \
  205. GET_BITFIELD(reg, 2, 15) : GET_BITFIELD(reg, 2, 14))
  206. /* Device 16, functions 2-7 */
  207. /*
  208. * FIXME: Implement the error count reads directly
  209. */
  210. #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
  211. #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
  212. #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
  213. #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
  214. #if 0 /* Currently unused*/
  215. static const u32 correrrcnt[] = {
  216. 0x104, 0x108, 0x10c, 0x110,
  217. };
  218. static const u32 correrrthrsld[] = {
  219. 0x11c, 0x120, 0x124, 0x128,
  220. };
  221. #endif
  222. #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
  223. #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
  224. /* Device 17, function 0 */
  225. #define SB_RANK_CFG_A 0x0328
  226. #define IB_RANK_CFG_A 0x0320
  227. /*
  228. * sbridge structs
  229. */
  230. #define NUM_CHANNELS 6 /* Max channels per MC */
  231. #define MAX_DIMMS 3 /* Max DIMMS per channel */
  232. #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
  233. #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
  234. #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
  235. #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
  236. enum type {
  237. SANDY_BRIDGE,
  238. IVY_BRIDGE,
  239. HASWELL,
  240. BROADWELL,
  241. KNIGHTS_LANDING,
  242. };
  243. enum domain {
  244. IMC0 = 0,
  245. IMC1,
  246. SOCK,
  247. };
  248. enum mirroring_mode {
  249. NON_MIRRORING,
  250. ADDR_RANGE_MIRRORING,
  251. FULL_MIRRORING,
  252. };
  253. struct sbridge_pvt;
  254. struct sbridge_info {
  255. enum type type;
  256. u32 mcmtr;
  257. u32 rankcfgr;
  258. u64 (*get_tolm)(struct sbridge_pvt *pvt);
  259. u64 (*get_tohm)(struct sbridge_pvt *pvt);
  260. u64 (*rir_limit)(u32 reg);
  261. u64 (*sad_limit)(u32 reg);
  262. u32 (*interleave_mode)(u32 reg);
  263. u32 (*dram_attr)(u32 reg);
  264. const u32 *dram_rule;
  265. const u32 *interleave_list;
  266. const struct interleave_pkg *interleave_pkg;
  267. u8 max_sad;
  268. u8 (*get_node_id)(struct sbridge_pvt *pvt);
  269. u8 (*get_ha)(u8 bank);
  270. enum mem_type (*get_memory_type)(struct sbridge_pvt *pvt);
  271. enum dev_type (*get_width)(struct sbridge_pvt *pvt, u32 mtr);
  272. struct pci_dev *pci_vtd;
  273. };
  274. struct sbridge_channel {
  275. u32 ranks;
  276. u32 dimms;
  277. struct dimm {
  278. u32 rowbits;
  279. u32 colbits;
  280. u32 bank_xor_enable;
  281. u32 amap_fine;
  282. } dimm[MAX_DIMMS];
  283. };
  284. struct pci_id_descr {
  285. int dev_id;
  286. int optional;
  287. enum domain dom;
  288. };
  289. struct pci_id_table {
  290. const struct pci_id_descr *descr;
  291. int n_devs_per_imc;
  292. int n_devs_per_sock;
  293. int n_imcs_per_sock;
  294. enum type type;
  295. };
  296. struct sbridge_dev {
  297. struct list_head list;
  298. int seg;
  299. u8 bus, mc;
  300. u8 node_id, source_id;
  301. struct pci_dev **pdev;
  302. enum domain dom;
  303. int n_devs;
  304. int i_devs;
  305. struct mem_ctl_info *mci;
  306. };
  307. struct knl_pvt {
  308. struct pci_dev *pci_cha[KNL_MAX_CHAS];
  309. struct pci_dev *pci_channel[KNL_MAX_CHANNELS];
  310. struct pci_dev *pci_mc0;
  311. struct pci_dev *pci_mc1;
  312. struct pci_dev *pci_mc0_misc;
  313. struct pci_dev *pci_mc1_misc;
  314. struct pci_dev *pci_mc_info; /* tolm, tohm */
  315. };
  316. struct sbridge_pvt {
  317. /* Devices per socket */
  318. struct pci_dev *pci_ddrio;
  319. struct pci_dev *pci_sad0, *pci_sad1;
  320. struct pci_dev *pci_br0, *pci_br1;
  321. /* Devices per memory controller */
  322. struct pci_dev *pci_ha, *pci_ta, *pci_ras;
  323. struct pci_dev *pci_tad[NUM_CHANNELS];
  324. struct sbridge_dev *sbridge_dev;
  325. struct sbridge_info info;
  326. struct sbridge_channel channel[NUM_CHANNELS];
  327. /* Memory type detection */
  328. bool is_cur_addr_mirrored, is_lockstep, is_close_pg;
  329. bool is_chan_hash;
  330. enum mirroring_mode mirror_mode;
  331. /* Memory description */
  332. u64 tolm, tohm;
  333. struct knl_pvt knl;
  334. };
  335. #define PCI_DESCR(device_id, opt, domain) \
  336. .dev_id = (device_id), \
  337. .optional = opt, \
  338. .dom = domain
  339. static const struct pci_id_descr pci_dev_descr_sbridge[] = {
  340. /* Processor Home Agent */
  341. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0, 0, IMC0) },
  342. /* Memory controller */
  343. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA, 0, IMC0) },
  344. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS, 0, IMC0) },
  345. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0, 0, IMC0) },
  346. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1, 0, IMC0) },
  347. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2, 0, IMC0) },
  348. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3, 0, IMC0) },
  349. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO, 1, SOCK) },
  350. /* System Address Decoder */
  351. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0, 0, SOCK) },
  352. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1, 0, SOCK) },
  353. /* Broadcast Registers */
  354. { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR, 0, SOCK) },
  355. };
  356. #define PCI_ID_TABLE_ENTRY(A, N, M, T) { \
  357. .descr = A, \
  358. .n_devs_per_imc = N, \
  359. .n_devs_per_sock = ARRAY_SIZE(A), \
  360. .n_imcs_per_sock = M, \
  361. .type = T \
  362. }
  363. static const struct pci_id_table pci_dev_descr_sbridge_table[] = {
  364. PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge, ARRAY_SIZE(pci_dev_descr_sbridge), 1, SANDY_BRIDGE),
  365. { NULL, }
  366. };
  367. /* This changes depending if 1HA or 2HA:
  368. * 1HA:
  369. * 0x0eb8 (17.0) is DDRIO0
  370. * 2HA:
  371. * 0x0ebc (17.4) is DDRIO0
  372. */
  373. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
  374. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
  375. /* pci ids */
  376. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
  377. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
  378. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
  379. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
  380. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
  381. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
  382. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
  383. #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
  384. #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
  385. #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
  386. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
  387. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
  388. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
  389. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
  390. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
  391. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
  392. #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
  393. static const struct pci_id_descr pci_dev_descr_ibridge[] = {
  394. /* Processor Home Agent */
  395. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0, 0, IMC0) },
  396. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1, 1, IMC1) },
  397. /* Memory controller */
  398. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA, 0, IMC0) },
  399. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS, 0, IMC0) },
  400. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0, 0, IMC0) },
  401. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1, 0, IMC0) },
  402. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2, 0, IMC0) },
  403. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3, 0, IMC0) },
  404. /* Optional, mode 2HA */
  405. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA, 1, IMC1) },
  406. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS, 1, IMC1) },
  407. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0, 1, IMC1) },
  408. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1, 1, IMC1) },
  409. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2, 1, IMC1) },
  410. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3, 1, IMC1) },
  411. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0, 1, SOCK) },
  412. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0, 1, SOCK) },
  413. /* System Address Decoder */
  414. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD, 0, SOCK) },
  415. /* Broadcast Registers */
  416. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0, 1, SOCK) },
  417. { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1, 0, SOCK) },
  418. };
  419. static const struct pci_id_table pci_dev_descr_ibridge_table[] = {
  420. PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge, 12, 2, IVY_BRIDGE),
  421. { NULL, }
  422. };
  423. /* Haswell support */
  424. /* EN processor:
  425. * - 1 IMC
  426. * - 3 DDR3 channels, 2 DPC per channel
  427. * EP processor:
  428. * - 1 or 2 IMC
  429. * - 4 DDR4 channels, 3 DPC per channel
  430. * EP 4S processor:
  431. * - 2 IMC
  432. * - 4 DDR4 channels, 3 DPC per channel
  433. * EX processor:
  434. * - 2 IMC
  435. * - each IMC interfaces with a SMI 2 channel
  436. * - each SMI channel interfaces with a scalable memory buffer
  437. * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
  438. */
  439. #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
  440. #define HASWELL_HASYSDEFEATURE2 0x84
  441. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
  442. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
  443. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
  444. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
  445. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM 0x2f71
  446. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
  447. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM 0x2f79
  448. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
  449. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
  450. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
  451. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
  452. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
  453. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
  454. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
  455. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
  456. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
  457. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
  458. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
  459. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
  460. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
  461. #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
  462. static const struct pci_id_descr pci_dev_descr_haswell[] = {
  463. /* first item must be the HA */
  464. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0, 0, IMC0) },
  465. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1, 1, IMC1) },
  466. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA, 0, IMC0) },
  467. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM, 0, IMC0) },
  468. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0, 0, IMC0) },
  469. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1, 0, IMC0) },
  470. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2, 1, IMC0) },
  471. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3, 1, IMC0) },
  472. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA, 1, IMC1) },
  473. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM, 1, IMC1) },
  474. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0, 1, IMC1) },
  475. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1, 1, IMC1) },
  476. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2, 1, IMC1) },
  477. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3, 1, IMC1) },
  478. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0, 0, SOCK) },
  479. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1, 0, SOCK) },
  480. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0, 1, SOCK) },
  481. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1, 1, SOCK) },
  482. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2, 1, SOCK) },
  483. { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3, 1, SOCK) },
  484. };
  485. static const struct pci_id_table pci_dev_descr_haswell_table[] = {
  486. PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell, 13, 2, HASWELL),
  487. { NULL, }
  488. };
  489. /* Knight's Landing Support */
  490. /*
  491. * KNL's memory channels are swizzled between memory controllers.
  492. * MC0 is mapped to CH3,4,5 and MC1 is mapped to CH0,1,2
  493. */
  494. #define knl_channel_remap(mc, chan) ((mc) ? (chan) : (chan) + 3)
  495. /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
  496. #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
  497. /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
  498. #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN 0x7843
  499. /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
  500. #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
  501. /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
  502. #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
  503. /* SAD target - 1-29-1 (1 of these) */
  504. #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
  505. /* Caching / Home Agent */
  506. #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
  507. /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
  508. #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
  509. /*
  510. * KNL differs from SB, IB, and Haswell in that it has multiple
  511. * instances of the same device with the same device ID, so we handle that
  512. * by creating as many copies in the table as we expect to find.
  513. * (Like device ID must be grouped together.)
  514. */
  515. static const struct pci_id_descr pci_dev_descr_knl[] = {
  516. [0 ... 1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC, 0, IMC0)},
  517. [2 ... 7] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN, 0, IMC0) },
  518. [8] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA, 0, IMC0) },
  519. [9] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM, 0, IMC0) },
  520. [10] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0, 0, SOCK) },
  521. [11] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1, 0, SOCK) },
  522. [12 ... 49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA, 0, SOCK) },
  523. };
  524. static const struct pci_id_table pci_dev_descr_knl_table[] = {
  525. PCI_ID_TABLE_ENTRY(pci_dev_descr_knl, ARRAY_SIZE(pci_dev_descr_knl), 1, KNIGHTS_LANDING),
  526. { NULL, }
  527. };
  528. /*
  529. * Broadwell support
  530. *
  531. * DE processor:
  532. * - 1 IMC
  533. * - 2 DDR3 channels, 2 DPC per channel
  534. * EP processor:
  535. * - 1 or 2 IMC
  536. * - 4 DDR4 channels, 3 DPC per channel
  537. * EP 4S processor:
  538. * - 2 IMC
  539. * - 4 DDR4 channels, 3 DPC per channel
  540. * EX processor:
  541. * - 2 IMC
  542. * - each IMC interfaces with a SMI 2 channel
  543. * - each SMI channel interfaces with a scalable memory buffer
  544. * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
  545. */
  546. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
  547. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
  548. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
  549. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
  550. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM 0x6f71
  551. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
  552. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM 0x6f79
  553. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
  554. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
  555. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
  556. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
  557. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
  558. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
  559. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
  560. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
  561. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
  562. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
  563. #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
  564. static const struct pci_id_descr pci_dev_descr_broadwell[] = {
  565. /* first item must be the HA */
  566. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0, 0, IMC0) },
  567. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1, 1, IMC1) },
  568. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA, 0, IMC0) },
  569. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM, 0, IMC0) },
  570. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0, 0, IMC0) },
  571. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1, 0, IMC0) },
  572. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2, 1, IMC0) },
  573. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3, 1, IMC0) },
  574. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA, 1, IMC1) },
  575. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM, 1, IMC1) },
  576. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0, 1, IMC1) },
  577. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1, 1, IMC1) },
  578. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2, 1, IMC1) },
  579. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3, 1, IMC1) },
  580. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0, 0, SOCK) },
  581. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1, 0, SOCK) },
  582. { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0, 1, SOCK) },
  583. };
  584. static const struct pci_id_table pci_dev_descr_broadwell_table[] = {
  585. PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell, 10, 2, BROADWELL),
  586. { NULL, }
  587. };
  588. /****************************************************************************
  589. Ancillary status routines
  590. ****************************************************************************/
  591. static inline int numrank(enum type type, u32 mtr)
  592. {
  593. int ranks = (1 << RANK_CNT_BITS(mtr));
  594. int max = 4;
  595. if (type == HASWELL || type == BROADWELL || type == KNIGHTS_LANDING)
  596. max = 8;
  597. if (ranks > max) {
  598. edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
  599. ranks, max, (unsigned int)RANK_CNT_BITS(mtr), mtr);
  600. return -EINVAL;
  601. }
  602. return ranks;
  603. }
  604. static inline int numrow(u32 mtr)
  605. {
  606. int rows = (RANK_WIDTH_BITS(mtr) + 12);
  607. if (rows < 13 || rows > 18) {
  608. edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
  609. rows, (unsigned int)RANK_WIDTH_BITS(mtr), mtr);
  610. return -EINVAL;
  611. }
  612. return 1 << rows;
  613. }
  614. static inline int numcol(u32 mtr)
  615. {
  616. int cols = (COL_WIDTH_BITS(mtr) + 10);
  617. if (cols > 12) {
  618. edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
  619. cols, (unsigned int)COL_WIDTH_BITS(mtr), mtr);
  620. return -EINVAL;
  621. }
  622. return 1 << cols;
  623. }
  624. static struct sbridge_dev *get_sbridge_dev(int seg, u8 bus, enum domain dom,
  625. int multi_bus,
  626. struct sbridge_dev *prev)
  627. {
  628. struct sbridge_dev *sbridge_dev;
  629. /*
  630. * If we have devices scattered across several busses that pertain
  631. * to the same memory controller, we'll lump them all together.
  632. */
  633. if (multi_bus) {
  634. return list_first_entry_or_null(&sbridge_edac_list,
  635. struct sbridge_dev, list);
  636. }
  637. sbridge_dev = list_entry(prev ? prev->list.next
  638. : sbridge_edac_list.next, struct sbridge_dev, list);
  639. list_for_each_entry_from(sbridge_dev, &sbridge_edac_list, list) {
  640. if ((sbridge_dev->seg == seg) && (sbridge_dev->bus == bus) &&
  641. (dom == SOCK || dom == sbridge_dev->dom))
  642. return sbridge_dev;
  643. }
  644. return NULL;
  645. }
  646. static struct sbridge_dev *alloc_sbridge_dev(int seg, u8 bus, enum domain dom,
  647. const struct pci_id_table *table)
  648. {
  649. struct sbridge_dev *sbridge_dev;
  650. sbridge_dev = kzalloc(sizeof(*sbridge_dev), GFP_KERNEL);
  651. if (!sbridge_dev)
  652. return NULL;
  653. sbridge_dev->pdev = kcalloc(table->n_devs_per_imc,
  654. sizeof(*sbridge_dev->pdev),
  655. GFP_KERNEL);
  656. if (!sbridge_dev->pdev) {
  657. kfree(sbridge_dev);
  658. return NULL;
  659. }
  660. sbridge_dev->seg = seg;
  661. sbridge_dev->bus = bus;
  662. sbridge_dev->dom = dom;
  663. sbridge_dev->n_devs = table->n_devs_per_imc;
  664. list_add_tail(&sbridge_dev->list, &sbridge_edac_list);
  665. return sbridge_dev;
  666. }
  667. static void free_sbridge_dev(struct sbridge_dev *sbridge_dev)
  668. {
  669. list_del(&sbridge_dev->list);
  670. kfree(sbridge_dev->pdev);
  671. kfree(sbridge_dev);
  672. }
  673. static u64 sbridge_get_tolm(struct sbridge_pvt *pvt)
  674. {
  675. u32 reg;
  676. /* Address range is 32:28 */
  677. pci_read_config_dword(pvt->pci_sad1, TOLM, &reg);
  678. return GET_TOLM(reg);
  679. }
  680. static u64 sbridge_get_tohm(struct sbridge_pvt *pvt)
  681. {
  682. u32 reg;
  683. pci_read_config_dword(pvt->pci_sad1, TOHM, &reg);
  684. return GET_TOHM(reg);
  685. }
  686. static u64 ibridge_get_tolm(struct sbridge_pvt *pvt)
  687. {
  688. u32 reg;
  689. pci_read_config_dword(pvt->pci_br1, TOLM, &reg);
  690. return GET_TOLM(reg);
  691. }
  692. static u64 ibridge_get_tohm(struct sbridge_pvt *pvt)
  693. {
  694. u32 reg;
  695. pci_read_config_dword(pvt->pci_br1, TOHM, &reg);
  696. return GET_TOHM(reg);
  697. }
  698. static u64 rir_limit(u32 reg)
  699. {
  700. return ((u64)GET_BITFIELD(reg, 1, 10) << 29) | 0x1fffffff;
  701. }
  702. static u64 sad_limit(u32 reg)
  703. {
  704. return (GET_BITFIELD(reg, 6, 25) << 26) | 0x3ffffff;
  705. }
  706. static u32 interleave_mode(u32 reg)
  707. {
  708. return GET_BITFIELD(reg, 1, 1);
  709. }
  710. static u32 dram_attr(u32 reg)
  711. {
  712. return GET_BITFIELD(reg, 2, 3);
  713. }
  714. static u64 knl_sad_limit(u32 reg)
  715. {
  716. return (GET_BITFIELD(reg, 7, 26) << 26) | 0x3ffffff;
  717. }
  718. static u32 knl_interleave_mode(u32 reg)
  719. {
  720. return GET_BITFIELD(reg, 1, 2);
  721. }
  722. static const char * const knl_intlv_mode[] = {
  723. "[8:6]", "[10:8]", "[14:12]", "[32:30]"
  724. };
  725. static const char *get_intlv_mode_str(u32 reg, enum type t)
  726. {
  727. if (t == KNIGHTS_LANDING)
  728. return knl_intlv_mode[knl_interleave_mode(reg)];
  729. else
  730. return interleave_mode(reg) ? "[8:6]" : "[8:6]XOR[18:16]";
  731. }
  732. static u32 dram_attr_knl(u32 reg)
  733. {
  734. return GET_BITFIELD(reg, 3, 4);
  735. }
  736. static enum mem_type get_memory_type(struct sbridge_pvt *pvt)
  737. {
  738. u32 reg;
  739. enum mem_type mtype;
  740. if (pvt->pci_ddrio) {
  741. pci_read_config_dword(pvt->pci_ddrio, pvt->info.rankcfgr,
  742. &reg);
  743. if (GET_BITFIELD(reg, 11, 11))
  744. /* FIXME: Can also be LRDIMM */
  745. mtype = MEM_RDDR3;
  746. else
  747. mtype = MEM_DDR3;
  748. } else
  749. mtype = MEM_UNKNOWN;
  750. return mtype;
  751. }
  752. static enum mem_type haswell_get_memory_type(struct sbridge_pvt *pvt)
  753. {
  754. u32 reg;
  755. bool registered = false;
  756. enum mem_type mtype = MEM_UNKNOWN;
  757. if (!pvt->pci_ddrio)
  758. goto out;
  759. pci_read_config_dword(pvt->pci_ddrio,
  760. HASWELL_DDRCRCLKCONTROLS, &reg);
  761. /* Is_Rdimm */
  762. if (GET_BITFIELD(reg, 16, 16))
  763. registered = true;
  764. pci_read_config_dword(pvt->pci_ta, MCMTR, &reg);
  765. if (GET_BITFIELD(reg, 14, 14)) {
  766. if (registered)
  767. mtype = MEM_RDDR4;
  768. else
  769. mtype = MEM_DDR4;
  770. } else {
  771. if (registered)
  772. mtype = MEM_RDDR3;
  773. else
  774. mtype = MEM_DDR3;
  775. }
  776. out:
  777. return mtype;
  778. }
  779. static enum dev_type knl_get_width(struct sbridge_pvt *pvt, u32 mtr)
  780. {
  781. /* for KNL value is fixed */
  782. return DEV_X16;
  783. }
  784. static enum dev_type sbridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
  785. {
  786. /* there's no way to figure out */
  787. return DEV_UNKNOWN;
  788. }
  789. static enum dev_type __ibridge_get_width(u32 mtr)
  790. {
  791. enum dev_type type = DEV_UNKNOWN;
  792. switch (mtr) {
  793. case 2:
  794. type = DEV_X16;
  795. break;
  796. case 1:
  797. type = DEV_X8;
  798. break;
  799. case 0:
  800. type = DEV_X4;
  801. break;
  802. }
  803. return type;
  804. }
  805. static enum dev_type ibridge_get_width(struct sbridge_pvt *pvt, u32 mtr)
  806. {
  807. /*
  808. * ddr3_width on the documentation but also valid for DDR4 on
  809. * Haswell
  810. */
  811. return __ibridge_get_width(GET_BITFIELD(mtr, 7, 8));
  812. }
  813. static enum dev_type broadwell_get_width(struct sbridge_pvt *pvt, u32 mtr)
  814. {
  815. /* ddr3_width on the documentation but also valid for DDR4 */
  816. return __ibridge_get_width(GET_BITFIELD(mtr, 8, 9));
  817. }
  818. static enum mem_type knl_get_memory_type(struct sbridge_pvt *pvt)
  819. {
  820. /* DDR4 RDIMMS and LRDIMMS are supported */
  821. return MEM_RDDR4;
  822. }
  823. static u8 get_node_id(struct sbridge_pvt *pvt)
  824. {
  825. u32 reg;
  826. pci_read_config_dword(pvt->pci_br0, SAD_CONTROL, &reg);
  827. return GET_BITFIELD(reg, 0, 2);
  828. }
  829. static u8 haswell_get_node_id(struct sbridge_pvt *pvt)
  830. {
  831. u32 reg;
  832. pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
  833. return GET_BITFIELD(reg, 0, 3);
  834. }
  835. static u8 knl_get_node_id(struct sbridge_pvt *pvt)
  836. {
  837. u32 reg;
  838. pci_read_config_dword(pvt->pci_sad1, SAD_CONTROL, &reg);
  839. return GET_BITFIELD(reg, 0, 2);
  840. }
  841. /*
  842. * Use the reporting bank number to determine which memory
  843. * controller (also known as "ha" for "home agent"). Sandy
  844. * Bridge only has one memory controller per socket, so the
  845. * answer is always zero.
  846. */
  847. static u8 sbridge_get_ha(u8 bank)
  848. {
  849. return 0;
  850. }
  851. /*
  852. * On Ivy Bridge, Haswell and Broadwell the error may be in a
  853. * home agent bank (7, 8), or one of the per-channel memory
  854. * controller banks (9 .. 16).
  855. */
  856. static u8 ibridge_get_ha(u8 bank)
  857. {
  858. switch (bank) {
  859. case 7 ... 8:
  860. return bank - 7;
  861. case 9 ... 16:
  862. return (bank - 9) / 4;
  863. default:
  864. return 0xff;
  865. }
  866. }
  867. /* Not used, but included for safety/symmetry */
  868. static u8 knl_get_ha(u8 bank)
  869. {
  870. return 0xff;
  871. }
  872. static u64 haswell_get_tolm(struct sbridge_pvt *pvt)
  873. {
  874. u32 reg;
  875. pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOLM, &reg);
  876. return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
  877. }
  878. static u64 haswell_get_tohm(struct sbridge_pvt *pvt)
  879. {
  880. u64 rc;
  881. u32 reg;
  882. pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_0, &reg);
  883. rc = GET_BITFIELD(reg, 26, 31);
  884. pci_read_config_dword(pvt->info.pci_vtd, HASWELL_TOHM_1, &reg);
  885. rc = ((reg << 6) | rc) << 26;
  886. return rc | 0x3ffffff;
  887. }
  888. static u64 knl_get_tolm(struct sbridge_pvt *pvt)
  889. {
  890. u32 reg;
  891. pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOLM, &reg);
  892. return (GET_BITFIELD(reg, 26, 31) << 26) | 0x3ffffff;
  893. }
  894. static u64 knl_get_tohm(struct sbridge_pvt *pvt)
  895. {
  896. u64 rc;
  897. u32 reg_lo, reg_hi;
  898. pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_0, &reg_lo);
  899. pci_read_config_dword(pvt->knl.pci_mc_info, KNL_TOHM_1, &reg_hi);
  900. rc = ((u64)reg_hi << 32) | reg_lo;
  901. return rc | 0x3ffffff;
  902. }
  903. static u64 haswell_rir_limit(u32 reg)
  904. {
  905. return (((u64)GET_BITFIELD(reg, 1, 11) + 1) << 29) - 1;
  906. }
  907. static inline u8 sad_pkg_socket(u8 pkg)
  908. {
  909. /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
  910. return ((pkg >> 3) << 2) | (pkg & 0x3);
  911. }
  912. static inline u8 sad_pkg_ha(u8 pkg)
  913. {
  914. return (pkg >> 2) & 0x1;
  915. }
  916. static int haswell_chan_hash(int idx, u64 addr)
  917. {
  918. int i;
  919. /*
  920. * XOR even bits from 12:26 to bit0 of idx,
  921. * odd bits from 13:27 to bit1
  922. */
  923. for (i = 12; i < 28; i += 2)
  924. idx ^= (addr >> i) & 3;
  925. return idx;
  926. }
  927. /* Low bits of TAD limit, and some metadata. */
  928. static const u32 knl_tad_dram_limit_lo[] = {
  929. 0x400, 0x500, 0x600, 0x700,
  930. 0x800, 0x900, 0xa00, 0xb00,
  931. };
  932. /* Low bits of TAD offset. */
  933. static const u32 knl_tad_dram_offset_lo[] = {
  934. 0x404, 0x504, 0x604, 0x704,
  935. 0x804, 0x904, 0xa04, 0xb04,
  936. };
  937. /* High 16 bits of TAD limit and offset. */
  938. static const u32 knl_tad_dram_hi[] = {
  939. 0x408, 0x508, 0x608, 0x708,
  940. 0x808, 0x908, 0xa08, 0xb08,
  941. };
  942. /* Number of ways a tad entry is interleaved. */
  943. static const u32 knl_tad_ways[] = {
  944. 8, 6, 4, 3, 2, 1,
  945. };
  946. /*
  947. * Retrieve the n'th Target Address Decode table entry
  948. * from the memory controller's TAD table.
  949. *
  950. * @pvt: driver private data
  951. * @entry: which entry you want to retrieve
  952. * @mc: which memory controller (0 or 1)
  953. * @offset: output tad range offset
  954. * @limit: output address of first byte above tad range
  955. * @ways: output number of interleave ways
  956. *
  957. * The offset value has curious semantics. It's a sort of running total
  958. * of the sizes of all the memory regions that aren't mapped in this
  959. * tad table.
  960. */
  961. static int knl_get_tad(const struct sbridge_pvt *pvt,
  962. const int entry,
  963. const int mc,
  964. u64 *offset,
  965. u64 *limit,
  966. int *ways)
  967. {
  968. u32 reg_limit_lo, reg_offset_lo, reg_hi;
  969. struct pci_dev *pci_mc;
  970. int way_id;
  971. switch (mc) {
  972. case 0:
  973. pci_mc = pvt->knl.pci_mc0;
  974. break;
  975. case 1:
  976. pci_mc = pvt->knl.pci_mc1;
  977. break;
  978. default:
  979. WARN_ON(1);
  980. return -EINVAL;
  981. }
  982. pci_read_config_dword(pci_mc,
  983. knl_tad_dram_limit_lo[entry], &reg_limit_lo);
  984. pci_read_config_dword(pci_mc,
  985. knl_tad_dram_offset_lo[entry], &reg_offset_lo);
  986. pci_read_config_dword(pci_mc,
  987. knl_tad_dram_hi[entry], &reg_hi);
  988. /* Is this TAD entry enabled? */
  989. if (!GET_BITFIELD(reg_limit_lo, 0, 0))
  990. return -ENODEV;
  991. way_id = GET_BITFIELD(reg_limit_lo, 3, 5);
  992. if (way_id < ARRAY_SIZE(knl_tad_ways)) {
  993. *ways = knl_tad_ways[way_id];
  994. } else {
  995. *ways = 0;
  996. sbridge_printk(KERN_ERR,
  997. "Unexpected value %d in mc_tad_limit_lo wayness field\n",
  998. way_id);
  999. return -ENODEV;
  1000. }
  1001. /*
  1002. * The least significant 6 bits of base and limit are truncated.
  1003. * For limit, we fill the missing bits with 1s.
  1004. */
  1005. *offset = ((u64) GET_BITFIELD(reg_offset_lo, 6, 31) << 6) |
  1006. ((u64) GET_BITFIELD(reg_hi, 0, 15) << 32);
  1007. *limit = ((u64) GET_BITFIELD(reg_limit_lo, 6, 31) << 6) | 63 |
  1008. ((u64) GET_BITFIELD(reg_hi, 16, 31) << 32);
  1009. return 0;
  1010. }
  1011. /* Determine which memory controller is responsible for a given channel. */
  1012. static int knl_channel_mc(int channel)
  1013. {
  1014. WARN_ON(channel < 0 || channel >= 6);
  1015. return channel < 3 ? 1 : 0;
  1016. }
  1017. /*
  1018. * Get the Nth entry from EDC_ROUTE_TABLE register.
  1019. * (This is the per-tile mapping of logical interleave targets to
  1020. * physical EDC modules.)
  1021. *
  1022. * entry 0: 0:2
  1023. * 1: 3:5
  1024. * 2: 6:8
  1025. * 3: 9:11
  1026. * 4: 12:14
  1027. * 5: 15:17
  1028. * 6: 18:20
  1029. * 7: 21:23
  1030. * reserved: 24:31
  1031. */
  1032. static u32 knl_get_edc_route(int entry, u32 reg)
  1033. {
  1034. WARN_ON(entry >= KNL_MAX_EDCS);
  1035. return GET_BITFIELD(reg, entry*3, (entry*3)+2);
  1036. }
  1037. /*
  1038. * Get the Nth entry from MC_ROUTE_TABLE register.
  1039. * (This is the per-tile mapping of logical interleave targets to
  1040. * physical DRAM channels modules.)
  1041. *
  1042. * entry 0: mc 0:2 channel 18:19
  1043. * 1: mc 3:5 channel 20:21
  1044. * 2: mc 6:8 channel 22:23
  1045. * 3: mc 9:11 channel 24:25
  1046. * 4: mc 12:14 channel 26:27
  1047. * 5: mc 15:17 channel 28:29
  1048. * reserved: 30:31
  1049. *
  1050. * Though we have 3 bits to identify the MC, we should only see
  1051. * the values 0 or 1.
  1052. */
  1053. static u32 knl_get_mc_route(int entry, u32 reg)
  1054. {
  1055. int mc, chan;
  1056. WARN_ON(entry >= KNL_MAX_CHANNELS);
  1057. mc = GET_BITFIELD(reg, entry*3, (entry*3)+2);
  1058. chan = GET_BITFIELD(reg, (entry*2) + 18, (entry*2) + 18 + 1);
  1059. return knl_channel_remap(mc, chan);
  1060. }
  1061. /*
  1062. * Render the EDC_ROUTE register in human-readable form.
  1063. * Output string s should be at least KNL_MAX_EDCS*2 bytes.
  1064. */
  1065. static void knl_show_edc_route(u32 reg, char *s)
  1066. {
  1067. int i;
  1068. for (i = 0; i < KNL_MAX_EDCS; i++) {
  1069. s[i*2] = knl_get_edc_route(i, reg) + '0';
  1070. s[i*2+1] = '-';
  1071. }
  1072. s[KNL_MAX_EDCS*2 - 1] = '\0';
  1073. }
  1074. /*
  1075. * Render the MC_ROUTE register in human-readable form.
  1076. * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
  1077. */
  1078. static void knl_show_mc_route(u32 reg, char *s)
  1079. {
  1080. int i;
  1081. for (i = 0; i < KNL_MAX_CHANNELS; i++) {
  1082. s[i*2] = knl_get_mc_route(i, reg) + '0';
  1083. s[i*2+1] = '-';
  1084. }
  1085. s[KNL_MAX_CHANNELS*2 - 1] = '\0';
  1086. }
  1087. #define KNL_EDC_ROUTE 0xb8
  1088. #define KNL_MC_ROUTE 0xb4
  1089. /* Is this dram rule backed by regular DRAM in flat mode? */
  1090. #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
  1091. /* Is this dram rule cached? */
  1092. #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
  1093. /* Is this rule backed by edc ? */
  1094. #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
  1095. /* Is this rule backed by DRAM, cacheable in EDRAM? */
  1096. #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
  1097. /* Is this rule mod3? */
  1098. #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
  1099. /*
  1100. * Figure out how big our RAM modules are.
  1101. *
  1102. * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
  1103. * have to figure this out from the SAD rules, interleave lists, route tables,
  1104. * and TAD rules.
  1105. *
  1106. * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
  1107. * inspect the TAD rules to figure out how large the SAD regions really are.
  1108. *
  1109. * When we know the real size of a SAD region and how many ways it's
  1110. * interleaved, we know the individual contribution of each channel to
  1111. * TAD is size/ways.
  1112. *
  1113. * Finally, we have to check whether each channel participates in each SAD
  1114. * region.
  1115. *
  1116. * Fortunately, KNL only supports one DIMM per channel, so once we know how
  1117. * much memory the channel uses, we know the DIMM is at least that large.
  1118. * (The BIOS might possibly choose not to map all available memory, in which
  1119. * case we will underreport the size of the DIMM.)
  1120. *
  1121. * In theory, we could try to determine the EDC sizes as well, but that would
  1122. * only work in flat mode, not in cache mode.
  1123. *
  1124. * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
  1125. * elements)
  1126. */
  1127. static int knl_get_dimm_capacity(struct sbridge_pvt *pvt, u64 *mc_sizes)
  1128. {
  1129. u64 sad_base, sad_limit = 0;
  1130. u64 tad_base, tad_size, tad_limit, tad_deadspace, tad_livespace;
  1131. int sad_rule = 0;
  1132. int tad_rule = 0;
  1133. int intrlv_ways, tad_ways;
  1134. u32 first_pkg, pkg;
  1135. int i;
  1136. u64 sad_actual_size[2]; /* sad size accounting for holes, per mc */
  1137. u32 dram_rule, interleave_reg;
  1138. u32 mc_route_reg[KNL_MAX_CHAS];
  1139. u32 edc_route_reg[KNL_MAX_CHAS];
  1140. int edram_only;
  1141. char edc_route_string[KNL_MAX_EDCS*2];
  1142. char mc_route_string[KNL_MAX_CHANNELS*2];
  1143. int cur_reg_start;
  1144. int mc;
  1145. int channel;
  1146. int participants[KNL_MAX_CHANNELS];
  1147. for (i = 0; i < KNL_MAX_CHANNELS; i++)
  1148. mc_sizes[i] = 0;
  1149. /* Read the EDC route table in each CHA. */
  1150. cur_reg_start = 0;
  1151. for (i = 0; i < KNL_MAX_CHAS; i++) {
  1152. pci_read_config_dword(pvt->knl.pci_cha[i],
  1153. KNL_EDC_ROUTE, &edc_route_reg[i]);
  1154. if (i > 0 && edc_route_reg[i] != edc_route_reg[i-1]) {
  1155. knl_show_edc_route(edc_route_reg[i-1],
  1156. edc_route_string);
  1157. if (cur_reg_start == i-1)
  1158. edac_dbg(0, "edc route table for CHA %d: %s\n",
  1159. cur_reg_start, edc_route_string);
  1160. else
  1161. edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
  1162. cur_reg_start, i-1, edc_route_string);
  1163. cur_reg_start = i;
  1164. }
  1165. }
  1166. knl_show_edc_route(edc_route_reg[i-1], edc_route_string);
  1167. if (cur_reg_start == i-1)
  1168. edac_dbg(0, "edc route table for CHA %d: %s\n",
  1169. cur_reg_start, edc_route_string);
  1170. else
  1171. edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
  1172. cur_reg_start, i-1, edc_route_string);
  1173. /* Read the MC route table in each CHA. */
  1174. cur_reg_start = 0;
  1175. for (i = 0; i < KNL_MAX_CHAS; i++) {
  1176. pci_read_config_dword(pvt->knl.pci_cha[i],
  1177. KNL_MC_ROUTE, &mc_route_reg[i]);
  1178. if (i > 0 && mc_route_reg[i] != mc_route_reg[i-1]) {
  1179. knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
  1180. if (cur_reg_start == i-1)
  1181. edac_dbg(0, "mc route table for CHA %d: %s\n",
  1182. cur_reg_start, mc_route_string);
  1183. else
  1184. edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
  1185. cur_reg_start, i-1, mc_route_string);
  1186. cur_reg_start = i;
  1187. }
  1188. }
  1189. knl_show_mc_route(mc_route_reg[i-1], mc_route_string);
  1190. if (cur_reg_start == i-1)
  1191. edac_dbg(0, "mc route table for CHA %d: %s\n",
  1192. cur_reg_start, mc_route_string);
  1193. else
  1194. edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
  1195. cur_reg_start, i-1, mc_route_string);
  1196. /* Process DRAM rules */
  1197. for (sad_rule = 0; sad_rule < pvt->info.max_sad; sad_rule++) {
  1198. /* previous limit becomes the new base */
  1199. sad_base = sad_limit;
  1200. pci_read_config_dword(pvt->pci_sad0,
  1201. pvt->info.dram_rule[sad_rule], &dram_rule);
  1202. if (!DRAM_RULE_ENABLE(dram_rule))
  1203. break;
  1204. edram_only = KNL_EDRAM_ONLY(dram_rule);
  1205. sad_limit = pvt->info.sad_limit(dram_rule)+1;
  1206. pci_read_config_dword(pvt->pci_sad0,
  1207. pvt->info.interleave_list[sad_rule], &interleave_reg);
  1208. /*
  1209. * Find out how many ways this dram rule is interleaved.
  1210. * We stop when we see the first channel again.
  1211. */
  1212. first_pkg = sad_pkg(pvt->info.interleave_pkg,
  1213. interleave_reg, 0);
  1214. for (intrlv_ways = 1; intrlv_ways < 8; intrlv_ways++) {
  1215. pkg = sad_pkg(pvt->info.interleave_pkg,
  1216. interleave_reg, intrlv_ways);
  1217. if ((pkg & 0x8) == 0) {
  1218. /*
  1219. * 0 bit means memory is non-local,
  1220. * which KNL doesn't support
  1221. */
  1222. edac_dbg(0, "Unexpected interleave target %d\n",
  1223. pkg);
  1224. return -1;
  1225. }
  1226. if (pkg == first_pkg)
  1227. break;
  1228. }
  1229. if (KNL_MOD3(dram_rule))
  1230. intrlv_ways *= 3;
  1231. edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
  1232. sad_rule,
  1233. sad_base,
  1234. sad_limit,
  1235. intrlv_ways,
  1236. edram_only ? ", EDRAM" : "");
  1237. /*
  1238. * Find out how big the SAD region really is by iterating
  1239. * over TAD tables (SAD regions may contain holes).
  1240. * Each memory controller might have a different TAD table, so
  1241. * we have to look at both.
  1242. *
  1243. * Livespace is the memory that's mapped in this TAD table,
  1244. * deadspace is the holes (this could be the MMIO hole, or it
  1245. * could be memory that's mapped by the other TAD table but
  1246. * not this one).
  1247. */
  1248. for (mc = 0; mc < 2; mc++) {
  1249. sad_actual_size[mc] = 0;
  1250. tad_livespace = 0;
  1251. for (tad_rule = 0;
  1252. tad_rule < ARRAY_SIZE(
  1253. knl_tad_dram_limit_lo);
  1254. tad_rule++) {
  1255. if (knl_get_tad(pvt,
  1256. tad_rule,
  1257. mc,
  1258. &tad_deadspace,
  1259. &tad_limit,
  1260. &tad_ways))
  1261. break;
  1262. tad_size = (tad_limit+1) -
  1263. (tad_livespace + tad_deadspace);
  1264. tad_livespace += tad_size;
  1265. tad_base = (tad_limit+1) - tad_size;
  1266. if (tad_base < sad_base) {
  1267. if (tad_limit > sad_base)
  1268. edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
  1269. } else if (tad_base < sad_limit) {
  1270. if (tad_limit+1 > sad_limit) {
  1271. edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
  1272. } else {
  1273. /* TAD region is completely inside SAD region */
  1274. edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
  1275. tad_rule, tad_base,
  1276. tad_limit, tad_size,
  1277. mc);
  1278. sad_actual_size[mc] += tad_size;
  1279. }
  1280. }
  1281. }
  1282. }
  1283. for (mc = 0; mc < 2; mc++) {
  1284. edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
  1285. mc, sad_actual_size[mc], sad_actual_size[mc]);
  1286. }
  1287. /* Ignore EDRAM rule */
  1288. if (edram_only)
  1289. continue;
  1290. /* Figure out which channels participate in interleave. */
  1291. for (channel = 0; channel < KNL_MAX_CHANNELS; channel++)
  1292. participants[channel] = 0;
  1293. /* For each channel, does at least one CHA have
  1294. * this channel mapped to the given target?
  1295. */
  1296. for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
  1297. int target;
  1298. int cha;
  1299. for (target = 0; target < KNL_MAX_CHANNELS; target++) {
  1300. for (cha = 0; cha < KNL_MAX_CHAS; cha++) {
  1301. if (knl_get_mc_route(target,
  1302. mc_route_reg[cha]) == channel
  1303. && !participants[channel]) {
  1304. participants[channel] = 1;
  1305. break;
  1306. }
  1307. }
  1308. }
  1309. }
  1310. for (channel = 0; channel < KNL_MAX_CHANNELS; channel++) {
  1311. mc = knl_channel_mc(channel);
  1312. if (participants[channel]) {
  1313. edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
  1314. channel,
  1315. sad_actual_size[mc]/intrlv_ways,
  1316. sad_rule);
  1317. mc_sizes[channel] +=
  1318. sad_actual_size[mc]/intrlv_ways;
  1319. }
  1320. }
  1321. }
  1322. return 0;
  1323. }
  1324. static void get_source_id(struct mem_ctl_info *mci)
  1325. {
  1326. struct sbridge_pvt *pvt = mci->pvt_info;
  1327. u32 reg;
  1328. if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL ||
  1329. pvt->info.type == KNIGHTS_LANDING)
  1330. pci_read_config_dword(pvt->pci_sad1, SAD_TARGET, &reg);
  1331. else
  1332. pci_read_config_dword(pvt->pci_br0, SAD_TARGET, &reg);
  1333. if (pvt->info.type == KNIGHTS_LANDING)
  1334. pvt->sbridge_dev->source_id = SOURCE_ID_KNL(reg);
  1335. else
  1336. pvt->sbridge_dev->source_id = SOURCE_ID(reg);
  1337. }
  1338. static int __populate_dimms(struct mem_ctl_info *mci,
  1339. u64 knl_mc_sizes[KNL_MAX_CHANNELS],
  1340. enum edac_type mode)
  1341. {
  1342. struct sbridge_pvt *pvt = mci->pvt_info;
  1343. int channels = pvt->info.type == KNIGHTS_LANDING ? KNL_MAX_CHANNELS
  1344. : NUM_CHANNELS;
  1345. unsigned int i, j, banks, ranks, rows, cols, npages;
  1346. struct dimm_info *dimm;
  1347. enum mem_type mtype;
  1348. u64 size;
  1349. mtype = pvt->info.get_memory_type(pvt);
  1350. if (mtype == MEM_RDDR3 || mtype == MEM_RDDR4)
  1351. edac_dbg(0, "Memory is registered\n");
  1352. else if (mtype == MEM_UNKNOWN)
  1353. edac_dbg(0, "Cannot determine memory type\n");
  1354. else
  1355. edac_dbg(0, "Memory is unregistered\n");
  1356. if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
  1357. banks = 16;
  1358. else
  1359. banks = 8;
  1360. for (i = 0; i < channels; i++) {
  1361. u32 mtr, amap = 0;
  1362. int max_dimms_per_channel;
  1363. if (pvt->info.type == KNIGHTS_LANDING) {
  1364. max_dimms_per_channel = 1;
  1365. if (!pvt->knl.pci_channel[i])
  1366. continue;
  1367. } else {
  1368. max_dimms_per_channel = ARRAY_SIZE(mtr_regs);
  1369. if (!pvt->pci_tad[i])
  1370. continue;
  1371. pci_read_config_dword(pvt->pci_tad[i], 0x8c, &amap);
  1372. }
  1373. for (j = 0; j < max_dimms_per_channel; j++) {
  1374. dimm = edac_get_dimm(mci, i, j, 0);
  1375. if (pvt->info.type == KNIGHTS_LANDING) {
  1376. pci_read_config_dword(pvt->knl.pci_channel[i],
  1377. knl_mtr_reg, &mtr);
  1378. } else {
  1379. pci_read_config_dword(pvt->pci_tad[i],
  1380. mtr_regs[j], &mtr);
  1381. }
  1382. edac_dbg(4, "Channel #%d MTR%d = %x\n", i, j, mtr);
  1383. if (IS_DIMM_PRESENT(mtr)) {
  1384. if (!IS_ECC_ENABLED(pvt->info.mcmtr)) {
  1385. sbridge_printk(KERN_ERR, "CPU SrcID #%d, Ha #%d, Channel #%d has DIMMs, but ECC is disabled\n",
  1386. pvt->sbridge_dev->source_id,
  1387. pvt->sbridge_dev->dom, i);
  1388. return -ENODEV;
  1389. }
  1390. pvt->channel[i].dimms++;
  1391. ranks = numrank(pvt->info.type, mtr);
  1392. if (pvt->info.type == KNIGHTS_LANDING) {
  1393. /* For DDR4, this is fixed. */
  1394. cols = 1 << 10;
  1395. rows = knl_mc_sizes[i] /
  1396. ((u64) cols * ranks * banks * 8);
  1397. } else {
  1398. rows = numrow(mtr);
  1399. cols = numcol(mtr);
  1400. }
  1401. size = ((u64)rows * cols * banks * ranks) >> (20 - 3);
  1402. npages = MiB_TO_PAGES(size);
  1403. edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld MiB (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
  1404. pvt->sbridge_dev->mc, pvt->sbridge_dev->dom, i, j,
  1405. size, npages,
  1406. banks, ranks, rows, cols);
  1407. dimm->nr_pages = npages;
  1408. dimm->grain = 32;
  1409. dimm->dtype = pvt->info.get_width(pvt, mtr);
  1410. dimm->mtype = mtype;
  1411. dimm->edac_mode = mode;
  1412. pvt->channel[i].dimm[j].rowbits = order_base_2(rows);
  1413. pvt->channel[i].dimm[j].colbits = order_base_2(cols);
  1414. pvt->channel[i].dimm[j].bank_xor_enable =
  1415. GET_BITFIELD(pvt->info.mcmtr, 9, 9);
  1416. pvt->channel[i].dimm[j].amap_fine = GET_BITFIELD(amap, 0, 0);
  1417. snprintf(dimm->label, sizeof(dimm->label),
  1418. "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
  1419. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom, i, j);
  1420. }
  1421. }
  1422. }
  1423. return 0;
  1424. }
  1425. static int get_dimm_config(struct mem_ctl_info *mci)
  1426. {
  1427. struct sbridge_pvt *pvt = mci->pvt_info;
  1428. u64 knl_mc_sizes[KNL_MAX_CHANNELS];
  1429. enum edac_type mode;
  1430. u32 reg;
  1431. pvt->sbridge_dev->node_id = pvt->info.get_node_id(pvt);
  1432. edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
  1433. pvt->sbridge_dev->mc,
  1434. pvt->sbridge_dev->node_id,
  1435. pvt->sbridge_dev->source_id);
  1436. /* KNL doesn't support mirroring or lockstep,
  1437. * and is always closed page
  1438. */
  1439. if (pvt->info.type == KNIGHTS_LANDING) {
  1440. mode = EDAC_S4ECD4ED;
  1441. pvt->mirror_mode = NON_MIRRORING;
  1442. pvt->is_cur_addr_mirrored = false;
  1443. if (knl_get_dimm_capacity(pvt, knl_mc_sizes) != 0)
  1444. return -1;
  1445. if (pci_read_config_dword(pvt->pci_ta, KNL_MCMTR, &pvt->info.mcmtr)) {
  1446. edac_dbg(0, "Failed to read KNL_MCMTR register\n");
  1447. return -ENODEV;
  1448. }
  1449. } else {
  1450. if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
  1451. if (pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg)) {
  1452. edac_dbg(0, "Failed to read HASWELL_HASYSDEFEATURE2 register\n");
  1453. return -ENODEV;
  1454. }
  1455. pvt->is_chan_hash = GET_BITFIELD(reg, 21, 21);
  1456. if (GET_BITFIELD(reg, 28, 28)) {
  1457. pvt->mirror_mode = ADDR_RANGE_MIRRORING;
  1458. edac_dbg(0, "Address range partial memory mirroring is enabled\n");
  1459. goto next;
  1460. }
  1461. }
  1462. if (pci_read_config_dword(pvt->pci_ras, RASENABLES, &reg)) {
  1463. edac_dbg(0, "Failed to read RASENABLES register\n");
  1464. return -ENODEV;
  1465. }
  1466. if (IS_MIRROR_ENABLED(reg)) {
  1467. pvt->mirror_mode = FULL_MIRRORING;
  1468. edac_dbg(0, "Full memory mirroring is enabled\n");
  1469. } else {
  1470. pvt->mirror_mode = NON_MIRRORING;
  1471. edac_dbg(0, "Memory mirroring is disabled\n");
  1472. }
  1473. next:
  1474. if (pci_read_config_dword(pvt->pci_ta, MCMTR, &pvt->info.mcmtr)) {
  1475. edac_dbg(0, "Failed to read MCMTR register\n");
  1476. return -ENODEV;
  1477. }
  1478. if (IS_LOCKSTEP_ENABLED(pvt->info.mcmtr)) {
  1479. edac_dbg(0, "Lockstep is enabled\n");
  1480. mode = EDAC_S8ECD8ED;
  1481. pvt->is_lockstep = true;
  1482. } else {
  1483. edac_dbg(0, "Lockstep is disabled\n");
  1484. mode = EDAC_S4ECD4ED;
  1485. pvt->is_lockstep = false;
  1486. }
  1487. if (IS_CLOSE_PG(pvt->info.mcmtr)) {
  1488. edac_dbg(0, "address map is on closed page mode\n");
  1489. pvt->is_close_pg = true;
  1490. } else {
  1491. edac_dbg(0, "address map is on open page mode\n");
  1492. pvt->is_close_pg = false;
  1493. }
  1494. }
  1495. return __populate_dimms(mci, knl_mc_sizes, mode);
  1496. }
  1497. static void get_memory_layout(const struct mem_ctl_info *mci)
  1498. {
  1499. struct sbridge_pvt *pvt = mci->pvt_info;
  1500. int i, j, k, n_sads, n_tads, sad_interl;
  1501. u32 reg;
  1502. u64 limit, prv = 0;
  1503. u64 tmp_mb;
  1504. u32 gb, mb;
  1505. u32 rir_way;
  1506. /*
  1507. * Step 1) Get TOLM/TOHM ranges
  1508. */
  1509. pvt->tolm = pvt->info.get_tolm(pvt);
  1510. tmp_mb = (1 + pvt->tolm) >> 20;
  1511. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1512. edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
  1513. gb, (mb*1000)/1024, (u64)pvt->tolm);
  1514. /* Address range is already 45:25 */
  1515. pvt->tohm = pvt->info.get_tohm(pvt);
  1516. tmp_mb = (1 + pvt->tohm) >> 20;
  1517. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1518. edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
  1519. gb, (mb*1000)/1024, (u64)pvt->tohm);
  1520. /*
  1521. * Step 2) Get SAD range and SAD Interleave list
  1522. * TAD registers contain the interleave wayness. However, it
  1523. * seems simpler to just discover it indirectly, with the
  1524. * algorithm bellow.
  1525. */
  1526. prv = 0;
  1527. for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
  1528. /* SAD_LIMIT Address range is 45:26 */
  1529. pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
  1530. &reg);
  1531. limit = pvt->info.sad_limit(reg);
  1532. if (!DRAM_RULE_ENABLE(reg))
  1533. continue;
  1534. if (limit <= prv)
  1535. break;
  1536. tmp_mb = (limit + 1) >> 20;
  1537. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1538. edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
  1539. n_sads,
  1540. show_dram_attr(pvt->info.dram_attr(reg)),
  1541. gb, (mb*1000)/1024,
  1542. ((u64)tmp_mb) << 20L,
  1543. get_intlv_mode_str(reg, pvt->info.type),
  1544. reg);
  1545. prv = limit;
  1546. pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
  1547. &reg);
  1548. sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
  1549. for (j = 0; j < 8; j++) {
  1550. u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, j);
  1551. if (j > 0 && sad_interl == pkg)
  1552. break;
  1553. edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
  1554. n_sads, j, pkg);
  1555. }
  1556. }
  1557. if (pvt->info.type == KNIGHTS_LANDING)
  1558. return;
  1559. /*
  1560. * Step 3) Get TAD range
  1561. */
  1562. prv = 0;
  1563. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  1564. pci_read_config_dword(pvt->pci_ha, tad_dram_rule[n_tads], &reg);
  1565. limit = TAD_LIMIT(reg);
  1566. if (limit <= prv)
  1567. break;
  1568. tmp_mb = (limit + 1) >> 20;
  1569. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1570. edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
  1571. n_tads, gb, (mb*1000)/1024,
  1572. ((u64)tmp_mb) << 20L,
  1573. (u32)(1 << TAD_SOCK(reg)),
  1574. (u32)TAD_CH(reg) + 1,
  1575. (u32)TAD_TGT0(reg),
  1576. (u32)TAD_TGT1(reg),
  1577. (u32)TAD_TGT2(reg),
  1578. (u32)TAD_TGT3(reg),
  1579. reg);
  1580. prv = limit;
  1581. }
  1582. /*
  1583. * Step 4) Get TAD offsets, per each channel
  1584. */
  1585. for (i = 0; i < NUM_CHANNELS; i++) {
  1586. if (!pvt->channel[i].dimms)
  1587. continue;
  1588. for (j = 0; j < n_tads; j++) {
  1589. pci_read_config_dword(pvt->pci_tad[i],
  1590. tad_ch_nilv_offset[j],
  1591. &reg);
  1592. tmp_mb = TAD_OFFSET(reg) >> 20;
  1593. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1594. edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
  1595. i, j,
  1596. gb, (mb*1000)/1024,
  1597. ((u64)tmp_mb) << 20L,
  1598. reg);
  1599. }
  1600. }
  1601. /*
  1602. * Step 6) Get RIR Wayness/Limit, per each channel
  1603. */
  1604. for (i = 0; i < NUM_CHANNELS; i++) {
  1605. if (!pvt->channel[i].dimms)
  1606. continue;
  1607. for (j = 0; j < MAX_RIR_RANGES; j++) {
  1608. pci_read_config_dword(pvt->pci_tad[i],
  1609. rir_way_limit[j],
  1610. &reg);
  1611. if (!IS_RIR_VALID(reg))
  1612. continue;
  1613. tmp_mb = pvt->info.rir_limit(reg) >> 20;
  1614. rir_way = 1 << RIR_WAY(reg);
  1615. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1616. edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
  1617. i, j,
  1618. gb, (mb*1000)/1024,
  1619. ((u64)tmp_mb) << 20L,
  1620. rir_way,
  1621. reg);
  1622. for (k = 0; k < rir_way; k++) {
  1623. pci_read_config_dword(pvt->pci_tad[i],
  1624. rir_offset[j][k],
  1625. &reg);
  1626. tmp_mb = RIR_OFFSET(pvt->info.type, reg) << 6;
  1627. gb = div_u64_rem(tmp_mb, 1024, &mb);
  1628. edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
  1629. i, j, k,
  1630. gb, (mb*1000)/1024,
  1631. ((u64)tmp_mb) << 20L,
  1632. (u32)RIR_RNK_TGT(pvt->info.type, reg),
  1633. reg);
  1634. }
  1635. }
  1636. }
  1637. }
  1638. static struct mem_ctl_info *get_mci_for_node_id(u8 node_id, u8 ha)
  1639. {
  1640. struct sbridge_dev *sbridge_dev;
  1641. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  1642. if (sbridge_dev->node_id == node_id && sbridge_dev->dom == ha)
  1643. return sbridge_dev->mci;
  1644. }
  1645. return NULL;
  1646. }
  1647. static u8 sb_close_row[] = {
  1648. 15, 16, 17, 18, 20, 21, 22, 28, 10, 11, 12, 13, 29, 30, 31, 32, 33
  1649. };
  1650. static u8 sb_close_column[] = {
  1651. 3, 4, 5, 14, 19, 23, 24, 25, 26, 27
  1652. };
  1653. static u8 sb_open_row[] = {
  1654. 14, 15, 16, 20, 28, 21, 22, 23, 24, 25, 26, 27, 29, 30, 31, 32, 33
  1655. };
  1656. static u8 sb_open_column[] = {
  1657. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
  1658. };
  1659. static u8 sb_open_fine_column[] = {
  1660. 3, 4, 5, 7, 8, 9, 10, 11, 12, 13
  1661. };
  1662. static int sb_bits(u64 addr, int nbits, u8 *bits)
  1663. {
  1664. int i, res = 0;
  1665. for (i = 0; i < nbits; i++)
  1666. res |= ((addr >> bits[i]) & 1) << i;
  1667. return res;
  1668. }
  1669. static int sb_bank_bits(u64 addr, int b0, int b1, int do_xor, int x0, int x1)
  1670. {
  1671. int ret = GET_BITFIELD(addr, b0, b0) | (GET_BITFIELD(addr, b1, b1) << 1);
  1672. if (do_xor)
  1673. ret ^= GET_BITFIELD(addr, x0, x0) | (GET_BITFIELD(addr, x1, x1) << 1);
  1674. return ret;
  1675. }
  1676. static bool sb_decode_ddr4(struct mem_ctl_info *mci, int ch, u8 rank,
  1677. u64 rank_addr, char *msg)
  1678. {
  1679. int dimmno = 0;
  1680. int row, col, bank_address, bank_group;
  1681. struct sbridge_pvt *pvt;
  1682. u32 bg0 = 0, rowbits = 0, colbits = 0;
  1683. u32 amap_fine = 0, bank_xor_enable = 0;
  1684. dimmno = (rank < 12) ? rank / 4 : 2;
  1685. pvt = mci->pvt_info;
  1686. amap_fine = pvt->channel[ch].dimm[dimmno].amap_fine;
  1687. bg0 = amap_fine ? 6 : 13;
  1688. rowbits = pvt->channel[ch].dimm[dimmno].rowbits;
  1689. colbits = pvt->channel[ch].dimm[dimmno].colbits;
  1690. bank_xor_enable = pvt->channel[ch].dimm[dimmno].bank_xor_enable;
  1691. if (pvt->is_lockstep) {
  1692. pr_warn_once("LockStep row/column decode is not supported yet!\n");
  1693. msg[0] = '\0';
  1694. return false;
  1695. }
  1696. if (pvt->is_close_pg) {
  1697. row = sb_bits(rank_addr, rowbits, sb_close_row);
  1698. col = sb_bits(rank_addr, colbits, sb_close_column);
  1699. col |= 0x400; /* C10 is autoprecharge, always set */
  1700. bank_address = sb_bank_bits(rank_addr, 8, 9, bank_xor_enable, 22, 28);
  1701. bank_group = sb_bank_bits(rank_addr, 6, 7, bank_xor_enable, 20, 21);
  1702. } else {
  1703. row = sb_bits(rank_addr, rowbits, sb_open_row);
  1704. if (amap_fine)
  1705. col = sb_bits(rank_addr, colbits, sb_open_fine_column);
  1706. else
  1707. col = sb_bits(rank_addr, colbits, sb_open_column);
  1708. bank_address = sb_bank_bits(rank_addr, 18, 19, bank_xor_enable, 22, 23);
  1709. bank_group = sb_bank_bits(rank_addr, bg0, 17, bank_xor_enable, 20, 21);
  1710. }
  1711. row &= (1u << rowbits) - 1;
  1712. sprintf(msg, "row:0x%x col:0x%x bank_addr:%d bank_group:%d",
  1713. row, col, bank_address, bank_group);
  1714. return true;
  1715. }
  1716. static bool sb_decode_ddr3(struct mem_ctl_info *mci, int ch, u8 rank,
  1717. u64 rank_addr, char *msg)
  1718. {
  1719. pr_warn_once("DDR3 row/column decode not support yet!\n");
  1720. msg[0] = '\0';
  1721. return false;
  1722. }
  1723. static int get_memory_error_data(struct mem_ctl_info *mci,
  1724. u64 addr,
  1725. u8 *socket, u8 *ha,
  1726. long *channel_mask,
  1727. u8 *rank,
  1728. char **area_type, char *msg)
  1729. {
  1730. struct mem_ctl_info *new_mci;
  1731. struct sbridge_pvt *pvt = mci->pvt_info;
  1732. struct pci_dev *pci_ha;
  1733. int n_rir, n_sads, n_tads, sad_way, sck_xch;
  1734. int sad_interl, idx, base_ch;
  1735. int interleave_mode, shiftup = 0;
  1736. unsigned int sad_interleave[MAX_INTERLEAVE];
  1737. u32 reg, dram_rule;
  1738. u8 ch_way, sck_way, pkg, sad_ha = 0, rankid = 0;
  1739. u32 tad_offset;
  1740. u32 rir_way;
  1741. u32 mb, gb;
  1742. u64 ch_addr, offset, limit = 0, prv = 0;
  1743. u64 rank_addr;
  1744. enum mem_type mtype;
  1745. /*
  1746. * Step 0) Check if the address is at special memory ranges
  1747. * The check bellow is probably enough to fill all cases where
  1748. * the error is not inside a memory, except for the legacy
  1749. * range (e. g. VGA addresses). It is unlikely, however, that the
  1750. * memory controller would generate an error on that range.
  1751. */
  1752. if ((addr > (u64) pvt->tolm) && (addr < (1LL << 32))) {
  1753. sprintf(msg, "Error at TOLM area, on addr 0x%08Lx", addr);
  1754. return -EINVAL;
  1755. }
  1756. if (addr >= (u64)pvt->tohm) {
  1757. sprintf(msg, "Error at MMIOH area, on addr 0x%016Lx", addr);
  1758. return -EINVAL;
  1759. }
  1760. /*
  1761. * Step 1) Get socket
  1762. */
  1763. for (n_sads = 0; n_sads < pvt->info.max_sad; n_sads++) {
  1764. pci_read_config_dword(pvt->pci_sad0, pvt->info.dram_rule[n_sads],
  1765. &reg);
  1766. if (!DRAM_RULE_ENABLE(reg))
  1767. continue;
  1768. limit = pvt->info.sad_limit(reg);
  1769. if (limit <= prv) {
  1770. sprintf(msg, "Can't discover the memory socket");
  1771. return -EINVAL;
  1772. }
  1773. if (addr <= limit)
  1774. break;
  1775. prv = limit;
  1776. }
  1777. if (n_sads == pvt->info.max_sad) {
  1778. sprintf(msg, "Can't discover the memory socket");
  1779. return -EINVAL;
  1780. }
  1781. dram_rule = reg;
  1782. *area_type = show_dram_attr(pvt->info.dram_attr(dram_rule));
  1783. interleave_mode = pvt->info.interleave_mode(dram_rule);
  1784. pci_read_config_dword(pvt->pci_sad0, pvt->info.interleave_list[n_sads],
  1785. &reg);
  1786. if (pvt->info.type == SANDY_BRIDGE) {
  1787. sad_interl = sad_pkg(pvt->info.interleave_pkg, reg, 0);
  1788. for (sad_way = 0; sad_way < 8; sad_way++) {
  1789. u32 pkg = sad_pkg(pvt->info.interleave_pkg, reg, sad_way);
  1790. if (sad_way > 0 && sad_interl == pkg)
  1791. break;
  1792. sad_interleave[sad_way] = pkg;
  1793. edac_dbg(0, "SAD interleave #%d: %d\n",
  1794. sad_way, sad_interleave[sad_way]);
  1795. }
  1796. edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
  1797. pvt->sbridge_dev->mc,
  1798. n_sads,
  1799. addr,
  1800. limit,
  1801. sad_way + 7,
  1802. !interleave_mode ? "" : "XOR[18:16]");
  1803. if (interleave_mode)
  1804. idx = ((addr >> 6) ^ (addr >> 16)) & 7;
  1805. else
  1806. idx = (addr >> 6) & 7;
  1807. switch (sad_way) {
  1808. case 1:
  1809. idx = 0;
  1810. break;
  1811. case 2:
  1812. idx = idx & 1;
  1813. break;
  1814. case 4:
  1815. idx = idx & 3;
  1816. break;
  1817. case 8:
  1818. break;
  1819. default:
  1820. sprintf(msg, "Can't discover socket interleave");
  1821. return -EINVAL;
  1822. }
  1823. *socket = sad_interleave[idx];
  1824. edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
  1825. idx, sad_way, *socket);
  1826. } else if (pvt->info.type == HASWELL || pvt->info.type == BROADWELL) {
  1827. int bits, a7mode = A7MODE(dram_rule);
  1828. if (a7mode) {
  1829. /* A7 mode swaps P9 with P6 */
  1830. bits = GET_BITFIELD(addr, 7, 8) << 1;
  1831. bits |= GET_BITFIELD(addr, 9, 9);
  1832. } else
  1833. bits = GET_BITFIELD(addr, 6, 8);
  1834. if (interleave_mode == 0) {
  1835. /* interleave mode will XOR {8,7,6} with {18,17,16} */
  1836. idx = GET_BITFIELD(addr, 16, 18);
  1837. idx ^= bits;
  1838. } else
  1839. idx = bits;
  1840. pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
  1841. *socket = sad_pkg_socket(pkg);
  1842. sad_ha = sad_pkg_ha(pkg);
  1843. if (a7mode) {
  1844. /* MCChanShiftUpEnable */
  1845. pci_read_config_dword(pvt->pci_ha, HASWELL_HASYSDEFEATURE2, &reg);
  1846. shiftup = GET_BITFIELD(reg, 22, 22);
  1847. }
  1848. edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
  1849. idx, *socket, sad_ha, shiftup);
  1850. } else {
  1851. /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
  1852. idx = (addr >> 6) & 7;
  1853. pkg = sad_pkg(pvt->info.interleave_pkg, reg, idx);
  1854. *socket = sad_pkg_socket(pkg);
  1855. sad_ha = sad_pkg_ha(pkg);
  1856. edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
  1857. idx, *socket, sad_ha);
  1858. }
  1859. *ha = sad_ha;
  1860. /*
  1861. * Move to the proper node structure, in order to access the
  1862. * right PCI registers
  1863. */
  1864. new_mci = get_mci_for_node_id(*socket, sad_ha);
  1865. if (!new_mci) {
  1866. sprintf(msg, "Struct for socket #%u wasn't initialized",
  1867. *socket);
  1868. return -EINVAL;
  1869. }
  1870. mci = new_mci;
  1871. pvt = mci->pvt_info;
  1872. /*
  1873. * Step 2) Get memory channel
  1874. */
  1875. prv = 0;
  1876. pci_ha = pvt->pci_ha;
  1877. for (n_tads = 0; n_tads < MAX_TAD; n_tads++) {
  1878. pci_read_config_dword(pci_ha, tad_dram_rule[n_tads], &reg);
  1879. limit = TAD_LIMIT(reg);
  1880. if (limit <= prv) {
  1881. sprintf(msg, "Can't discover the memory channel");
  1882. return -EINVAL;
  1883. }
  1884. if (addr <= limit)
  1885. break;
  1886. prv = limit;
  1887. }
  1888. if (n_tads == MAX_TAD) {
  1889. sprintf(msg, "Can't discover the memory channel");
  1890. return -EINVAL;
  1891. }
  1892. ch_way = TAD_CH(reg) + 1;
  1893. sck_way = TAD_SOCK(reg);
  1894. if (ch_way == 3)
  1895. idx = addr >> 6;
  1896. else {
  1897. idx = (addr >> (6 + sck_way + shiftup)) & 0x3;
  1898. if (pvt->is_chan_hash)
  1899. idx = haswell_chan_hash(idx, addr);
  1900. }
  1901. idx = idx % ch_way;
  1902. /*
  1903. * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
  1904. */
  1905. switch (idx) {
  1906. case 0:
  1907. base_ch = TAD_TGT0(reg);
  1908. break;
  1909. case 1:
  1910. base_ch = TAD_TGT1(reg);
  1911. break;
  1912. case 2:
  1913. base_ch = TAD_TGT2(reg);
  1914. break;
  1915. case 3:
  1916. base_ch = TAD_TGT3(reg);
  1917. break;
  1918. default:
  1919. sprintf(msg, "Can't discover the TAD target");
  1920. return -EINVAL;
  1921. }
  1922. *channel_mask = 1 << base_ch;
  1923. pci_read_config_dword(pvt->pci_tad[base_ch], tad_ch_nilv_offset[n_tads], &tad_offset);
  1924. if (pvt->mirror_mode == FULL_MIRRORING ||
  1925. (pvt->mirror_mode == ADDR_RANGE_MIRRORING && n_tads == 0)) {
  1926. *channel_mask |= 1 << ((base_ch + 2) % 4);
  1927. switch(ch_way) {
  1928. case 2:
  1929. case 4:
  1930. sck_xch = (1 << sck_way) * (ch_way >> 1);
  1931. break;
  1932. default:
  1933. sprintf(msg, "Invalid mirror set. Can't decode addr");
  1934. return -EINVAL;
  1935. }
  1936. pvt->is_cur_addr_mirrored = true;
  1937. } else {
  1938. sck_xch = (1 << sck_way) * ch_way;
  1939. pvt->is_cur_addr_mirrored = false;
  1940. }
  1941. if (pvt->is_lockstep)
  1942. *channel_mask |= 1 << ((base_ch + 1) % 4);
  1943. offset = TAD_OFFSET(tad_offset);
  1944. edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
  1945. n_tads,
  1946. addr,
  1947. limit,
  1948. sck_way,
  1949. ch_way,
  1950. offset,
  1951. idx,
  1952. base_ch,
  1953. *channel_mask);
  1954. /* Calculate channel address */
  1955. /* Remove the TAD offset */
  1956. if (offset > addr) {
  1957. sprintf(msg, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
  1958. offset, addr);
  1959. return -EINVAL;
  1960. }
  1961. ch_addr = addr - offset;
  1962. ch_addr >>= (6 + shiftup);
  1963. ch_addr /= sck_xch;
  1964. ch_addr <<= (6 + shiftup);
  1965. ch_addr |= addr & ((1 << (6 + shiftup)) - 1);
  1966. /*
  1967. * Step 3) Decode rank
  1968. */
  1969. for (n_rir = 0; n_rir < MAX_RIR_RANGES; n_rir++) {
  1970. pci_read_config_dword(pvt->pci_tad[base_ch], rir_way_limit[n_rir], &reg);
  1971. if (!IS_RIR_VALID(reg))
  1972. continue;
  1973. limit = pvt->info.rir_limit(reg);
  1974. gb = div_u64_rem(limit >> 20, 1024, &mb);
  1975. edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
  1976. n_rir,
  1977. gb, (mb*1000)/1024,
  1978. limit,
  1979. 1 << RIR_WAY(reg));
  1980. if (ch_addr <= limit)
  1981. break;
  1982. }
  1983. if (n_rir == MAX_RIR_RANGES) {
  1984. sprintf(msg, "Can't discover the memory rank for ch addr 0x%08Lx",
  1985. ch_addr);
  1986. return -EINVAL;
  1987. }
  1988. rir_way = RIR_WAY(reg);
  1989. if (pvt->is_close_pg)
  1990. idx = (ch_addr >> 6);
  1991. else
  1992. idx = (ch_addr >> 13); /* FIXME: Datasheet says to shift by 15 */
  1993. idx %= 1 << rir_way;
  1994. pci_read_config_dword(pvt->pci_tad[base_ch], rir_offset[n_rir][idx], &reg);
  1995. *rank = RIR_RNK_TGT(pvt->info.type, reg);
  1996. if (pvt->info.type == BROADWELL) {
  1997. if (pvt->is_close_pg)
  1998. shiftup = 6;
  1999. else
  2000. shiftup = 13;
  2001. rank_addr = ch_addr >> shiftup;
  2002. rank_addr /= (1 << rir_way);
  2003. rank_addr <<= shiftup;
  2004. rank_addr |= ch_addr & GENMASK_ULL(shiftup - 1, 0);
  2005. rank_addr -= RIR_OFFSET(pvt->info.type, reg);
  2006. mtype = pvt->info.get_memory_type(pvt);
  2007. rankid = *rank;
  2008. if (mtype == MEM_DDR4 || mtype == MEM_RDDR4)
  2009. sb_decode_ddr4(mci, base_ch, rankid, rank_addr, msg);
  2010. else
  2011. sb_decode_ddr3(mci, base_ch, rankid, rank_addr, msg);
  2012. } else {
  2013. msg[0] = '\0';
  2014. }
  2015. edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
  2016. n_rir,
  2017. ch_addr,
  2018. limit,
  2019. rir_way,
  2020. idx);
  2021. return 0;
  2022. }
  2023. static int get_memory_error_data_from_mce(struct mem_ctl_info *mci,
  2024. const struct mce *m, u8 *socket,
  2025. u8 *ha, long *channel_mask,
  2026. char *msg)
  2027. {
  2028. u32 reg, channel = GET_BITFIELD(m->status, 0, 3);
  2029. struct mem_ctl_info *new_mci;
  2030. struct sbridge_pvt *pvt;
  2031. struct pci_dev *pci_ha;
  2032. bool tad0;
  2033. if (channel >= NUM_CHANNELS) {
  2034. sprintf(msg, "Invalid channel 0x%x", channel);
  2035. return -EINVAL;
  2036. }
  2037. pvt = mci->pvt_info;
  2038. if (!pvt->info.get_ha) {
  2039. sprintf(msg, "No get_ha()");
  2040. return -EINVAL;
  2041. }
  2042. *ha = pvt->info.get_ha(m->bank);
  2043. if (*ha != 0 && *ha != 1) {
  2044. sprintf(msg, "Impossible bank %d", m->bank);
  2045. return -EINVAL;
  2046. }
  2047. *socket = m->socketid;
  2048. new_mci = get_mci_for_node_id(*socket, *ha);
  2049. if (!new_mci) {
  2050. strcpy(msg, "mci socket got corrupted!");
  2051. return -EINVAL;
  2052. }
  2053. pvt = new_mci->pvt_info;
  2054. pci_ha = pvt->pci_ha;
  2055. pci_read_config_dword(pci_ha, tad_dram_rule[0], &reg);
  2056. tad0 = m->addr <= TAD_LIMIT(reg);
  2057. *channel_mask = 1 << channel;
  2058. if (pvt->mirror_mode == FULL_MIRRORING ||
  2059. (pvt->mirror_mode == ADDR_RANGE_MIRRORING && tad0)) {
  2060. *channel_mask |= 1 << ((channel + 2) % 4);
  2061. pvt->is_cur_addr_mirrored = true;
  2062. } else {
  2063. pvt->is_cur_addr_mirrored = false;
  2064. }
  2065. if (pvt->is_lockstep)
  2066. *channel_mask |= 1 << ((channel + 1) % 4);
  2067. return 0;
  2068. }
  2069. /****************************************************************************
  2070. Device initialization routines: put/get, init/exit
  2071. ****************************************************************************/
  2072. /*
  2073. * sbridge_put_all_devices 'put' all the devices that we have
  2074. * reserved via 'get'
  2075. */
  2076. static void sbridge_put_devices(struct sbridge_dev *sbridge_dev)
  2077. {
  2078. int i;
  2079. edac_dbg(0, "\n");
  2080. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2081. struct pci_dev *pdev = sbridge_dev->pdev[i];
  2082. if (!pdev)
  2083. continue;
  2084. edac_dbg(0, "Removing dev %02x:%02x.%d\n",
  2085. pdev->bus->number,
  2086. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
  2087. pci_dev_put(pdev);
  2088. }
  2089. }
  2090. static void sbridge_put_all_devices(void)
  2091. {
  2092. struct sbridge_dev *sbridge_dev, *tmp;
  2093. list_for_each_entry_safe(sbridge_dev, tmp, &sbridge_edac_list, list) {
  2094. sbridge_put_devices(sbridge_dev);
  2095. free_sbridge_dev(sbridge_dev);
  2096. }
  2097. }
  2098. static int sbridge_get_onedevice(struct pci_dev **prev,
  2099. u8 *num_mc,
  2100. const struct pci_id_table *table,
  2101. const unsigned devno,
  2102. const int multi_bus)
  2103. {
  2104. struct sbridge_dev *sbridge_dev = NULL;
  2105. const struct pci_id_descr *dev_descr = &table->descr[devno];
  2106. struct pci_dev *pdev = NULL;
  2107. int seg = 0;
  2108. u8 bus = 0;
  2109. int i = 0;
  2110. sbridge_printk(KERN_DEBUG,
  2111. "Seeking for: PCI ID %04x:%04x\n",
  2112. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2113. pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
  2114. dev_descr->dev_id, *prev);
  2115. if (!pdev) {
  2116. if (*prev) {
  2117. *prev = pdev;
  2118. return 0;
  2119. }
  2120. if (dev_descr->optional)
  2121. return 0;
  2122. /* if the HA wasn't found */
  2123. if (devno == 0)
  2124. return -ENODEV;
  2125. sbridge_printk(KERN_INFO,
  2126. "Device not found: %04x:%04x\n",
  2127. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2128. /* End of list, leave */
  2129. return -ENODEV;
  2130. }
  2131. seg = pci_domain_nr(pdev->bus);
  2132. bus = pdev->bus->number;
  2133. next_imc:
  2134. sbridge_dev = get_sbridge_dev(seg, bus, dev_descr->dom,
  2135. multi_bus, sbridge_dev);
  2136. if (!sbridge_dev) {
  2137. /* If the HA1 wasn't found, don't create EDAC second memory controller */
  2138. if (dev_descr->dom == IMC1 && devno != 1) {
  2139. edac_dbg(0, "Skip IMC1: %04x:%04x (since HA1 was absent)\n",
  2140. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2141. pci_dev_put(pdev);
  2142. return 0;
  2143. }
  2144. if (dev_descr->dom == SOCK)
  2145. goto out_imc;
  2146. sbridge_dev = alloc_sbridge_dev(seg, bus, dev_descr->dom, table);
  2147. if (!sbridge_dev) {
  2148. pci_dev_put(pdev);
  2149. return -ENOMEM;
  2150. }
  2151. (*num_mc)++;
  2152. }
  2153. if (sbridge_dev->pdev[sbridge_dev->i_devs]) {
  2154. sbridge_printk(KERN_ERR,
  2155. "Duplicated device for %04x:%04x\n",
  2156. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2157. pci_dev_put(pdev);
  2158. return -ENODEV;
  2159. }
  2160. sbridge_dev->pdev[sbridge_dev->i_devs++] = pdev;
  2161. /* pdev belongs to more than one IMC, do extra gets */
  2162. if (++i > 1)
  2163. pci_dev_get(pdev);
  2164. if (dev_descr->dom == SOCK && i < table->n_imcs_per_sock)
  2165. goto next_imc;
  2166. out_imc:
  2167. /* Be sure that the device is enabled */
  2168. if (unlikely(pci_enable_device(pdev) < 0)) {
  2169. sbridge_printk(KERN_ERR,
  2170. "Couldn't enable %04x:%04x\n",
  2171. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2172. return -ENODEV;
  2173. }
  2174. edac_dbg(0, "Detected %04x:%04x\n",
  2175. PCI_VENDOR_ID_INTEL, dev_descr->dev_id);
  2176. /*
  2177. * As stated on drivers/pci/search.c, the reference count for
  2178. * @from is always decremented if it is not %NULL. So, as we need
  2179. * to get all devices up to null, we need to do a get for the device
  2180. */
  2181. pci_dev_get(pdev);
  2182. *prev = pdev;
  2183. return 0;
  2184. }
  2185. /*
  2186. * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
  2187. * devices we want to reference for this driver.
  2188. * @num_mc: pointer to the memory controllers count, to be incremented in case
  2189. * of success.
  2190. * @table: model specific table
  2191. *
  2192. * returns 0 in case of success or error code
  2193. */
  2194. static int sbridge_get_all_devices(u8 *num_mc,
  2195. const struct pci_id_table *table)
  2196. {
  2197. int i, rc;
  2198. struct pci_dev *pdev = NULL;
  2199. int allow_dups = 0;
  2200. int multi_bus = 0;
  2201. if (table->type == KNIGHTS_LANDING)
  2202. allow_dups = multi_bus = 1;
  2203. while (table && table->descr) {
  2204. for (i = 0; i < table->n_devs_per_sock; i++) {
  2205. if (!allow_dups || i == 0 ||
  2206. table->descr[i].dev_id !=
  2207. table->descr[i-1].dev_id) {
  2208. pdev = NULL;
  2209. }
  2210. do {
  2211. rc = sbridge_get_onedevice(&pdev, num_mc,
  2212. table, i, multi_bus);
  2213. if (rc < 0) {
  2214. if (i == 0) {
  2215. i = table->n_devs_per_sock;
  2216. break;
  2217. }
  2218. sbridge_put_all_devices();
  2219. return -ENODEV;
  2220. }
  2221. } while (pdev && !allow_dups);
  2222. }
  2223. table++;
  2224. }
  2225. return 0;
  2226. }
  2227. /*
  2228. * Device IDs for {SBRIDGE,IBRIDGE,HASWELL,BROADWELL}_IMC_HA0_TAD0 are in
  2229. * the format: XXXa. So we can convert from a device to the corresponding
  2230. * channel like this
  2231. */
  2232. #define TAD_DEV_TO_CHAN(dev) (((dev) & 0xf) - 0xa)
  2233. static int sbridge_mci_bind_devs(struct mem_ctl_info *mci,
  2234. struct sbridge_dev *sbridge_dev)
  2235. {
  2236. struct sbridge_pvt *pvt = mci->pvt_info;
  2237. struct pci_dev *pdev;
  2238. u8 saw_chan_mask = 0;
  2239. int i;
  2240. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2241. pdev = sbridge_dev->pdev[i];
  2242. if (!pdev)
  2243. continue;
  2244. switch (pdev->device) {
  2245. case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0:
  2246. pvt->pci_sad0 = pdev;
  2247. break;
  2248. case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1:
  2249. pvt->pci_sad1 = pdev;
  2250. break;
  2251. case PCI_DEVICE_ID_INTEL_SBRIDGE_BR:
  2252. pvt->pci_br0 = pdev;
  2253. break;
  2254. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0:
  2255. pvt->pci_ha = pdev;
  2256. break;
  2257. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA:
  2258. pvt->pci_ta = pdev;
  2259. break;
  2260. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS:
  2261. pvt->pci_ras = pdev;
  2262. break;
  2263. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0:
  2264. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1:
  2265. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2:
  2266. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3:
  2267. {
  2268. int id = TAD_DEV_TO_CHAN(pdev->device);
  2269. pvt->pci_tad[id] = pdev;
  2270. saw_chan_mask |= 1 << id;
  2271. }
  2272. break;
  2273. case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO:
  2274. pvt->pci_ddrio = pdev;
  2275. break;
  2276. default:
  2277. goto error;
  2278. }
  2279. edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
  2280. pdev->vendor, pdev->device,
  2281. sbridge_dev->bus,
  2282. pdev);
  2283. }
  2284. /* Check if everything were registered */
  2285. if (!pvt->pci_sad0 || !pvt->pci_sad1 || !pvt->pci_ha ||
  2286. !pvt->pci_ras || !pvt->pci_ta)
  2287. goto enodev;
  2288. if (saw_chan_mask != 0x0f)
  2289. goto enodev;
  2290. return 0;
  2291. enodev:
  2292. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2293. return -ENODEV;
  2294. error:
  2295. sbridge_printk(KERN_ERR, "Unexpected device %02x:%02x\n",
  2296. PCI_VENDOR_ID_INTEL, pdev->device);
  2297. return -EINVAL;
  2298. }
  2299. static int ibridge_mci_bind_devs(struct mem_ctl_info *mci,
  2300. struct sbridge_dev *sbridge_dev)
  2301. {
  2302. struct sbridge_pvt *pvt = mci->pvt_info;
  2303. struct pci_dev *pdev;
  2304. u8 saw_chan_mask = 0;
  2305. int i;
  2306. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2307. pdev = sbridge_dev->pdev[i];
  2308. if (!pdev)
  2309. continue;
  2310. switch (pdev->device) {
  2311. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0:
  2312. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1:
  2313. pvt->pci_ha = pdev;
  2314. break;
  2315. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA:
  2316. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA:
  2317. pvt->pci_ta = pdev;
  2318. break;
  2319. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS:
  2320. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS:
  2321. pvt->pci_ras = pdev;
  2322. break;
  2323. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0:
  2324. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1:
  2325. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2:
  2326. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3:
  2327. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0:
  2328. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1:
  2329. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2:
  2330. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3:
  2331. {
  2332. int id = TAD_DEV_TO_CHAN(pdev->device);
  2333. pvt->pci_tad[id] = pdev;
  2334. saw_chan_mask |= 1 << id;
  2335. }
  2336. break;
  2337. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0:
  2338. pvt->pci_ddrio = pdev;
  2339. break;
  2340. case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0:
  2341. pvt->pci_ddrio = pdev;
  2342. break;
  2343. case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD:
  2344. pvt->pci_sad0 = pdev;
  2345. break;
  2346. case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0:
  2347. pvt->pci_br0 = pdev;
  2348. break;
  2349. case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1:
  2350. pvt->pci_br1 = pdev;
  2351. break;
  2352. default:
  2353. goto error;
  2354. }
  2355. edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
  2356. sbridge_dev->bus,
  2357. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  2358. pdev);
  2359. }
  2360. /* Check if everything were registered */
  2361. if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_br0 ||
  2362. !pvt->pci_br1 || !pvt->pci_ras || !pvt->pci_ta)
  2363. goto enodev;
  2364. if (saw_chan_mask != 0x0f && /* -EN/-EX */
  2365. saw_chan_mask != 0x03) /* -EP */
  2366. goto enodev;
  2367. return 0;
  2368. enodev:
  2369. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2370. return -ENODEV;
  2371. error:
  2372. sbridge_printk(KERN_ERR,
  2373. "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL,
  2374. pdev->device);
  2375. return -EINVAL;
  2376. }
  2377. static int haswell_mci_bind_devs(struct mem_ctl_info *mci,
  2378. struct sbridge_dev *sbridge_dev)
  2379. {
  2380. struct sbridge_pvt *pvt = mci->pvt_info;
  2381. struct pci_dev *pdev;
  2382. u8 saw_chan_mask = 0;
  2383. int i;
  2384. /* there's only one device per system; not tied to any bus */
  2385. if (pvt->info.pci_vtd == NULL)
  2386. /* result will be checked later */
  2387. pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
  2388. PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC,
  2389. NULL);
  2390. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2391. pdev = sbridge_dev->pdev[i];
  2392. if (!pdev)
  2393. continue;
  2394. switch (pdev->device) {
  2395. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0:
  2396. pvt->pci_sad0 = pdev;
  2397. break;
  2398. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1:
  2399. pvt->pci_sad1 = pdev;
  2400. break;
  2401. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0:
  2402. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1:
  2403. pvt->pci_ha = pdev;
  2404. break;
  2405. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA:
  2406. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA:
  2407. pvt->pci_ta = pdev;
  2408. break;
  2409. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TM:
  2410. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TM:
  2411. pvt->pci_ras = pdev;
  2412. break;
  2413. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0:
  2414. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1:
  2415. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2:
  2416. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3:
  2417. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0:
  2418. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1:
  2419. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2:
  2420. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3:
  2421. {
  2422. int id = TAD_DEV_TO_CHAN(pdev->device);
  2423. pvt->pci_tad[id] = pdev;
  2424. saw_chan_mask |= 1 << id;
  2425. }
  2426. break;
  2427. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0:
  2428. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1:
  2429. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2:
  2430. case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3:
  2431. if (!pvt->pci_ddrio)
  2432. pvt->pci_ddrio = pdev;
  2433. break;
  2434. default:
  2435. break;
  2436. }
  2437. edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
  2438. sbridge_dev->bus,
  2439. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  2440. pdev);
  2441. }
  2442. /* Check if everything were registered */
  2443. if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
  2444. !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
  2445. goto enodev;
  2446. if (saw_chan_mask != 0x0f && /* -EN/-EX */
  2447. saw_chan_mask != 0x03) /* -EP */
  2448. goto enodev;
  2449. return 0;
  2450. enodev:
  2451. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2452. return -ENODEV;
  2453. }
  2454. static int broadwell_mci_bind_devs(struct mem_ctl_info *mci,
  2455. struct sbridge_dev *sbridge_dev)
  2456. {
  2457. struct sbridge_pvt *pvt = mci->pvt_info;
  2458. struct pci_dev *pdev;
  2459. u8 saw_chan_mask = 0;
  2460. int i;
  2461. /* there's only one device per system; not tied to any bus */
  2462. if (pvt->info.pci_vtd == NULL)
  2463. /* result will be checked later */
  2464. pvt->info.pci_vtd = pci_get_device(PCI_VENDOR_ID_INTEL,
  2465. PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC,
  2466. NULL);
  2467. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2468. pdev = sbridge_dev->pdev[i];
  2469. if (!pdev)
  2470. continue;
  2471. switch (pdev->device) {
  2472. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0:
  2473. pvt->pci_sad0 = pdev;
  2474. break;
  2475. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1:
  2476. pvt->pci_sad1 = pdev;
  2477. break;
  2478. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0:
  2479. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1:
  2480. pvt->pci_ha = pdev;
  2481. break;
  2482. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA:
  2483. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA:
  2484. pvt->pci_ta = pdev;
  2485. break;
  2486. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TM:
  2487. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TM:
  2488. pvt->pci_ras = pdev;
  2489. break;
  2490. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0:
  2491. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1:
  2492. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2:
  2493. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3:
  2494. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0:
  2495. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1:
  2496. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2:
  2497. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3:
  2498. {
  2499. int id = TAD_DEV_TO_CHAN(pdev->device);
  2500. pvt->pci_tad[id] = pdev;
  2501. saw_chan_mask |= 1 << id;
  2502. }
  2503. break;
  2504. case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0:
  2505. pvt->pci_ddrio = pdev;
  2506. break;
  2507. default:
  2508. break;
  2509. }
  2510. edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
  2511. sbridge_dev->bus,
  2512. PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn),
  2513. pdev);
  2514. }
  2515. /* Check if everything were registered */
  2516. if (!pvt->pci_sad0 || !pvt->pci_ha || !pvt->pci_sad1 ||
  2517. !pvt->pci_ras || !pvt->pci_ta || !pvt->info.pci_vtd)
  2518. goto enodev;
  2519. if (saw_chan_mask != 0x0f && /* -EN/-EX */
  2520. saw_chan_mask != 0x03) /* -EP */
  2521. goto enodev;
  2522. return 0;
  2523. enodev:
  2524. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2525. return -ENODEV;
  2526. }
  2527. static int knl_mci_bind_devs(struct mem_ctl_info *mci,
  2528. struct sbridge_dev *sbridge_dev)
  2529. {
  2530. struct sbridge_pvt *pvt = mci->pvt_info;
  2531. struct pci_dev *pdev;
  2532. int dev, func;
  2533. int i;
  2534. int devidx;
  2535. for (i = 0; i < sbridge_dev->n_devs; i++) {
  2536. pdev = sbridge_dev->pdev[i];
  2537. if (!pdev)
  2538. continue;
  2539. /* Extract PCI device and function. */
  2540. dev = (pdev->devfn >> 3) & 0x1f;
  2541. func = pdev->devfn & 0x7;
  2542. switch (pdev->device) {
  2543. case PCI_DEVICE_ID_INTEL_KNL_IMC_MC:
  2544. if (dev == 8)
  2545. pvt->knl.pci_mc0 = pdev;
  2546. else if (dev == 9)
  2547. pvt->knl.pci_mc1 = pdev;
  2548. else {
  2549. sbridge_printk(KERN_ERR,
  2550. "Memory controller in unexpected place! (dev %d, fn %d)\n",
  2551. dev, func);
  2552. continue;
  2553. }
  2554. break;
  2555. case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0:
  2556. pvt->pci_sad0 = pdev;
  2557. break;
  2558. case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1:
  2559. pvt->pci_sad1 = pdev;
  2560. break;
  2561. case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA:
  2562. /* There are one of these per tile, and range from
  2563. * 1.14.0 to 1.18.5.
  2564. */
  2565. devidx = ((dev-14)*8)+func;
  2566. if (devidx < 0 || devidx >= KNL_MAX_CHAS) {
  2567. sbridge_printk(KERN_ERR,
  2568. "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
  2569. dev, func);
  2570. continue;
  2571. }
  2572. WARN_ON(pvt->knl.pci_cha[devidx] != NULL);
  2573. pvt->knl.pci_cha[devidx] = pdev;
  2574. break;
  2575. case PCI_DEVICE_ID_INTEL_KNL_IMC_CHAN:
  2576. devidx = -1;
  2577. /*
  2578. * MC0 channels 0-2 are device 9 function 2-4,
  2579. * MC1 channels 3-5 are device 8 function 2-4.
  2580. */
  2581. if (dev == 9)
  2582. devidx = func-2;
  2583. else if (dev == 8)
  2584. devidx = 3 + (func-2);
  2585. if (devidx < 0 || devidx >= KNL_MAX_CHANNELS) {
  2586. sbridge_printk(KERN_ERR,
  2587. "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
  2588. dev, func);
  2589. continue;
  2590. }
  2591. WARN_ON(pvt->knl.pci_channel[devidx] != NULL);
  2592. pvt->knl.pci_channel[devidx] = pdev;
  2593. break;
  2594. case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM:
  2595. pvt->knl.pci_mc_info = pdev;
  2596. break;
  2597. case PCI_DEVICE_ID_INTEL_KNL_IMC_TA:
  2598. pvt->pci_ta = pdev;
  2599. break;
  2600. default:
  2601. sbridge_printk(KERN_ERR, "Unexpected device %d\n",
  2602. pdev->device);
  2603. break;
  2604. }
  2605. }
  2606. if (!pvt->knl.pci_mc0 || !pvt->knl.pci_mc1 ||
  2607. !pvt->pci_sad0 || !pvt->pci_sad1 ||
  2608. !pvt->pci_ta) {
  2609. goto enodev;
  2610. }
  2611. for (i = 0; i < KNL_MAX_CHANNELS; i++) {
  2612. if (!pvt->knl.pci_channel[i]) {
  2613. sbridge_printk(KERN_ERR, "Missing channel %d\n", i);
  2614. goto enodev;
  2615. }
  2616. }
  2617. for (i = 0; i < KNL_MAX_CHAS; i++) {
  2618. if (!pvt->knl.pci_cha[i]) {
  2619. sbridge_printk(KERN_ERR, "Missing CHA %d\n", i);
  2620. goto enodev;
  2621. }
  2622. }
  2623. return 0;
  2624. enodev:
  2625. sbridge_printk(KERN_ERR, "Some needed devices are missing\n");
  2626. return -ENODEV;
  2627. }
  2628. /****************************************************************************
  2629. Error check routines
  2630. ****************************************************************************/
  2631. /*
  2632. * While Sandy Bridge has error count registers, SMI BIOS read values from
  2633. * and resets the counters. So, they are not reliable for the OS to read
  2634. * from them. So, we have no option but to just trust on whatever MCE is
  2635. * telling us about the errors.
  2636. */
  2637. static void sbridge_mce_output_error(struct mem_ctl_info *mci,
  2638. const struct mce *m)
  2639. {
  2640. struct mem_ctl_info *new_mci;
  2641. struct sbridge_pvt *pvt = mci->pvt_info;
  2642. enum hw_event_mc_err_type tp_event;
  2643. bool ripv = GET_BITFIELD(m->mcgstatus, 0, 0);
  2644. bool overflow = GET_BITFIELD(m->status, 62, 62);
  2645. bool uncorrected_error = GET_BITFIELD(m->status, 61, 61);
  2646. bool recoverable;
  2647. u32 core_err_cnt = GET_BITFIELD(m->status, 38, 52);
  2648. u32 mscod = GET_BITFIELD(m->status, 16, 31);
  2649. u32 errcode = GET_BITFIELD(m->status, 0, 15);
  2650. u32 channel = GET_BITFIELD(m->status, 0, 3);
  2651. u32 optypenum = GET_BITFIELD(m->status, 4, 6);
  2652. /*
  2653. * Bits 5-0 of MCi_MISC give the least significant bit that is valid.
  2654. * A value 6 is for cache line aligned address, a value 12 is for page
  2655. * aligned address reported by patrol scrubber.
  2656. */
  2657. u32 lsb = GET_BITFIELD(m->misc, 0, 5);
  2658. char *optype, *area_type = "DRAM";
  2659. long channel_mask, first_channel;
  2660. u8 rank = 0xff, socket, ha;
  2661. int rc, dimm;
  2662. if (pvt->info.type != SANDY_BRIDGE)
  2663. recoverable = true;
  2664. else
  2665. recoverable = GET_BITFIELD(m->status, 56, 56);
  2666. if (uncorrected_error) {
  2667. core_err_cnt = 1;
  2668. if (ripv) {
  2669. tp_event = HW_EVENT_ERR_UNCORRECTED;
  2670. } else {
  2671. tp_event = HW_EVENT_ERR_FATAL;
  2672. }
  2673. } else {
  2674. tp_event = HW_EVENT_ERR_CORRECTED;
  2675. }
  2676. /*
  2677. * According with Table 15-9 of the Intel Architecture spec vol 3A,
  2678. * memory errors should fit in this mask:
  2679. * 000f 0000 1mmm cccc (binary)
  2680. * where:
  2681. * f = Correction Report Filtering Bit. If 1, subsequent errors
  2682. * won't be shown
  2683. * mmm = error type
  2684. * cccc = channel
  2685. * If the mask doesn't match, report an error to the parsing logic
  2686. */
  2687. switch (optypenum) {
  2688. case 0:
  2689. optype = "generic undef request error";
  2690. break;
  2691. case 1:
  2692. optype = "memory read error";
  2693. break;
  2694. case 2:
  2695. optype = "memory write error";
  2696. break;
  2697. case 3:
  2698. optype = "addr/cmd error";
  2699. break;
  2700. case 4:
  2701. optype = "memory scrubbing error";
  2702. break;
  2703. default:
  2704. optype = "reserved";
  2705. break;
  2706. }
  2707. if (pvt->info.type == KNIGHTS_LANDING) {
  2708. if (channel == 14) {
  2709. edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
  2710. overflow ? " OVERFLOW" : "",
  2711. (uncorrected_error && recoverable)
  2712. ? " recoverable" : "",
  2713. mscod, errcode,
  2714. m->bank);
  2715. } else {
  2716. char A = *("A");
  2717. /*
  2718. * Reported channel is in range 0-2, so we can't map it
  2719. * back to mc. To figure out mc we check machine check
  2720. * bank register that reported this error.
  2721. * bank15 means mc0 and bank16 means mc1.
  2722. */
  2723. channel = knl_channel_remap(m->bank == 16, channel);
  2724. channel_mask = 1 << channel;
  2725. snprintf(sb_msg, sizeof(sb_msg),
  2726. "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
  2727. overflow ? " OVERFLOW" : "",
  2728. (uncorrected_error && recoverable)
  2729. ? " recoverable" : " ",
  2730. mscod, errcode, channel, A + channel);
  2731. edac_mc_handle_error(tp_event, mci, core_err_cnt,
  2732. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  2733. channel, 0, -1,
  2734. optype, sb_msg);
  2735. }
  2736. return;
  2737. } else if (lsb < 12) {
  2738. rc = get_memory_error_data(mci, m->addr, &socket, &ha,
  2739. &channel_mask, &rank,
  2740. &area_type, sb_msg);
  2741. } else {
  2742. rc = get_memory_error_data_from_mce(mci, m, &socket, &ha,
  2743. &channel_mask, sb_msg);
  2744. }
  2745. if (rc < 0)
  2746. goto err_parsing;
  2747. new_mci = get_mci_for_node_id(socket, ha);
  2748. if (!new_mci) {
  2749. strscpy(sb_msg, "Error: socket got corrupted!");
  2750. goto err_parsing;
  2751. }
  2752. mci = new_mci;
  2753. pvt = mci->pvt_info;
  2754. first_channel = find_first_bit(&channel_mask, NUM_CHANNELS);
  2755. if (rank == 0xff)
  2756. dimm = -1;
  2757. else if (rank < 4)
  2758. dimm = 0;
  2759. else if (rank < 8)
  2760. dimm = 1;
  2761. else
  2762. dimm = 2;
  2763. /*
  2764. * FIXME: On some memory configurations (mirror, lockstep), the
  2765. * Memory Controller can't point the error to a single DIMM. The
  2766. * EDAC core should be handling the channel mask, in order to point
  2767. * to the group of dimm's where the error may be happening.
  2768. */
  2769. if (!pvt->is_lockstep && !pvt->is_cur_addr_mirrored && !pvt->is_close_pg)
  2770. channel = first_channel;
  2771. snprintf(sb_msg_full, sizeof(sb_msg_full),
  2772. "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d %s",
  2773. overflow ? " OVERFLOW" : "",
  2774. (uncorrected_error && recoverable) ? " recoverable" : "",
  2775. area_type,
  2776. mscod, errcode,
  2777. socket, ha,
  2778. channel_mask,
  2779. rank, sb_msg);
  2780. edac_dbg(0, "%s\n", sb_msg_full);
  2781. /* FIXME: need support for channel mask */
  2782. if (channel == CHANNEL_UNSPECIFIED)
  2783. channel = -1;
  2784. /* Call the helper to output message */
  2785. edac_mc_handle_error(tp_event, mci, core_err_cnt,
  2786. m->addr >> PAGE_SHIFT, m->addr & ~PAGE_MASK, 0,
  2787. channel, dimm, -1,
  2788. optype, sb_msg_full);
  2789. return;
  2790. err_parsing:
  2791. edac_mc_handle_error(tp_event, mci, core_err_cnt, 0, 0, 0,
  2792. -1, -1, -1,
  2793. sb_msg, "");
  2794. }
  2795. /*
  2796. * Check that logging is enabled and that this is the right type
  2797. * of error for us to handle.
  2798. */
  2799. static int sbridge_mce_check_error(struct notifier_block *nb, unsigned long val,
  2800. void *data)
  2801. {
  2802. struct mce *mce = (struct mce *)data;
  2803. struct mem_ctl_info *mci;
  2804. char *type;
  2805. if (mce->kflags & MCE_HANDLED_CEC)
  2806. return NOTIFY_DONE;
  2807. /*
  2808. * Just let mcelog handle it if the error is
  2809. * outside the memory controller. A memory error
  2810. * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
  2811. * bit 12 has an special meaning.
  2812. */
  2813. if ((mce->status & 0xefff) >> 7 != 1)
  2814. return NOTIFY_DONE;
  2815. /* Check ADDRV bit in STATUS */
  2816. if (!GET_BITFIELD(mce->status, 58, 58))
  2817. return NOTIFY_DONE;
  2818. /* Check MISCV bit in STATUS */
  2819. if (!GET_BITFIELD(mce->status, 59, 59))
  2820. return NOTIFY_DONE;
  2821. /* Check address type in MISC (physical address only) */
  2822. if (GET_BITFIELD(mce->misc, 6, 8) != 2)
  2823. return NOTIFY_DONE;
  2824. mci = get_mci_for_node_id(mce->socketid, IMC0);
  2825. if (!mci)
  2826. return NOTIFY_DONE;
  2827. if (mce->mcgstatus & MCG_STATUS_MCIP)
  2828. type = "Exception";
  2829. else
  2830. type = "Event";
  2831. sbridge_mc_printk(mci, KERN_DEBUG, "HANDLING MCE MEMORY ERROR\n");
  2832. sbridge_mc_printk(mci, KERN_DEBUG, "CPU %d: Machine Check %s: %Lx "
  2833. "Bank %d: %016Lx\n", mce->extcpu, type,
  2834. mce->mcgstatus, mce->bank, mce->status);
  2835. sbridge_mc_printk(mci, KERN_DEBUG, "TSC %llx ", mce->tsc);
  2836. sbridge_mc_printk(mci, KERN_DEBUG, "ADDR %llx ", mce->addr);
  2837. sbridge_mc_printk(mci, KERN_DEBUG, "MISC %llx ", mce->misc);
  2838. sbridge_mc_printk(mci, KERN_DEBUG, "PROCESSOR %u:%x TIME %llu SOCKET "
  2839. "%u APIC %x\n", mce->cpuvendor, mce->cpuid,
  2840. mce->time, mce->socketid, mce->apicid);
  2841. sbridge_mce_output_error(mci, mce);
  2842. /* Advice mcelog that the error were handled */
  2843. mce->kflags |= MCE_HANDLED_EDAC;
  2844. return NOTIFY_OK;
  2845. }
  2846. static struct notifier_block sbridge_mce_dec = {
  2847. .notifier_call = sbridge_mce_check_error,
  2848. .priority = MCE_PRIO_EDAC,
  2849. };
  2850. /****************************************************************************
  2851. EDAC register/unregister logic
  2852. ****************************************************************************/
  2853. static void sbridge_unregister_mci(struct sbridge_dev *sbridge_dev)
  2854. {
  2855. struct mem_ctl_info *mci = sbridge_dev->mci;
  2856. if (unlikely(!mci || !mci->pvt_info)) {
  2857. edac_dbg(0, "MC: dev = %p\n", &sbridge_dev->pdev[0]->dev);
  2858. sbridge_printk(KERN_ERR, "Couldn't find mci handler\n");
  2859. return;
  2860. }
  2861. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  2862. mci, &sbridge_dev->pdev[0]->dev);
  2863. /* Remove MC sysfs nodes */
  2864. edac_mc_del_mc(mci->pdev);
  2865. edac_dbg(1, "%s: free mci struct\n", mci->ctl_name);
  2866. kfree(mci->ctl_name);
  2867. edac_mc_free(mci);
  2868. sbridge_dev->mci = NULL;
  2869. }
  2870. static int sbridge_register_mci(struct sbridge_dev *sbridge_dev, enum type type)
  2871. {
  2872. struct mem_ctl_info *mci;
  2873. struct edac_mc_layer layers[2];
  2874. struct sbridge_pvt *pvt;
  2875. struct pci_dev *pdev = sbridge_dev->pdev[0];
  2876. int rc;
  2877. /* allocate a new MC control structure */
  2878. layers[0].type = EDAC_MC_LAYER_CHANNEL;
  2879. layers[0].size = type == KNIGHTS_LANDING ?
  2880. KNL_MAX_CHANNELS : NUM_CHANNELS;
  2881. layers[0].is_virt_csrow = false;
  2882. layers[1].type = EDAC_MC_LAYER_SLOT;
  2883. layers[1].size = type == KNIGHTS_LANDING ? 1 : MAX_DIMMS;
  2884. layers[1].is_virt_csrow = true;
  2885. mci = edac_mc_alloc(sbridge_dev->mc, ARRAY_SIZE(layers), layers,
  2886. sizeof(*pvt));
  2887. if (unlikely(!mci))
  2888. return -ENOMEM;
  2889. edac_dbg(0, "MC: mci = %p, dev = %p\n",
  2890. mci, &pdev->dev);
  2891. pvt = mci->pvt_info;
  2892. memset(pvt, 0, sizeof(*pvt));
  2893. /* Associate sbridge_dev and mci for future usage */
  2894. pvt->sbridge_dev = sbridge_dev;
  2895. sbridge_dev->mci = mci;
  2896. mci->mtype_cap = type == KNIGHTS_LANDING ?
  2897. MEM_FLAG_DDR4 : MEM_FLAG_DDR3;
  2898. mci->edac_ctl_cap = EDAC_FLAG_NONE;
  2899. mci->edac_cap = EDAC_FLAG_NONE;
  2900. mci->mod_name = EDAC_MOD_STR;
  2901. mci->dev_name = pci_name(pdev);
  2902. mci->ctl_page_to_phys = NULL;
  2903. pvt->info.type = type;
  2904. switch (type) {
  2905. case IVY_BRIDGE:
  2906. pvt->info.rankcfgr = IB_RANK_CFG_A;
  2907. pvt->info.get_tolm = ibridge_get_tolm;
  2908. pvt->info.get_tohm = ibridge_get_tohm;
  2909. pvt->info.dram_rule = ibridge_dram_rule;
  2910. pvt->info.get_memory_type = get_memory_type;
  2911. pvt->info.get_node_id = get_node_id;
  2912. pvt->info.get_ha = ibridge_get_ha;
  2913. pvt->info.rir_limit = rir_limit;
  2914. pvt->info.sad_limit = sad_limit;
  2915. pvt->info.interleave_mode = interleave_mode;
  2916. pvt->info.dram_attr = dram_attr;
  2917. pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
  2918. pvt->info.interleave_list = ibridge_interleave_list;
  2919. pvt->info.interleave_pkg = ibridge_interleave_pkg;
  2920. pvt->info.get_width = ibridge_get_width;
  2921. /* Store pci devices at mci for faster access */
  2922. rc = ibridge_mci_bind_devs(mci, sbridge_dev);
  2923. if (unlikely(rc < 0))
  2924. goto fail0;
  2925. get_source_id(mci);
  2926. mci->ctl_name = kasprintf(GFP_KERNEL, "Ivy Bridge SrcID#%d_Ha#%d",
  2927. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  2928. break;
  2929. case SANDY_BRIDGE:
  2930. pvt->info.rankcfgr = SB_RANK_CFG_A;
  2931. pvt->info.get_tolm = sbridge_get_tolm;
  2932. pvt->info.get_tohm = sbridge_get_tohm;
  2933. pvt->info.dram_rule = sbridge_dram_rule;
  2934. pvt->info.get_memory_type = get_memory_type;
  2935. pvt->info.get_node_id = get_node_id;
  2936. pvt->info.get_ha = sbridge_get_ha;
  2937. pvt->info.rir_limit = rir_limit;
  2938. pvt->info.sad_limit = sad_limit;
  2939. pvt->info.interleave_mode = interleave_mode;
  2940. pvt->info.dram_attr = dram_attr;
  2941. pvt->info.max_sad = ARRAY_SIZE(sbridge_dram_rule);
  2942. pvt->info.interleave_list = sbridge_interleave_list;
  2943. pvt->info.interleave_pkg = sbridge_interleave_pkg;
  2944. pvt->info.get_width = sbridge_get_width;
  2945. /* Store pci devices at mci for faster access */
  2946. rc = sbridge_mci_bind_devs(mci, sbridge_dev);
  2947. if (unlikely(rc < 0))
  2948. goto fail0;
  2949. get_source_id(mci);
  2950. mci->ctl_name = kasprintf(GFP_KERNEL, "Sandy Bridge SrcID#%d_Ha#%d",
  2951. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  2952. break;
  2953. case HASWELL:
  2954. /* rankcfgr isn't used */
  2955. pvt->info.get_tolm = haswell_get_tolm;
  2956. pvt->info.get_tohm = haswell_get_tohm;
  2957. pvt->info.dram_rule = ibridge_dram_rule;
  2958. pvt->info.get_memory_type = haswell_get_memory_type;
  2959. pvt->info.get_node_id = haswell_get_node_id;
  2960. pvt->info.get_ha = ibridge_get_ha;
  2961. pvt->info.rir_limit = haswell_rir_limit;
  2962. pvt->info.sad_limit = sad_limit;
  2963. pvt->info.interleave_mode = interleave_mode;
  2964. pvt->info.dram_attr = dram_attr;
  2965. pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
  2966. pvt->info.interleave_list = ibridge_interleave_list;
  2967. pvt->info.interleave_pkg = ibridge_interleave_pkg;
  2968. pvt->info.get_width = ibridge_get_width;
  2969. /* Store pci devices at mci for faster access */
  2970. rc = haswell_mci_bind_devs(mci, sbridge_dev);
  2971. if (unlikely(rc < 0))
  2972. goto fail0;
  2973. get_source_id(mci);
  2974. mci->ctl_name = kasprintf(GFP_KERNEL, "Haswell SrcID#%d_Ha#%d",
  2975. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  2976. break;
  2977. case BROADWELL:
  2978. /* rankcfgr isn't used */
  2979. pvt->info.get_tolm = haswell_get_tolm;
  2980. pvt->info.get_tohm = haswell_get_tohm;
  2981. pvt->info.dram_rule = ibridge_dram_rule;
  2982. pvt->info.get_memory_type = haswell_get_memory_type;
  2983. pvt->info.get_node_id = haswell_get_node_id;
  2984. pvt->info.get_ha = ibridge_get_ha;
  2985. pvt->info.rir_limit = haswell_rir_limit;
  2986. pvt->info.sad_limit = sad_limit;
  2987. pvt->info.interleave_mode = interleave_mode;
  2988. pvt->info.dram_attr = dram_attr;
  2989. pvt->info.max_sad = ARRAY_SIZE(ibridge_dram_rule);
  2990. pvt->info.interleave_list = ibridge_interleave_list;
  2991. pvt->info.interleave_pkg = ibridge_interleave_pkg;
  2992. pvt->info.get_width = broadwell_get_width;
  2993. /* Store pci devices at mci for faster access */
  2994. rc = broadwell_mci_bind_devs(mci, sbridge_dev);
  2995. if (unlikely(rc < 0))
  2996. goto fail0;
  2997. get_source_id(mci);
  2998. mci->ctl_name = kasprintf(GFP_KERNEL, "Broadwell SrcID#%d_Ha#%d",
  2999. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  3000. break;
  3001. case KNIGHTS_LANDING:
  3002. /* pvt->info.rankcfgr == ??? */
  3003. pvt->info.get_tolm = knl_get_tolm;
  3004. pvt->info.get_tohm = knl_get_tohm;
  3005. pvt->info.dram_rule = knl_dram_rule;
  3006. pvt->info.get_memory_type = knl_get_memory_type;
  3007. pvt->info.get_node_id = knl_get_node_id;
  3008. pvt->info.get_ha = knl_get_ha;
  3009. pvt->info.rir_limit = NULL;
  3010. pvt->info.sad_limit = knl_sad_limit;
  3011. pvt->info.interleave_mode = knl_interleave_mode;
  3012. pvt->info.dram_attr = dram_attr_knl;
  3013. pvt->info.max_sad = ARRAY_SIZE(knl_dram_rule);
  3014. pvt->info.interleave_list = knl_interleave_list;
  3015. pvt->info.interleave_pkg = ibridge_interleave_pkg;
  3016. pvt->info.get_width = knl_get_width;
  3017. rc = knl_mci_bind_devs(mci, sbridge_dev);
  3018. if (unlikely(rc < 0))
  3019. goto fail0;
  3020. get_source_id(mci);
  3021. mci->ctl_name = kasprintf(GFP_KERNEL, "Knights Landing SrcID#%d_Ha#%d",
  3022. pvt->sbridge_dev->source_id, pvt->sbridge_dev->dom);
  3023. break;
  3024. }
  3025. if (!mci->ctl_name) {
  3026. rc = -ENOMEM;
  3027. goto fail0;
  3028. }
  3029. /* Get dimm basic config and the memory layout */
  3030. rc = get_dimm_config(mci);
  3031. if (rc < 0) {
  3032. edac_dbg(0, "MC: failed to get_dimm_config()\n");
  3033. goto fail;
  3034. }
  3035. get_memory_layout(mci);
  3036. /* record ptr to the generic device */
  3037. mci->pdev = &pdev->dev;
  3038. /* add this new MC control structure to EDAC's list of MCs */
  3039. if (unlikely(edac_mc_add_mc(mci))) {
  3040. edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
  3041. rc = -EINVAL;
  3042. goto fail;
  3043. }
  3044. return 0;
  3045. fail:
  3046. kfree(mci->ctl_name);
  3047. fail0:
  3048. edac_mc_free(mci);
  3049. sbridge_dev->mci = NULL;
  3050. return rc;
  3051. }
  3052. static const struct x86_cpu_id sbridge_cpuids[] = {
  3053. X86_MATCH_VFM(INTEL_SANDYBRIDGE_X, &pci_dev_descr_sbridge_table),
  3054. X86_MATCH_VFM(INTEL_IVYBRIDGE_X, &pci_dev_descr_ibridge_table),
  3055. X86_MATCH_VFM(INTEL_HASWELL_X, &pci_dev_descr_haswell_table),
  3056. X86_MATCH_VFM(INTEL_BROADWELL_X, &pci_dev_descr_broadwell_table),
  3057. X86_MATCH_VFM(INTEL_BROADWELL_D, &pci_dev_descr_broadwell_table),
  3058. X86_MATCH_VFM(INTEL_XEON_PHI_KNL, &pci_dev_descr_knl_table),
  3059. X86_MATCH_VFM(INTEL_XEON_PHI_KNM, &pci_dev_descr_knl_table),
  3060. { }
  3061. };
  3062. MODULE_DEVICE_TABLE(x86cpu, sbridge_cpuids);
  3063. /*
  3064. * sbridge_probe Get all devices and register memory controllers
  3065. * present.
  3066. * return:
  3067. * 0 for FOUND a device
  3068. * < 0 for error code
  3069. */
  3070. static int sbridge_probe(const struct x86_cpu_id *id)
  3071. {
  3072. int rc;
  3073. u8 mc, num_mc = 0;
  3074. struct sbridge_dev *sbridge_dev;
  3075. struct pci_id_table *ptable = (struct pci_id_table *)id->driver_data;
  3076. /* get the pci devices we want to reserve for our use */
  3077. rc = sbridge_get_all_devices(&num_mc, ptable);
  3078. if (unlikely(rc < 0)) {
  3079. edac_dbg(0, "couldn't get all devices\n");
  3080. goto fail0;
  3081. }
  3082. mc = 0;
  3083. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list) {
  3084. edac_dbg(0, "Registering MC#%d (%d of %d)\n",
  3085. mc, mc + 1, num_mc);
  3086. sbridge_dev->mc = mc++;
  3087. rc = sbridge_register_mci(sbridge_dev, ptable->type);
  3088. if (unlikely(rc < 0))
  3089. goto fail1;
  3090. }
  3091. sbridge_printk(KERN_INFO, "%s\n", SBRIDGE_REVISION);
  3092. return 0;
  3093. fail1:
  3094. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  3095. sbridge_unregister_mci(sbridge_dev);
  3096. sbridge_put_all_devices();
  3097. fail0:
  3098. return rc;
  3099. }
  3100. /*
  3101. * sbridge_remove cleanup
  3102. *
  3103. */
  3104. static void sbridge_remove(void)
  3105. {
  3106. struct sbridge_dev *sbridge_dev;
  3107. edac_dbg(0, "\n");
  3108. list_for_each_entry(sbridge_dev, &sbridge_edac_list, list)
  3109. sbridge_unregister_mci(sbridge_dev);
  3110. /* Release PCI resources */
  3111. sbridge_put_all_devices();
  3112. }
  3113. /*
  3114. * sbridge_init Module entry function
  3115. * Try to initialize this module for its devices
  3116. */
  3117. static int __init sbridge_init(void)
  3118. {
  3119. const struct x86_cpu_id *id;
  3120. const char *owner;
  3121. int rc;
  3122. edac_dbg(2, "\n");
  3123. if (ghes_get_devices())
  3124. return -EBUSY;
  3125. owner = edac_get_owner();
  3126. if (owner && strncmp(owner, EDAC_MOD_STR, sizeof(EDAC_MOD_STR)))
  3127. return -EBUSY;
  3128. if (cpu_feature_enabled(X86_FEATURE_HYPERVISOR))
  3129. return -ENODEV;
  3130. id = x86_match_cpu(sbridge_cpuids);
  3131. if (!id)
  3132. return -ENODEV;
  3133. /* Ensure that the OPSTATE is set correctly for POLL or NMI */
  3134. opstate_init();
  3135. rc = sbridge_probe(id);
  3136. if (rc >= 0) {
  3137. mce_register_decode_chain(&sbridge_mce_dec);
  3138. return 0;
  3139. }
  3140. sbridge_printk(KERN_ERR, "Failed to register device with error %d.\n",
  3141. rc);
  3142. return rc;
  3143. }
  3144. /*
  3145. * sbridge_exit() Module exit function
  3146. * Unregister the driver
  3147. */
  3148. static void __exit sbridge_exit(void)
  3149. {
  3150. edac_dbg(2, "\n");
  3151. sbridge_remove();
  3152. mce_unregister_decode_chain(&sbridge_mce_dec);
  3153. }
  3154. module_init(sbridge_init);
  3155. module_exit(sbridge_exit);
  3156. module_param(edac_op_state, int, 0444);
  3157. MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
  3158. MODULE_LICENSE("GPL");
  3159. MODULE_AUTHOR("Mauro Carvalho Chehab");
  3160. MODULE_AUTHOR("Red Hat Inc. (https://www.redhat.com)");
  3161. MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "
  3162. SBRIDGE_REVISION);