sca3300.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Murata SCA3300 3-axis industrial accelerometer
  4. *
  5. * Copyright (c) 2021 Vaisala Oyj. All rights reserved.
  6. */
  7. #include <linux/bitops.h>
  8. #include <linux/crc8.h>
  9. #include <linux/delay.h>
  10. #include <linux/kernel.h>
  11. #include <linux/module.h>
  12. #include <linux/spi/spi.h>
  13. #include <linux/unaligned.h>
  14. #include <linux/iio/buffer.h>
  15. #include <linux/iio/iio.h>
  16. #include <linux/iio/sysfs.h>
  17. #include <linux/iio/trigger_consumer.h>
  18. #include <linux/iio/triggered_buffer.h>
  19. #define SCA3300_ALIAS "sca3300"
  20. #define SCA3300_CRC8_POLYNOMIAL 0x1d
  21. /* Device mode register */
  22. #define SCA3300_REG_MODE 0xd
  23. #define SCA3300_MODE_SW_RESET 0x20
  24. /* Last register in map */
  25. #define SCA3300_REG_SELBANK 0x1f
  26. /* Device status and mask */
  27. #define SCA3300_REG_STATUS 0x6
  28. #define SCA3300_STATUS_MASK GENMASK(8, 0)
  29. /* Device ID */
  30. #define SCA3300_REG_WHOAMI 0x10
  31. #define SCA3300_WHOAMI_ID 0x51
  32. #define SCL3300_WHOAMI_ID 0xC1
  33. /* Device return status and mask */
  34. #define SCA3300_VALUE_RS_ERROR 0x3
  35. #define SCA3300_MASK_RS_STATUS GENMASK(1, 0)
  36. #define SCL3300_REG_ANG_CTRL 0x0C
  37. #define SCL3300_ANG_ENABLE 0x1F
  38. enum sca3300_scan_indexes {
  39. SCA3300_ACC_X = 0,
  40. SCA3300_ACC_Y,
  41. SCA3300_ACC_Z,
  42. SCA3300_TEMP,
  43. SCA3300_INCLI_X,
  44. SCA3300_INCLI_Y,
  45. SCA3300_INCLI_Z,
  46. SCA3300_SCAN_MAX
  47. };
  48. /*
  49. * Buffer size max case:
  50. * Three accel channels, two bytes per channel.
  51. * Temperature channel, two bytes.
  52. * Three incli channels, two bytes per channel.
  53. * Timestamp channel, eight bytes.
  54. */
  55. #define SCA3300_MAX_BUFFER_SIZE (ALIGN(sizeof(s16) * SCA3300_SCAN_MAX, sizeof(s64)) + sizeof(s64))
  56. #define SCA3300_ACCEL_CHANNEL(index, reg, axis) { \
  57. .type = IIO_ACCEL, \
  58. .address = reg, \
  59. .modified = 1, \
  60. .channel2 = IIO_MOD_##axis, \
  61. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  62. .info_mask_shared_by_type = \
  63. BIT(IIO_CHAN_INFO_SCALE) | \
  64. BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
  65. .info_mask_shared_by_type_available = \
  66. BIT(IIO_CHAN_INFO_SCALE) | \
  67. BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \
  68. .scan_index = index, \
  69. .scan_type = { \
  70. .sign = 's', \
  71. .realbits = 16, \
  72. .storagebits = 16, \
  73. .endianness = IIO_CPU, \
  74. }, \
  75. }
  76. #define SCA3300_INCLI_CHANNEL(index, reg, axis) { \
  77. .type = IIO_INCLI, \
  78. .address = reg, \
  79. .modified = 1, \
  80. .channel2 = IIO_MOD_##axis, \
  81. .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
  82. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  83. .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \
  84. .scan_index = index, \
  85. .scan_type = { \
  86. .sign = 's', \
  87. .realbits = 16, \
  88. .storagebits = 16, \
  89. .endianness = IIO_CPU, \
  90. }, \
  91. }
  92. #define SCA3300_TEMP_CHANNEL(index, reg) { \
  93. .type = IIO_TEMP, \
  94. .address = reg, \
  95. .scan_index = index, \
  96. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
  97. .scan_type = { \
  98. .sign = 's', \
  99. .realbits = 16, \
  100. .storagebits = 16, \
  101. .endianness = IIO_CPU, \
  102. }, \
  103. }
  104. static const struct iio_chan_spec sca3300_channels[] = {
  105. SCA3300_ACCEL_CHANNEL(SCA3300_ACC_X, 0x1, X),
  106. SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Y, 0x2, Y),
  107. SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Z, 0x3, Z),
  108. SCA3300_TEMP_CHANNEL(SCA3300_TEMP, 0x05),
  109. IIO_CHAN_SOFT_TIMESTAMP(4),
  110. };
  111. static const int sca3300_lp_freq[] = {70, 10};
  112. static const int sca3300_lp_freq_map[] = {0, 0, 0, 1};
  113. static const int scl3300_lp_freq[] = {40, 70, 10};
  114. static const int scl3300_lp_freq_map[] = {0, 1, 2};
  115. static const int sca3300_accel_scale[][2] = {{0, 370}, {0, 741}, {0, 185}};
  116. static const int sca3300_accel_scale_map[] = {0, 1, 2, 2};
  117. static const int scl3300_accel_scale[][2] = {{0, 167}, {0, 333}, {0, 83}};
  118. static const int scl3300_accel_scale_map[] = {0, 1, 2};
  119. static const int scl3300_incli_scale[][2] = {{0, 5495}};
  120. static const int scl3300_incli_scale_map[] = {0, 0, 0};
  121. static const int sca3300_avail_modes_map[] = {0, 1, 2, 3};
  122. static const int scl3300_avail_modes_map[] = {0, 1, 3};
  123. static const struct iio_chan_spec scl3300_channels[] = {
  124. SCA3300_ACCEL_CHANNEL(SCA3300_ACC_X, 0x1, X),
  125. SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Y, 0x2, Y),
  126. SCA3300_ACCEL_CHANNEL(SCA3300_ACC_Z, 0x3, Z),
  127. SCA3300_TEMP_CHANNEL(SCA3300_TEMP, 0x05),
  128. SCA3300_INCLI_CHANNEL(SCA3300_INCLI_X, 0x09, X),
  129. SCA3300_INCLI_CHANNEL(SCA3300_INCLI_Y, 0x0A, Y),
  130. SCA3300_INCLI_CHANNEL(SCA3300_INCLI_Z, 0x0B, Z),
  131. IIO_CHAN_SOFT_TIMESTAMP(7),
  132. };
  133. static const unsigned long sca3300_scan_masks[] = {
  134. BIT(SCA3300_ACC_X) | BIT(SCA3300_ACC_Y) | BIT(SCA3300_ACC_Z) |
  135. BIT(SCA3300_TEMP),
  136. 0
  137. };
  138. static const unsigned long scl3300_scan_masks[] = {
  139. BIT(SCA3300_ACC_X) | BIT(SCA3300_ACC_Y) | BIT(SCA3300_ACC_Z) |
  140. BIT(SCA3300_TEMP) |
  141. BIT(SCA3300_INCLI_X) | BIT(SCA3300_INCLI_Y) | BIT(SCA3300_INCLI_Z),
  142. 0
  143. };
  144. struct sca3300_chip_info {
  145. const char *name;
  146. const unsigned long *scan_masks;
  147. const struct iio_chan_spec *channels;
  148. u8 num_channels;
  149. u8 num_accel_scales;
  150. const int (*accel_scale)[2];
  151. const int *accel_scale_map;
  152. const int (*incli_scale)[2];
  153. const int *incli_scale_map;
  154. u8 num_incli_scales;
  155. u8 num_freqs;
  156. const int *freq_table;
  157. const int *freq_map;
  158. const int *avail_modes_table;
  159. u8 num_avail_modes;
  160. u8 chip_id;
  161. bool angle_supported;
  162. };
  163. /**
  164. * struct sca3300_data - device data
  165. * @spi: SPI device structure
  166. * @lock: Data buffer lock
  167. * @chip: Sensor chip specific information
  168. * @buffer: Triggered buffer:
  169. * -SCA3300: 4 channel 16-bit data + 64-bit timestamp
  170. * -SCL3300: 7 channel 16-bit data + 64-bit timestamp
  171. * @txbuf: Transmit buffer
  172. * @rxbuf: Receive buffer
  173. */
  174. struct sca3300_data {
  175. struct spi_device *spi;
  176. struct mutex lock;
  177. const struct sca3300_chip_info *chip;
  178. u8 buffer[SCA3300_MAX_BUFFER_SIZE] __aligned(sizeof(s64));
  179. u8 txbuf[4] __aligned(IIO_DMA_MINALIGN);
  180. u8 rxbuf[4];
  181. };
  182. static const struct sca3300_chip_info sca3300_chip_tbl[] = {
  183. {
  184. .name = "sca3300",
  185. .scan_masks = sca3300_scan_masks,
  186. .channels = sca3300_channels,
  187. .num_channels = ARRAY_SIZE(sca3300_channels),
  188. .num_accel_scales = ARRAY_SIZE(sca3300_accel_scale)*2,
  189. .accel_scale = sca3300_accel_scale,
  190. .accel_scale_map = sca3300_accel_scale_map,
  191. .num_freqs = ARRAY_SIZE(sca3300_lp_freq),
  192. .freq_table = sca3300_lp_freq,
  193. .freq_map = sca3300_lp_freq_map,
  194. .avail_modes_table = sca3300_avail_modes_map,
  195. .num_avail_modes = 4,
  196. .chip_id = SCA3300_WHOAMI_ID,
  197. .angle_supported = false,
  198. },
  199. {
  200. .name = "scl3300",
  201. .scan_masks = scl3300_scan_masks,
  202. .channels = scl3300_channels,
  203. .num_channels = ARRAY_SIZE(scl3300_channels),
  204. .num_accel_scales = ARRAY_SIZE(scl3300_accel_scale)*2,
  205. .accel_scale = scl3300_accel_scale,
  206. .accel_scale_map = scl3300_accel_scale_map,
  207. .incli_scale = scl3300_incli_scale,
  208. .incli_scale_map = scl3300_incli_scale_map,
  209. .num_incli_scales = ARRAY_SIZE(scl3300_incli_scale)*2,
  210. .num_freqs = ARRAY_SIZE(scl3300_lp_freq),
  211. .freq_table = scl3300_lp_freq,
  212. .freq_map = scl3300_lp_freq_map,
  213. .avail_modes_table = scl3300_avail_modes_map,
  214. .num_avail_modes = 3,
  215. .chip_id = SCL3300_WHOAMI_ID,
  216. .angle_supported = true,
  217. },
  218. };
  219. DECLARE_CRC8_TABLE(sca3300_crc_table);
  220. static int sca3300_transfer(struct sca3300_data *sca_data, int *val)
  221. {
  222. /* Consecutive requests min. 10 us delay (Datasheet section 5.1.2) */
  223. struct spi_delay delay = { .value = 10, .unit = SPI_DELAY_UNIT_USECS };
  224. int32_t ret;
  225. int rs;
  226. u8 crc;
  227. struct spi_transfer xfers[2] = {
  228. {
  229. .tx_buf = sca_data->txbuf,
  230. .len = ARRAY_SIZE(sca_data->txbuf),
  231. .delay = delay,
  232. .cs_change = 1,
  233. },
  234. {
  235. .rx_buf = sca_data->rxbuf,
  236. .len = ARRAY_SIZE(sca_data->rxbuf),
  237. .delay = delay,
  238. }
  239. };
  240. /* inverted crc value as described in device data sheet */
  241. crc = ~crc8(sca3300_crc_table, &sca_data->txbuf[0], 3, CRC8_INIT_VALUE);
  242. sca_data->txbuf[3] = crc;
  243. ret = spi_sync_transfer(sca_data->spi, xfers, ARRAY_SIZE(xfers));
  244. if (ret) {
  245. dev_err(&sca_data->spi->dev,
  246. "transfer error, error: %d\n", ret);
  247. return -EIO;
  248. }
  249. crc = ~crc8(sca3300_crc_table, &sca_data->rxbuf[0], 3, CRC8_INIT_VALUE);
  250. if (sca_data->rxbuf[3] != crc) {
  251. dev_err(&sca_data->spi->dev, "CRC checksum mismatch");
  252. return -EIO;
  253. }
  254. /* get return status */
  255. rs = sca_data->rxbuf[0] & SCA3300_MASK_RS_STATUS;
  256. if (rs == SCA3300_VALUE_RS_ERROR)
  257. ret = -EINVAL;
  258. *val = sign_extend32(get_unaligned_be16(&sca_data->rxbuf[1]), 15);
  259. return ret;
  260. }
  261. static int sca3300_error_handler(struct sca3300_data *sca_data)
  262. {
  263. int ret;
  264. int val;
  265. mutex_lock(&sca_data->lock);
  266. sca_data->txbuf[0] = SCA3300_REG_STATUS << 2;
  267. ret = sca3300_transfer(sca_data, &val);
  268. mutex_unlock(&sca_data->lock);
  269. /*
  270. * Return status error is cleared after reading status register once,
  271. * expect EINVAL here.
  272. */
  273. if (ret != -EINVAL) {
  274. dev_err(&sca_data->spi->dev,
  275. "error reading device status: %d\n", ret);
  276. return ret;
  277. }
  278. dev_err(&sca_data->spi->dev, "device status: 0x%lx\n",
  279. val & SCA3300_STATUS_MASK);
  280. return 0;
  281. }
  282. static int sca3300_read_reg(struct sca3300_data *sca_data, u8 reg, int *val)
  283. {
  284. int ret;
  285. mutex_lock(&sca_data->lock);
  286. sca_data->txbuf[0] = reg << 2;
  287. ret = sca3300_transfer(sca_data, val);
  288. mutex_unlock(&sca_data->lock);
  289. if (ret != -EINVAL)
  290. return ret;
  291. return sca3300_error_handler(sca_data);
  292. }
  293. static int sca3300_write_reg(struct sca3300_data *sca_data, u8 reg, int val)
  294. {
  295. int reg_val = 0;
  296. int ret;
  297. mutex_lock(&sca_data->lock);
  298. /* BIT(7) for write operation */
  299. sca_data->txbuf[0] = BIT(7) | (reg << 2);
  300. put_unaligned_be16(val, &sca_data->txbuf[1]);
  301. ret = sca3300_transfer(sca_data, &reg_val);
  302. mutex_unlock(&sca_data->lock);
  303. if (ret != -EINVAL)
  304. return ret;
  305. return sca3300_error_handler(sca_data);
  306. }
  307. static int sca3300_set_op_mode(struct sca3300_data *sca_data, int index)
  308. {
  309. if ((index < 0) || (index >= sca_data->chip->num_avail_modes))
  310. return -EINVAL;
  311. return sca3300_write_reg(sca_data, SCA3300_REG_MODE,
  312. sca_data->chip->avail_modes_table[index]);
  313. }
  314. static int sca3300_get_op_mode(struct sca3300_data *sca_data, int *index)
  315. {
  316. int reg_val;
  317. int ret;
  318. int i;
  319. ret = sca3300_read_reg(sca_data, SCA3300_REG_MODE, &reg_val);
  320. if (ret)
  321. return ret;
  322. for (i = 0; i < sca_data->chip->num_avail_modes; i++) {
  323. if (sca_data->chip->avail_modes_table[i] == reg_val)
  324. break;
  325. }
  326. if (i == sca_data->chip->num_avail_modes)
  327. return -EINVAL;
  328. *index = i;
  329. return 0;
  330. }
  331. static int sca3300_set_frequency(struct sca3300_data *data, int val)
  332. {
  333. const struct sca3300_chip_info *chip = data->chip;
  334. unsigned int index;
  335. int *opmode_scale;
  336. int *new_scale;
  337. unsigned int i;
  338. if (sca3300_get_op_mode(data, &index))
  339. return -EINVAL;
  340. /*
  341. * Find a mode in which the requested sampling frequency is available
  342. * and the scaling currently set is retained.
  343. */
  344. opmode_scale = (int *)chip->accel_scale[chip->accel_scale_map[index]];
  345. for (i = 0; i < chip->num_avail_modes; i++) {
  346. new_scale = (int *)chip->accel_scale[chip->accel_scale_map[i]];
  347. if ((val == chip->freq_table[chip->freq_map[i]]) &&
  348. (opmode_scale[1] == new_scale[1]) &&
  349. (opmode_scale[0] == new_scale[0]))
  350. break;
  351. }
  352. if (i == chip->num_avail_modes)
  353. return -EINVAL;
  354. return sca3300_set_op_mode(data, i);
  355. }
  356. static int sca3300_write_raw(struct iio_dev *indio_dev,
  357. struct iio_chan_spec const *chan,
  358. int val, int val2, long mask)
  359. {
  360. struct sca3300_data *data = iio_priv(indio_dev);
  361. int index;
  362. int i;
  363. switch (mask) {
  364. case IIO_CHAN_INFO_SCALE:
  365. if (chan->type != IIO_ACCEL)
  366. return -EINVAL;
  367. /*
  368. * Letting scale take priority over sampling frequency.
  369. * That makes sense given we can only ever end up increasing
  370. * the sampling frequency which is unlikely to be a problem.
  371. */
  372. for (i = 0; i < data->chip->num_avail_modes; i++) {
  373. index = data->chip->accel_scale_map[i];
  374. if ((val == data->chip->accel_scale[index][0]) &&
  375. (val2 == data->chip->accel_scale[index][1]))
  376. return sca3300_set_op_mode(data, i);
  377. }
  378. return -EINVAL;
  379. case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
  380. return sca3300_set_frequency(data, val);
  381. default:
  382. return -EINVAL;
  383. }
  384. }
  385. static int sca3300_read_raw(struct iio_dev *indio_dev,
  386. struct iio_chan_spec const *chan,
  387. int *val, int *val2, long mask)
  388. {
  389. struct sca3300_data *data = iio_priv(indio_dev);
  390. int index;
  391. int ret;
  392. switch (mask) {
  393. case IIO_CHAN_INFO_RAW:
  394. ret = sca3300_read_reg(data, chan->address, val);
  395. if (ret)
  396. return ret;
  397. return IIO_VAL_INT;
  398. case IIO_CHAN_INFO_SCALE:
  399. ret = sca3300_get_op_mode(data, &index);
  400. if (ret)
  401. return ret;
  402. switch (chan->type) {
  403. case IIO_INCLI:
  404. index = data->chip->incli_scale_map[index];
  405. *val = data->chip->incli_scale[index][0];
  406. *val2 = data->chip->incli_scale[index][1];
  407. return IIO_VAL_INT_PLUS_MICRO;
  408. case IIO_ACCEL:
  409. index = data->chip->accel_scale_map[index];
  410. *val = data->chip->accel_scale[index][0];
  411. *val2 = data->chip->accel_scale[index][1];
  412. return IIO_VAL_INT_PLUS_MICRO;
  413. default:
  414. return -EINVAL;
  415. }
  416. case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
  417. ret = sca3300_get_op_mode(data, &index);
  418. if (ret)
  419. return ret;
  420. index = data->chip->freq_map[index];
  421. *val = data->chip->freq_table[index];
  422. return IIO_VAL_INT;
  423. default:
  424. return -EINVAL;
  425. }
  426. }
  427. static irqreturn_t sca3300_trigger_handler(int irq, void *p)
  428. {
  429. struct iio_poll_func *pf = p;
  430. struct iio_dev *indio_dev = pf->indio_dev;
  431. struct sca3300_data *data = iio_priv(indio_dev);
  432. int bit, ret, val, i = 0;
  433. s16 *channels = (s16 *)data->buffer;
  434. iio_for_each_active_channel(indio_dev, bit) {
  435. ret = sca3300_read_reg(data, indio_dev->channels[bit].address, &val);
  436. if (ret) {
  437. dev_err_ratelimited(&data->spi->dev,
  438. "failed to read register, error: %d\n", ret);
  439. /* handled, but bailing out due to errors */
  440. goto out;
  441. }
  442. channels[i++] = val;
  443. }
  444. iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
  445. iio_get_time_ns(indio_dev));
  446. out:
  447. iio_trigger_notify_done(indio_dev->trig);
  448. return IRQ_HANDLED;
  449. }
  450. /*
  451. * sca3300_init - Device init sequence. See datasheet rev 2 section
  452. * 4.2 Start-Up Sequence for details.
  453. */
  454. static int sca3300_init(struct sca3300_data *sca_data,
  455. struct iio_dev *indio_dev)
  456. {
  457. int value = 0;
  458. int ret;
  459. int i;
  460. ret = sca3300_write_reg(sca_data, SCA3300_REG_MODE,
  461. SCA3300_MODE_SW_RESET);
  462. if (ret)
  463. return ret;
  464. /*
  465. * Wait 1ms after SW-reset command.
  466. * Wait for the settling of signal paths,
  467. * 15ms for SCA3300 and 25ms for SCL3300,
  468. */
  469. usleep_range(26e3, 50e3);
  470. ret = sca3300_read_reg(sca_data, SCA3300_REG_WHOAMI, &value);
  471. if (ret)
  472. return ret;
  473. for (i = 0; i < ARRAY_SIZE(sca3300_chip_tbl); i++) {
  474. if (sca3300_chip_tbl[i].chip_id == value)
  475. break;
  476. }
  477. if (i == ARRAY_SIZE(sca3300_chip_tbl)) {
  478. dev_err(&sca_data->spi->dev, "unknown chip id %x\n", value);
  479. return -ENODEV;
  480. }
  481. sca_data->chip = &sca3300_chip_tbl[i];
  482. if (sca_data->chip->angle_supported) {
  483. ret = sca3300_write_reg(sca_data, SCL3300_REG_ANG_CTRL,
  484. SCL3300_ANG_ENABLE);
  485. if (ret)
  486. return ret;
  487. }
  488. return 0;
  489. }
  490. static int sca3300_debugfs_reg_access(struct iio_dev *indio_dev,
  491. unsigned int reg, unsigned int writeval,
  492. unsigned int *readval)
  493. {
  494. struct sca3300_data *data = iio_priv(indio_dev);
  495. int value;
  496. int ret;
  497. if (reg > SCA3300_REG_SELBANK)
  498. return -EINVAL;
  499. if (!readval)
  500. return sca3300_write_reg(data, reg, writeval);
  501. ret = sca3300_read_reg(data, reg, &value);
  502. if (ret)
  503. return ret;
  504. *readval = value;
  505. return 0;
  506. }
  507. static int sca3300_read_avail(struct iio_dev *indio_dev,
  508. struct iio_chan_spec const *chan,
  509. const int **vals, int *type, int *length,
  510. long mask)
  511. {
  512. struct sca3300_data *data = iio_priv(indio_dev);
  513. switch (mask) {
  514. case IIO_CHAN_INFO_SCALE:
  515. switch (chan->type) {
  516. case IIO_INCLI:
  517. *vals = (const int *)data->chip->incli_scale;
  518. *length = data->chip->num_incli_scales;
  519. *type = IIO_VAL_INT_PLUS_MICRO;
  520. return IIO_AVAIL_LIST;
  521. case IIO_ACCEL:
  522. *vals = (const int *)data->chip->accel_scale;
  523. *length = data->chip->num_accel_scales;
  524. *type = IIO_VAL_INT_PLUS_MICRO;
  525. return IIO_AVAIL_LIST;
  526. default:
  527. return -EINVAL;
  528. }
  529. case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY:
  530. *vals = (const int *)data->chip->freq_table;
  531. *length = data->chip->num_freqs;
  532. *type = IIO_VAL_INT;
  533. return IIO_AVAIL_LIST;
  534. default:
  535. return -EINVAL;
  536. }
  537. }
  538. static const struct iio_info sca3300_info = {
  539. .read_raw = sca3300_read_raw,
  540. .write_raw = sca3300_write_raw,
  541. .debugfs_reg_access = &sca3300_debugfs_reg_access,
  542. .read_avail = sca3300_read_avail,
  543. };
  544. static int sca3300_probe(struct spi_device *spi)
  545. {
  546. struct sca3300_data *sca_data;
  547. struct iio_dev *indio_dev;
  548. int ret;
  549. indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*sca_data));
  550. if (!indio_dev)
  551. return -ENOMEM;
  552. sca_data = iio_priv(indio_dev);
  553. mutex_init(&sca_data->lock);
  554. sca_data->spi = spi;
  555. crc8_populate_msb(sca3300_crc_table, SCA3300_CRC8_POLYNOMIAL);
  556. indio_dev->info = &sca3300_info;
  557. ret = sca3300_init(sca_data, indio_dev);
  558. if (ret) {
  559. dev_err(&spi->dev, "failed to init device, error: %d\n", ret);
  560. return ret;
  561. }
  562. indio_dev->name = sca_data->chip->name;
  563. indio_dev->modes = INDIO_DIRECT_MODE;
  564. indio_dev->channels = sca_data->chip->channels;
  565. indio_dev->num_channels = sca_data->chip->num_channels;
  566. indio_dev->available_scan_masks = sca_data->chip->scan_masks;
  567. ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
  568. iio_pollfunc_store_time,
  569. sca3300_trigger_handler, NULL);
  570. if (ret) {
  571. dev_err(&spi->dev,
  572. "iio triggered buffer setup failed, error: %d\n", ret);
  573. return ret;
  574. }
  575. ret = devm_iio_device_register(&spi->dev, indio_dev);
  576. if (ret) {
  577. dev_err(&spi->dev, "iio device register failed, error: %d\n",
  578. ret);
  579. }
  580. return ret;
  581. }
  582. static const struct of_device_id sca3300_dt_ids[] = {
  583. { .compatible = "murata,sca3300"},
  584. { .compatible = "murata,scl3300"},
  585. {}
  586. };
  587. MODULE_DEVICE_TABLE(of, sca3300_dt_ids);
  588. static const struct spi_device_id sca3300_ids[] = {
  589. { "sca3300" },
  590. { "scl3300" },
  591. {}
  592. };
  593. MODULE_DEVICE_TABLE(spi, sca3300_ids);
  594. static struct spi_driver sca3300_driver = {
  595. .driver = {
  596. .name = SCA3300_ALIAS,
  597. .of_match_table = sca3300_dt_ids,
  598. },
  599. .probe = sca3300_probe,
  600. .id_table = sca3300_ids,
  601. };
  602. module_spi_driver(sca3300_driver);
  603. MODULE_AUTHOR("Tomas Melin <tomas.melin@vaisala.com>");
  604. MODULE_DESCRIPTION("Murata SCA3300 SPI Accelerometer");
  605. MODULE_LICENSE("GPL v2");