cc10001_adc.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2014-2015 Imagination Technologies Ltd.
  4. */
  5. #include <linux/clk.h>
  6. #include <linux/delay.h>
  7. #include <linux/err.h>
  8. #include <linux/kernel.h>
  9. #include <linux/module.h>
  10. #include <linux/of.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/regulator/consumer.h>
  13. #include <linux/slab.h>
  14. #include <linux/iio/buffer.h>
  15. #include <linux/iio/iio.h>
  16. #include <linux/iio/sysfs.h>
  17. #include <linux/iio/trigger.h>
  18. #include <linux/iio/trigger_consumer.h>
  19. #include <linux/iio/triggered_buffer.h>
  20. /* Registers */
  21. #define CC10001_ADC_CONFIG 0x00
  22. #define CC10001_ADC_START_CONV BIT(4)
  23. #define CC10001_ADC_MODE_SINGLE_CONV BIT(5)
  24. #define CC10001_ADC_DDATA_OUT 0x04
  25. #define CC10001_ADC_EOC 0x08
  26. #define CC10001_ADC_EOC_SET BIT(0)
  27. #define CC10001_ADC_CHSEL_SAMPLED 0x0c
  28. #define CC10001_ADC_POWER_DOWN 0x10
  29. #define CC10001_ADC_POWER_DOWN_SET BIT(0)
  30. #define CC10001_ADC_DEBUG 0x14
  31. #define CC10001_ADC_DATA_COUNT 0x20
  32. #define CC10001_ADC_DATA_MASK GENMASK(9, 0)
  33. #define CC10001_ADC_NUM_CHANNELS 8
  34. #define CC10001_ADC_CH_MASK GENMASK(2, 0)
  35. #define CC10001_INVALID_SAMPLED 0xffff
  36. #define CC10001_MAX_POLL_COUNT 20
  37. /*
  38. * As per device specification, wait six clock cycles after power-up to
  39. * activate START. Since adding two more clock cycles delay does not
  40. * impact the performance too much, we are adding two additional cycles delay
  41. * intentionally here.
  42. */
  43. #define CC10001_WAIT_CYCLES 8
  44. struct cc10001_adc_device {
  45. void __iomem *reg_base;
  46. struct clk *adc_clk;
  47. struct regulator *reg;
  48. u16 *buf;
  49. bool shared;
  50. struct mutex lock;
  51. unsigned int start_delay_ns;
  52. unsigned int eoc_delay_ns;
  53. };
  54. static inline void cc10001_adc_write_reg(struct cc10001_adc_device *adc_dev,
  55. u32 reg, u32 val)
  56. {
  57. writel(val, adc_dev->reg_base + reg);
  58. }
  59. static inline u32 cc10001_adc_read_reg(struct cc10001_adc_device *adc_dev,
  60. u32 reg)
  61. {
  62. return readl(adc_dev->reg_base + reg);
  63. }
  64. static void cc10001_adc_power_up(struct cc10001_adc_device *adc_dev)
  65. {
  66. cc10001_adc_write_reg(adc_dev, CC10001_ADC_POWER_DOWN, 0);
  67. ndelay(adc_dev->start_delay_ns);
  68. }
  69. static void cc10001_adc_power_down(struct cc10001_adc_device *adc_dev)
  70. {
  71. cc10001_adc_write_reg(adc_dev, CC10001_ADC_POWER_DOWN,
  72. CC10001_ADC_POWER_DOWN_SET);
  73. }
  74. static void cc10001_adc_start(struct cc10001_adc_device *adc_dev,
  75. unsigned int channel)
  76. {
  77. u32 val;
  78. /* Channel selection and mode of operation */
  79. val = (channel & CC10001_ADC_CH_MASK) | CC10001_ADC_MODE_SINGLE_CONV;
  80. cc10001_adc_write_reg(adc_dev, CC10001_ADC_CONFIG, val);
  81. udelay(1);
  82. val = cc10001_adc_read_reg(adc_dev, CC10001_ADC_CONFIG);
  83. val = val | CC10001_ADC_START_CONV;
  84. cc10001_adc_write_reg(adc_dev, CC10001_ADC_CONFIG, val);
  85. }
  86. static u16 cc10001_adc_poll_done(struct iio_dev *indio_dev,
  87. unsigned int channel,
  88. unsigned int delay)
  89. {
  90. struct cc10001_adc_device *adc_dev = iio_priv(indio_dev);
  91. unsigned int poll_count = 0;
  92. while (!(cc10001_adc_read_reg(adc_dev, CC10001_ADC_EOC) &
  93. CC10001_ADC_EOC_SET)) {
  94. ndelay(delay);
  95. if (poll_count++ == CC10001_MAX_POLL_COUNT)
  96. return CC10001_INVALID_SAMPLED;
  97. }
  98. poll_count = 0;
  99. while ((cc10001_adc_read_reg(adc_dev, CC10001_ADC_CHSEL_SAMPLED) &
  100. CC10001_ADC_CH_MASK) != channel) {
  101. ndelay(delay);
  102. if (poll_count++ == CC10001_MAX_POLL_COUNT)
  103. return CC10001_INVALID_SAMPLED;
  104. }
  105. /* Read the 10 bit output register */
  106. return cc10001_adc_read_reg(adc_dev, CC10001_ADC_DDATA_OUT) &
  107. CC10001_ADC_DATA_MASK;
  108. }
  109. static irqreturn_t cc10001_adc_trigger_h(int irq, void *p)
  110. {
  111. struct cc10001_adc_device *adc_dev;
  112. struct iio_poll_func *pf = p;
  113. struct iio_dev *indio_dev;
  114. unsigned int delay_ns;
  115. unsigned int channel;
  116. unsigned int scan_idx;
  117. bool sample_invalid;
  118. u16 *data;
  119. int i;
  120. indio_dev = pf->indio_dev;
  121. adc_dev = iio_priv(indio_dev);
  122. data = adc_dev->buf;
  123. mutex_lock(&adc_dev->lock);
  124. if (!adc_dev->shared)
  125. cc10001_adc_power_up(adc_dev);
  126. /* Calculate delay step for eoc and sampled data */
  127. delay_ns = adc_dev->eoc_delay_ns / CC10001_MAX_POLL_COUNT;
  128. i = 0;
  129. sample_invalid = false;
  130. iio_for_each_active_channel(indio_dev, scan_idx) {
  131. channel = indio_dev->channels[scan_idx].channel;
  132. cc10001_adc_start(adc_dev, channel);
  133. data[i] = cc10001_adc_poll_done(indio_dev, channel, delay_ns);
  134. if (data[i] == CC10001_INVALID_SAMPLED) {
  135. dev_warn(&indio_dev->dev,
  136. "invalid sample on channel %d\n", channel);
  137. sample_invalid = true;
  138. goto done;
  139. }
  140. i++;
  141. }
  142. done:
  143. if (!adc_dev->shared)
  144. cc10001_adc_power_down(adc_dev);
  145. mutex_unlock(&adc_dev->lock);
  146. if (!sample_invalid)
  147. iio_push_to_buffers_with_timestamp(indio_dev, data,
  148. iio_get_time_ns(indio_dev));
  149. iio_trigger_notify_done(indio_dev->trig);
  150. return IRQ_HANDLED;
  151. }
  152. static u16 cc10001_adc_read_raw_voltage(struct iio_dev *indio_dev,
  153. struct iio_chan_spec const *chan)
  154. {
  155. struct cc10001_adc_device *adc_dev = iio_priv(indio_dev);
  156. unsigned int delay_ns;
  157. u16 val;
  158. if (!adc_dev->shared)
  159. cc10001_adc_power_up(adc_dev);
  160. /* Calculate delay step for eoc and sampled data */
  161. delay_ns = adc_dev->eoc_delay_ns / CC10001_MAX_POLL_COUNT;
  162. cc10001_adc_start(adc_dev, chan->channel);
  163. val = cc10001_adc_poll_done(indio_dev, chan->channel, delay_ns);
  164. if (!adc_dev->shared)
  165. cc10001_adc_power_down(adc_dev);
  166. return val;
  167. }
  168. static int cc10001_adc_read_raw(struct iio_dev *indio_dev,
  169. struct iio_chan_spec const *chan,
  170. int *val, int *val2, long mask)
  171. {
  172. struct cc10001_adc_device *adc_dev = iio_priv(indio_dev);
  173. int ret;
  174. switch (mask) {
  175. case IIO_CHAN_INFO_RAW:
  176. if (iio_buffer_enabled(indio_dev))
  177. return -EBUSY;
  178. mutex_lock(&adc_dev->lock);
  179. *val = cc10001_adc_read_raw_voltage(indio_dev, chan);
  180. mutex_unlock(&adc_dev->lock);
  181. if (*val == CC10001_INVALID_SAMPLED)
  182. return -EIO;
  183. return IIO_VAL_INT;
  184. case IIO_CHAN_INFO_SCALE:
  185. ret = regulator_get_voltage(adc_dev->reg);
  186. if (ret < 0)
  187. return ret;
  188. *val = ret / 1000;
  189. *val2 = chan->scan_type.realbits;
  190. return IIO_VAL_FRACTIONAL_LOG2;
  191. default:
  192. return -EINVAL;
  193. }
  194. }
  195. static int cc10001_update_scan_mode(struct iio_dev *indio_dev,
  196. const unsigned long *scan_mask)
  197. {
  198. struct cc10001_adc_device *adc_dev = iio_priv(indio_dev);
  199. kfree(adc_dev->buf);
  200. adc_dev->buf = kmalloc(indio_dev->scan_bytes, GFP_KERNEL);
  201. if (!adc_dev->buf)
  202. return -ENOMEM;
  203. return 0;
  204. }
  205. static const struct iio_info cc10001_adc_info = {
  206. .read_raw = &cc10001_adc_read_raw,
  207. .update_scan_mode = &cc10001_update_scan_mode,
  208. };
  209. static int cc10001_adc_channel_init(struct iio_dev *indio_dev,
  210. unsigned long channel_map)
  211. {
  212. struct iio_chan_spec *chan_array, *timestamp;
  213. unsigned int bit, idx = 0;
  214. indio_dev->num_channels = bitmap_weight(&channel_map,
  215. CC10001_ADC_NUM_CHANNELS) + 1;
  216. chan_array = devm_kcalloc(&indio_dev->dev, indio_dev->num_channels,
  217. sizeof(struct iio_chan_spec),
  218. GFP_KERNEL);
  219. if (!chan_array)
  220. return -ENOMEM;
  221. for_each_set_bit(bit, &channel_map, CC10001_ADC_NUM_CHANNELS) {
  222. struct iio_chan_spec *chan = &chan_array[idx];
  223. chan->type = IIO_VOLTAGE;
  224. chan->indexed = 1;
  225. chan->channel = bit;
  226. chan->scan_index = idx;
  227. chan->scan_type.sign = 'u';
  228. chan->scan_type.realbits = 10;
  229. chan->scan_type.storagebits = 16;
  230. chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE);
  231. chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
  232. idx++;
  233. }
  234. timestamp = &chan_array[idx];
  235. timestamp->type = IIO_TIMESTAMP;
  236. timestamp->channel = -1;
  237. timestamp->scan_index = idx;
  238. timestamp->scan_type.sign = 's';
  239. timestamp->scan_type.realbits = 64;
  240. timestamp->scan_type.storagebits = 64;
  241. indio_dev->channels = chan_array;
  242. return 0;
  243. }
  244. static void cc10001_reg_disable(void *priv)
  245. {
  246. regulator_disable(priv);
  247. }
  248. static void cc10001_pd_cb(void *priv)
  249. {
  250. cc10001_adc_power_down(priv);
  251. }
  252. static int cc10001_adc_probe(struct platform_device *pdev)
  253. {
  254. struct device *dev = &pdev->dev;
  255. struct device_node *node = dev->of_node;
  256. struct cc10001_adc_device *adc_dev;
  257. unsigned long adc_clk_rate;
  258. struct iio_dev *indio_dev;
  259. unsigned long channel_map;
  260. int ret;
  261. indio_dev = devm_iio_device_alloc(dev, sizeof(*adc_dev));
  262. if (indio_dev == NULL)
  263. return -ENOMEM;
  264. adc_dev = iio_priv(indio_dev);
  265. channel_map = GENMASK(CC10001_ADC_NUM_CHANNELS - 1, 0);
  266. if (!of_property_read_u32(node, "adc-reserved-channels", &ret)) {
  267. adc_dev->shared = true;
  268. channel_map &= ~ret;
  269. }
  270. adc_dev->reg = devm_regulator_get(dev, "vref");
  271. if (IS_ERR(adc_dev->reg))
  272. return PTR_ERR(adc_dev->reg);
  273. ret = regulator_enable(adc_dev->reg);
  274. if (ret)
  275. return ret;
  276. ret = devm_add_action_or_reset(dev, cc10001_reg_disable, adc_dev->reg);
  277. if (ret)
  278. return ret;
  279. indio_dev->name = dev_name(dev);
  280. indio_dev->info = &cc10001_adc_info;
  281. indio_dev->modes = INDIO_DIRECT_MODE;
  282. adc_dev->reg_base = devm_platform_ioremap_resource(pdev, 0);
  283. if (IS_ERR(adc_dev->reg_base))
  284. return PTR_ERR(adc_dev->reg_base);
  285. adc_dev->adc_clk = devm_clk_get_enabled(dev, "adc");
  286. if (IS_ERR(adc_dev->adc_clk)) {
  287. dev_err(dev, "failed to get/enable the clock\n");
  288. return PTR_ERR(adc_dev->adc_clk);
  289. }
  290. adc_clk_rate = clk_get_rate(adc_dev->adc_clk);
  291. if (!adc_clk_rate) {
  292. dev_err(dev, "null clock rate!\n");
  293. return -EINVAL;
  294. }
  295. adc_dev->eoc_delay_ns = NSEC_PER_SEC / adc_clk_rate;
  296. adc_dev->start_delay_ns = adc_dev->eoc_delay_ns * CC10001_WAIT_CYCLES;
  297. /*
  298. * There is only one register to power-up/power-down the AUX ADC.
  299. * If the ADC is shared among multiple CPUs, always power it up here.
  300. * If the ADC is used only by the MIPS, power-up/power-down at runtime.
  301. */
  302. if (adc_dev->shared)
  303. cc10001_adc_power_up(adc_dev);
  304. ret = devm_add_action_or_reset(dev, cc10001_pd_cb, adc_dev);
  305. if (ret)
  306. return ret;
  307. /* Setup the ADC channels available on the device */
  308. ret = cc10001_adc_channel_init(indio_dev, channel_map);
  309. if (ret < 0)
  310. return ret;
  311. mutex_init(&adc_dev->lock);
  312. ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL,
  313. &cc10001_adc_trigger_h, NULL);
  314. if (ret < 0)
  315. return ret;
  316. return devm_iio_device_register(dev, indio_dev);
  317. }
  318. static const struct of_device_id cc10001_adc_dt_ids[] = {
  319. { .compatible = "cosmic,10001-adc", },
  320. { }
  321. };
  322. MODULE_DEVICE_TABLE(of, cc10001_adc_dt_ids);
  323. static struct platform_driver cc10001_adc_driver = {
  324. .driver = {
  325. .name = "cc10001-adc",
  326. .of_match_table = cc10001_adc_dt_ids,
  327. },
  328. .probe = cc10001_adc_probe,
  329. };
  330. module_platform_driver(cc10001_adc_driver);
  331. MODULE_AUTHOR("Phani Movva <Phani.Movva@imgtec.com>");
  332. MODULE_DESCRIPTION("Cosmic Circuits ADC driver");
  333. MODULE_LICENSE("GPL v2");