qcom-spmi-iadc.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (c) 2012-2014, The Linux Foundation. All rights reserved.
  4. */
  5. #include <linux/bitops.h>
  6. #include <linux/completion.h>
  7. #include <linux/delay.h>
  8. #include <linux/err.h>
  9. #include <linux/iio/iio.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/kernel.h>
  12. #include <linux/mutex.h>
  13. #include <linux/module.h>
  14. #include <linux/of.h>
  15. #include <linux/platform_device.h>
  16. #include <linux/regmap.h>
  17. #include <linux/slab.h>
  18. /* IADC register and bit definition */
  19. #define IADC_REVISION2 0x1
  20. #define IADC_REVISION2_SUPPORTED_IADC 1
  21. #define IADC_PERPH_TYPE 0x4
  22. #define IADC_PERPH_TYPE_ADC 8
  23. #define IADC_PERPH_SUBTYPE 0x5
  24. #define IADC_PERPH_SUBTYPE_IADC 3
  25. #define IADC_STATUS1 0x8
  26. #define IADC_STATUS1_OP_MODE 4
  27. #define IADC_STATUS1_REQ_STS BIT(1)
  28. #define IADC_STATUS1_EOC BIT(0)
  29. #define IADC_STATUS1_REQ_STS_EOC_MASK 0x3
  30. #define IADC_MODE_CTL 0x40
  31. #define IADC_OP_MODE_SHIFT 3
  32. #define IADC_OP_MODE_NORMAL 0
  33. #define IADC_TRIM_EN BIT(0)
  34. #define IADC_EN_CTL1 0x46
  35. #define IADC_EN_CTL1_SET BIT(7)
  36. #define IADC_CH_SEL_CTL 0x48
  37. #define IADC_DIG_PARAM 0x50
  38. #define IADC_DIG_DEC_RATIO_SEL_SHIFT 2
  39. #define IADC_HW_SETTLE_DELAY 0x51
  40. #define IADC_CONV_REQ 0x52
  41. #define IADC_CONV_REQ_SET BIT(7)
  42. #define IADC_FAST_AVG_CTL 0x5a
  43. #define IADC_FAST_AVG_EN 0x5b
  44. #define IADC_FAST_AVG_EN_SET BIT(7)
  45. #define IADC_PERH_RESET_CTL3 0xda
  46. #define IADC_FOLLOW_WARM_RB BIT(2)
  47. #define IADC_DATA 0x60 /* 16 bits */
  48. #define IADC_SEC_ACCESS 0xd0
  49. #define IADC_SEC_ACCESS_DATA 0xa5
  50. #define IADC_NOMINAL_RSENSE 0xf4
  51. #define IADC_NOMINAL_RSENSE_SIGN_MASK BIT(7)
  52. #define IADC_REF_GAIN_MICRO_VOLTS 17857
  53. #define IADC_INT_RSENSE_DEVIATION 15625 /* nano Ohms per bit */
  54. #define IADC_INT_RSENSE_IDEAL_VALUE 10000 /* micro Ohms */
  55. #define IADC_INT_RSENSE_DEFAULT_VALUE 7800 /* micro Ohms */
  56. #define IADC_INT_RSENSE_DEFAULT_GF 9000 /* micro Ohms */
  57. #define IADC_INT_RSENSE_DEFAULT_SMIC 9700 /* micro Ohms */
  58. #define IADC_CONV_TIME_MIN_US 2000
  59. #define IADC_CONV_TIME_MAX_US 2100
  60. #define IADC_DEF_PRESCALING 0 /* 1:1 */
  61. #define IADC_DEF_DECIMATION 0 /* 512 */
  62. #define IADC_DEF_HW_SETTLE_TIME 0 /* 0 us */
  63. #define IADC_DEF_AVG_SAMPLES 0 /* 1 sample */
  64. /* IADC channel list */
  65. #define IADC_INT_RSENSE 0
  66. #define IADC_EXT_RSENSE 1
  67. #define IADC_GAIN_17P857MV 3
  68. #define IADC_EXT_OFFSET_CSP_CSN 5
  69. #define IADC_INT_OFFSET_CSP2_CSN2 6
  70. /**
  71. * struct iadc_chip - IADC Current ADC device structure.
  72. * @regmap: regmap for register read/write.
  73. * @dev: This device pointer.
  74. * @base: base offset for the ADC peripheral.
  75. * @rsense: Values of the internal and external sense resister in micro Ohms.
  76. * @poll_eoc: Poll for end of conversion instead of waiting for IRQ.
  77. * @offset: Raw offset values for the internal and external channels.
  78. * @gain: Raw gain of the channels.
  79. * @lock: ADC lock for access to the peripheral.
  80. * @complete: ADC notification after end of conversion interrupt is received.
  81. */
  82. struct iadc_chip {
  83. struct regmap *regmap;
  84. struct device *dev;
  85. u16 base;
  86. bool poll_eoc;
  87. u32 rsense[2];
  88. u16 offset[2];
  89. u16 gain;
  90. struct mutex lock;
  91. struct completion complete;
  92. };
  93. static int iadc_read(struct iadc_chip *iadc, u16 offset, u8 *data)
  94. {
  95. unsigned int val;
  96. int ret;
  97. ret = regmap_read(iadc->regmap, iadc->base + offset, &val);
  98. if (ret < 0)
  99. return ret;
  100. *data = val;
  101. return 0;
  102. }
  103. static int iadc_write(struct iadc_chip *iadc, u16 offset, u8 data)
  104. {
  105. return regmap_write(iadc->regmap, iadc->base + offset, data);
  106. }
  107. static int iadc_reset(struct iadc_chip *iadc)
  108. {
  109. u8 data;
  110. int ret;
  111. ret = iadc_write(iadc, IADC_SEC_ACCESS, IADC_SEC_ACCESS_DATA);
  112. if (ret < 0)
  113. return ret;
  114. ret = iadc_read(iadc, IADC_PERH_RESET_CTL3, &data);
  115. if (ret < 0)
  116. return ret;
  117. ret = iadc_write(iadc, IADC_SEC_ACCESS, IADC_SEC_ACCESS_DATA);
  118. if (ret < 0)
  119. return ret;
  120. data |= IADC_FOLLOW_WARM_RB;
  121. return iadc_write(iadc, IADC_PERH_RESET_CTL3, data);
  122. }
  123. static int iadc_set_state(struct iadc_chip *iadc, bool state)
  124. {
  125. return iadc_write(iadc, IADC_EN_CTL1, state ? IADC_EN_CTL1_SET : 0);
  126. }
  127. static void iadc_status_show(struct iadc_chip *iadc)
  128. {
  129. u8 mode, sta1, chan, dig, en, req;
  130. int ret;
  131. ret = iadc_read(iadc, IADC_MODE_CTL, &mode);
  132. if (ret < 0)
  133. return;
  134. ret = iadc_read(iadc, IADC_DIG_PARAM, &dig);
  135. if (ret < 0)
  136. return;
  137. ret = iadc_read(iadc, IADC_CH_SEL_CTL, &chan);
  138. if (ret < 0)
  139. return;
  140. ret = iadc_read(iadc, IADC_CONV_REQ, &req);
  141. if (ret < 0)
  142. return;
  143. ret = iadc_read(iadc, IADC_STATUS1, &sta1);
  144. if (ret < 0)
  145. return;
  146. ret = iadc_read(iadc, IADC_EN_CTL1, &en);
  147. if (ret < 0)
  148. return;
  149. dev_err(iadc->dev,
  150. "mode:%02x en:%02x chan:%02x dig:%02x req:%02x sta1:%02x\n",
  151. mode, en, chan, dig, req, sta1);
  152. }
  153. static int iadc_configure(struct iadc_chip *iadc, int channel)
  154. {
  155. u8 decim, mode;
  156. int ret;
  157. /* Mode selection */
  158. mode = (IADC_OP_MODE_NORMAL << IADC_OP_MODE_SHIFT) | IADC_TRIM_EN;
  159. ret = iadc_write(iadc, IADC_MODE_CTL, mode);
  160. if (ret < 0)
  161. return ret;
  162. /* Channel selection */
  163. ret = iadc_write(iadc, IADC_CH_SEL_CTL, channel);
  164. if (ret < 0)
  165. return ret;
  166. /* Digital parameter setup */
  167. decim = IADC_DEF_DECIMATION << IADC_DIG_DEC_RATIO_SEL_SHIFT;
  168. ret = iadc_write(iadc, IADC_DIG_PARAM, decim);
  169. if (ret < 0)
  170. return ret;
  171. /* HW settle time delay */
  172. ret = iadc_write(iadc, IADC_HW_SETTLE_DELAY, IADC_DEF_HW_SETTLE_TIME);
  173. if (ret < 0)
  174. return ret;
  175. ret = iadc_write(iadc, IADC_FAST_AVG_CTL, IADC_DEF_AVG_SAMPLES);
  176. if (ret < 0)
  177. return ret;
  178. if (IADC_DEF_AVG_SAMPLES)
  179. ret = iadc_write(iadc, IADC_FAST_AVG_EN, IADC_FAST_AVG_EN_SET);
  180. else
  181. ret = iadc_write(iadc, IADC_FAST_AVG_EN, 0);
  182. if (ret < 0)
  183. return ret;
  184. if (!iadc->poll_eoc)
  185. reinit_completion(&iadc->complete);
  186. ret = iadc_set_state(iadc, true);
  187. if (ret < 0)
  188. return ret;
  189. /* Request conversion */
  190. return iadc_write(iadc, IADC_CONV_REQ, IADC_CONV_REQ_SET);
  191. }
  192. static int iadc_poll_wait_eoc(struct iadc_chip *iadc, unsigned int interval_us)
  193. {
  194. unsigned int count, retry;
  195. int ret;
  196. u8 sta1;
  197. retry = interval_us / IADC_CONV_TIME_MIN_US;
  198. for (count = 0; count < retry; count++) {
  199. ret = iadc_read(iadc, IADC_STATUS1, &sta1);
  200. if (ret < 0)
  201. return ret;
  202. sta1 &= IADC_STATUS1_REQ_STS_EOC_MASK;
  203. if (sta1 == IADC_STATUS1_EOC)
  204. return 0;
  205. usleep_range(IADC_CONV_TIME_MIN_US, IADC_CONV_TIME_MAX_US);
  206. }
  207. iadc_status_show(iadc);
  208. return -ETIMEDOUT;
  209. }
  210. static int iadc_read_result(struct iadc_chip *iadc, u16 *data)
  211. {
  212. return regmap_bulk_read(iadc->regmap, iadc->base + IADC_DATA, data, 2);
  213. }
  214. static int iadc_do_conversion(struct iadc_chip *iadc, int chan, u16 *data)
  215. {
  216. unsigned int wait;
  217. int ret;
  218. ret = iadc_configure(iadc, chan);
  219. if (ret < 0)
  220. goto exit;
  221. wait = BIT(IADC_DEF_AVG_SAMPLES) * IADC_CONV_TIME_MIN_US * 2;
  222. if (iadc->poll_eoc) {
  223. ret = iadc_poll_wait_eoc(iadc, wait);
  224. } else {
  225. ret = wait_for_completion_timeout(&iadc->complete,
  226. usecs_to_jiffies(wait));
  227. if (!ret)
  228. ret = -ETIMEDOUT;
  229. else
  230. /* double check conversion status */
  231. ret = iadc_poll_wait_eoc(iadc, IADC_CONV_TIME_MIN_US);
  232. }
  233. if (!ret)
  234. ret = iadc_read_result(iadc, data);
  235. exit:
  236. iadc_set_state(iadc, false);
  237. if (ret < 0)
  238. dev_err(iadc->dev, "conversion failed\n");
  239. return ret;
  240. }
  241. static int iadc_read_raw(struct iio_dev *indio_dev,
  242. struct iio_chan_spec const *chan,
  243. int *val, int *val2, long mask)
  244. {
  245. struct iadc_chip *iadc = iio_priv(indio_dev);
  246. s32 isense_ua, vsense_uv;
  247. u16 adc_raw, vsense_raw;
  248. int ret;
  249. switch (mask) {
  250. case IIO_CHAN_INFO_RAW:
  251. mutex_lock(&iadc->lock);
  252. ret = iadc_do_conversion(iadc, chan->channel, &adc_raw);
  253. mutex_unlock(&iadc->lock);
  254. if (ret < 0)
  255. return ret;
  256. vsense_raw = adc_raw - iadc->offset[chan->channel];
  257. vsense_uv = vsense_raw * IADC_REF_GAIN_MICRO_VOLTS;
  258. vsense_uv /= (s32)iadc->gain - iadc->offset[chan->channel];
  259. isense_ua = vsense_uv / iadc->rsense[chan->channel];
  260. dev_dbg(iadc->dev, "off %d gain %d adc %d %duV I %duA\n",
  261. iadc->offset[chan->channel], iadc->gain,
  262. adc_raw, vsense_uv, isense_ua);
  263. *val = isense_ua;
  264. return IIO_VAL_INT;
  265. case IIO_CHAN_INFO_SCALE:
  266. *val = 0;
  267. *val2 = 1000;
  268. return IIO_VAL_INT_PLUS_MICRO;
  269. }
  270. return -EINVAL;
  271. }
  272. static const struct iio_info iadc_info = {
  273. .read_raw = iadc_read_raw,
  274. };
  275. static irqreturn_t iadc_isr(int irq, void *dev_id)
  276. {
  277. struct iadc_chip *iadc = dev_id;
  278. complete(&iadc->complete);
  279. return IRQ_HANDLED;
  280. }
  281. static int iadc_update_offset(struct iadc_chip *iadc)
  282. {
  283. int ret;
  284. ret = iadc_do_conversion(iadc, IADC_GAIN_17P857MV, &iadc->gain);
  285. if (ret < 0)
  286. return ret;
  287. ret = iadc_do_conversion(iadc, IADC_INT_OFFSET_CSP2_CSN2,
  288. &iadc->offset[IADC_INT_RSENSE]);
  289. if (ret < 0)
  290. return ret;
  291. if (iadc->gain == iadc->offset[IADC_INT_RSENSE]) {
  292. dev_err(iadc->dev, "error: internal offset == gain %d\n",
  293. iadc->gain);
  294. return -EINVAL;
  295. }
  296. ret = iadc_do_conversion(iadc, IADC_EXT_OFFSET_CSP_CSN,
  297. &iadc->offset[IADC_EXT_RSENSE]);
  298. if (ret < 0)
  299. return ret;
  300. if (iadc->gain == iadc->offset[IADC_EXT_RSENSE]) {
  301. dev_err(iadc->dev, "error: external offset == gain %d\n",
  302. iadc->gain);
  303. return -EINVAL;
  304. }
  305. return 0;
  306. }
  307. static int iadc_version_check(struct iadc_chip *iadc)
  308. {
  309. u8 val;
  310. int ret;
  311. ret = iadc_read(iadc, IADC_PERPH_TYPE, &val);
  312. if (ret < 0)
  313. return ret;
  314. if (val < IADC_PERPH_TYPE_ADC) {
  315. dev_err(iadc->dev, "%d is not ADC\n", val);
  316. return -EINVAL;
  317. }
  318. ret = iadc_read(iadc, IADC_PERPH_SUBTYPE, &val);
  319. if (ret < 0)
  320. return ret;
  321. if (val < IADC_PERPH_SUBTYPE_IADC) {
  322. dev_err(iadc->dev, "%d is not IADC\n", val);
  323. return -EINVAL;
  324. }
  325. ret = iadc_read(iadc, IADC_REVISION2, &val);
  326. if (ret < 0)
  327. return ret;
  328. if (val < IADC_REVISION2_SUPPORTED_IADC) {
  329. dev_err(iadc->dev, "revision %d not supported\n", val);
  330. return -EINVAL;
  331. }
  332. return 0;
  333. }
  334. static int iadc_rsense_read(struct iadc_chip *iadc, struct device_node *node)
  335. {
  336. int ret, sign, int_sense;
  337. u8 deviation;
  338. ret = of_property_read_u32(node, "qcom,external-resistor-micro-ohms",
  339. &iadc->rsense[IADC_EXT_RSENSE]);
  340. if (ret < 0)
  341. iadc->rsense[IADC_EXT_RSENSE] = IADC_INT_RSENSE_IDEAL_VALUE;
  342. if (!iadc->rsense[IADC_EXT_RSENSE]) {
  343. dev_err(iadc->dev, "external resistor can't be zero Ohms");
  344. return -EINVAL;
  345. }
  346. ret = iadc_read(iadc, IADC_NOMINAL_RSENSE, &deviation);
  347. if (ret < 0)
  348. return ret;
  349. /*
  350. * Deviation value stored is an offset from 10 mili Ohms, bit 7 is
  351. * the sign, the remaining bits have an LSB of 15625 nano Ohms.
  352. */
  353. sign = (deviation & IADC_NOMINAL_RSENSE_SIGN_MASK) ? -1 : 1;
  354. deviation &= ~IADC_NOMINAL_RSENSE_SIGN_MASK;
  355. /* Scale it to nono Ohms */
  356. int_sense = IADC_INT_RSENSE_IDEAL_VALUE * 1000;
  357. int_sense += sign * deviation * IADC_INT_RSENSE_DEVIATION;
  358. int_sense /= 1000; /* micro Ohms */
  359. iadc->rsense[IADC_INT_RSENSE] = int_sense;
  360. return 0;
  361. }
  362. static const struct iio_chan_spec iadc_channels[] = {
  363. {
  364. .type = IIO_CURRENT,
  365. .datasheet_name = "INTERNAL_RSENSE",
  366. .channel = 0,
  367. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  368. BIT(IIO_CHAN_INFO_SCALE),
  369. .indexed = 1,
  370. },
  371. {
  372. .type = IIO_CURRENT,
  373. .datasheet_name = "EXTERNAL_RSENSE",
  374. .channel = 1,
  375. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |
  376. BIT(IIO_CHAN_INFO_SCALE),
  377. .indexed = 1,
  378. },
  379. };
  380. static int iadc_probe(struct platform_device *pdev)
  381. {
  382. struct device_node *node = pdev->dev.of_node;
  383. struct device *dev = &pdev->dev;
  384. struct iio_dev *indio_dev;
  385. struct iadc_chip *iadc;
  386. int ret, irq_eoc;
  387. u32 res;
  388. indio_dev = devm_iio_device_alloc(dev, sizeof(*iadc));
  389. if (!indio_dev)
  390. return -ENOMEM;
  391. iadc = iio_priv(indio_dev);
  392. iadc->dev = dev;
  393. iadc->regmap = dev_get_regmap(dev->parent, NULL);
  394. if (!iadc->regmap)
  395. return -ENODEV;
  396. init_completion(&iadc->complete);
  397. mutex_init(&iadc->lock);
  398. ret = of_property_read_u32(node, "reg", &res);
  399. if (ret < 0)
  400. return -ENODEV;
  401. iadc->base = res;
  402. ret = iadc_version_check(iadc);
  403. if (ret < 0)
  404. return -ENODEV;
  405. ret = iadc_rsense_read(iadc, node);
  406. if (ret < 0)
  407. return -ENODEV;
  408. dev_dbg(iadc->dev, "sense resistors %d and %d micro Ohm\n",
  409. iadc->rsense[IADC_INT_RSENSE],
  410. iadc->rsense[IADC_EXT_RSENSE]);
  411. irq_eoc = platform_get_irq(pdev, 0);
  412. if (irq_eoc == -EPROBE_DEFER)
  413. return irq_eoc;
  414. if (irq_eoc < 0)
  415. iadc->poll_eoc = true;
  416. ret = iadc_reset(iadc);
  417. if (ret < 0) {
  418. dev_err(dev, "reset failed\n");
  419. return ret;
  420. }
  421. if (!iadc->poll_eoc) {
  422. ret = devm_request_irq(dev, irq_eoc, iadc_isr, 0,
  423. "spmi-iadc", iadc);
  424. if (!ret)
  425. enable_irq_wake(irq_eoc);
  426. else
  427. return ret;
  428. } else {
  429. device_init_wakeup(iadc->dev, 1);
  430. }
  431. ret = iadc_update_offset(iadc);
  432. if (ret < 0) {
  433. dev_err(dev, "failed offset calibration\n");
  434. return ret;
  435. }
  436. indio_dev->name = pdev->name;
  437. indio_dev->modes = INDIO_DIRECT_MODE;
  438. indio_dev->info = &iadc_info;
  439. indio_dev->channels = iadc_channels;
  440. indio_dev->num_channels = ARRAY_SIZE(iadc_channels);
  441. return devm_iio_device_register(dev, indio_dev);
  442. }
  443. static const struct of_device_id iadc_match_table[] = {
  444. { .compatible = "qcom,spmi-iadc" },
  445. { }
  446. };
  447. MODULE_DEVICE_TABLE(of, iadc_match_table);
  448. static struct platform_driver iadc_driver = {
  449. .driver = {
  450. .name = "qcom-spmi-iadc",
  451. .of_match_table = iadc_match_table,
  452. },
  453. .probe = iadc_probe,
  454. };
  455. module_platform_driver(iadc_driver);
  456. MODULE_ALIAS("platform:qcom-spmi-iadc");
  457. MODULE_DESCRIPTION("Qualcomm SPMI PMIC current ADC driver");
  458. MODULE_LICENSE("GPL v2");
  459. MODULE_AUTHOR("Ivan T. Ivanov <iivanov@mm-sol.com>");