ti-ads8688.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Copyright (C) 2015 Prevas A/S
  4. */
  5. #include <linux/device.h>
  6. #include <linux/kernel.h>
  7. #include <linux/slab.h>
  8. #include <linux/sysfs.h>
  9. #include <linux/spi/spi.h>
  10. #include <linux/regulator/consumer.h>
  11. #include <linux/err.h>
  12. #include <linux/module.h>
  13. #include <linux/mod_devicetable.h>
  14. #include <linux/iio/iio.h>
  15. #include <linux/iio/buffer.h>
  16. #include <linux/iio/trigger_consumer.h>
  17. #include <linux/iio/triggered_buffer.h>
  18. #include <linux/iio/sysfs.h>
  19. #define ADS8688_CMD_REG(x) (x << 8)
  20. #define ADS8688_CMD_REG_NOOP 0x00
  21. #define ADS8688_CMD_REG_RST 0x85
  22. #define ADS8688_CMD_REG_MAN_CH(chan) (0xC0 | (4 * chan))
  23. #define ADS8688_CMD_DONT_CARE_BITS 16
  24. #define ADS8688_PROG_REG(x) (x << 9)
  25. #define ADS8688_PROG_REG_RANGE_CH(chan) (0x05 + chan)
  26. #define ADS8688_PROG_WR_BIT BIT(8)
  27. #define ADS8688_PROG_DONT_CARE_BITS 8
  28. #define ADS8688_REG_PLUSMINUS25VREF 0
  29. #define ADS8688_REG_PLUSMINUS125VREF 1
  30. #define ADS8688_REG_PLUSMINUS0625VREF 2
  31. #define ADS8688_REG_PLUS25VREF 5
  32. #define ADS8688_REG_PLUS125VREF 6
  33. #define ADS8688_VREF_MV 4096
  34. #define ADS8688_REALBITS 16
  35. #define ADS8688_MAX_CHANNELS 8
  36. /*
  37. * enum ads8688_range - ADS8688 reference voltage range
  38. * @ADS8688_PLUSMINUS25VREF: Device is configured for input range ±2.5 * VREF
  39. * @ADS8688_PLUSMINUS125VREF: Device is configured for input range ±1.25 * VREF
  40. * @ADS8688_PLUSMINUS0625VREF: Device is configured for input range ±0.625 * VREF
  41. * @ADS8688_PLUS25VREF: Device is configured for input range 0 - 2.5 * VREF
  42. * @ADS8688_PLUS125VREF: Device is configured for input range 0 - 1.25 * VREF
  43. */
  44. enum ads8688_range {
  45. ADS8688_PLUSMINUS25VREF,
  46. ADS8688_PLUSMINUS125VREF,
  47. ADS8688_PLUSMINUS0625VREF,
  48. ADS8688_PLUS25VREF,
  49. ADS8688_PLUS125VREF,
  50. };
  51. struct ads8688_chip_info {
  52. const struct iio_chan_spec *channels;
  53. unsigned int num_channels;
  54. };
  55. struct ads8688_state {
  56. struct mutex lock;
  57. const struct ads8688_chip_info *chip_info;
  58. struct spi_device *spi;
  59. unsigned int vref_mv;
  60. enum ads8688_range range[8];
  61. union {
  62. __be32 d32;
  63. u8 d8[4];
  64. } data[2] __aligned(IIO_DMA_MINALIGN);
  65. };
  66. enum ads8688_id {
  67. ID_ADS8684,
  68. ID_ADS8688,
  69. };
  70. struct ads8688_ranges {
  71. enum ads8688_range range;
  72. unsigned int scale;
  73. int offset;
  74. u8 reg;
  75. };
  76. static const struct ads8688_ranges ads8688_range_def[5] = {
  77. {
  78. .range = ADS8688_PLUSMINUS25VREF,
  79. .scale = 76295,
  80. .offset = -(1 << (ADS8688_REALBITS - 1)),
  81. .reg = ADS8688_REG_PLUSMINUS25VREF,
  82. }, {
  83. .range = ADS8688_PLUSMINUS125VREF,
  84. .scale = 38148,
  85. .offset = -(1 << (ADS8688_REALBITS - 1)),
  86. .reg = ADS8688_REG_PLUSMINUS125VREF,
  87. }, {
  88. .range = ADS8688_PLUSMINUS0625VREF,
  89. .scale = 19074,
  90. .offset = -(1 << (ADS8688_REALBITS - 1)),
  91. .reg = ADS8688_REG_PLUSMINUS0625VREF,
  92. }, {
  93. .range = ADS8688_PLUS25VREF,
  94. .scale = 38148,
  95. .offset = 0,
  96. .reg = ADS8688_REG_PLUS25VREF,
  97. }, {
  98. .range = ADS8688_PLUS125VREF,
  99. .scale = 19074,
  100. .offset = 0,
  101. .reg = ADS8688_REG_PLUS125VREF,
  102. }
  103. };
  104. static ssize_t ads8688_show_scales(struct device *dev,
  105. struct device_attribute *attr, char *buf)
  106. {
  107. struct ads8688_state *st = iio_priv(dev_to_iio_dev(dev));
  108. return sprintf(buf, "0.%09u 0.%09u 0.%09u\n",
  109. ads8688_range_def[0].scale * st->vref_mv,
  110. ads8688_range_def[1].scale * st->vref_mv,
  111. ads8688_range_def[2].scale * st->vref_mv);
  112. }
  113. static ssize_t ads8688_show_offsets(struct device *dev,
  114. struct device_attribute *attr, char *buf)
  115. {
  116. return sprintf(buf, "%d %d\n", ads8688_range_def[0].offset,
  117. ads8688_range_def[3].offset);
  118. }
  119. static IIO_DEVICE_ATTR(in_voltage_scale_available, S_IRUGO,
  120. ads8688_show_scales, NULL, 0);
  121. static IIO_DEVICE_ATTR(in_voltage_offset_available, S_IRUGO,
  122. ads8688_show_offsets, NULL, 0);
  123. static struct attribute *ads8688_attributes[] = {
  124. &iio_dev_attr_in_voltage_scale_available.dev_attr.attr,
  125. &iio_dev_attr_in_voltage_offset_available.dev_attr.attr,
  126. NULL,
  127. };
  128. static const struct attribute_group ads8688_attribute_group = {
  129. .attrs = ads8688_attributes,
  130. };
  131. #define ADS8688_CHAN(index) \
  132. { \
  133. .type = IIO_VOLTAGE, \
  134. .indexed = 1, \
  135. .channel = index, \
  136. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \
  137. | BIT(IIO_CHAN_INFO_SCALE) \
  138. | BIT(IIO_CHAN_INFO_OFFSET), \
  139. .scan_index = index, \
  140. .scan_type = { \
  141. .sign = 'u', \
  142. .realbits = 16, \
  143. .storagebits = 16, \
  144. .endianness = IIO_BE, \
  145. }, \
  146. }
  147. static const struct iio_chan_spec ads8684_channels[] = {
  148. ADS8688_CHAN(0),
  149. ADS8688_CHAN(1),
  150. ADS8688_CHAN(2),
  151. ADS8688_CHAN(3),
  152. };
  153. static const struct iio_chan_spec ads8688_channels[] = {
  154. ADS8688_CHAN(0),
  155. ADS8688_CHAN(1),
  156. ADS8688_CHAN(2),
  157. ADS8688_CHAN(3),
  158. ADS8688_CHAN(4),
  159. ADS8688_CHAN(5),
  160. ADS8688_CHAN(6),
  161. ADS8688_CHAN(7),
  162. };
  163. static int ads8688_prog_write(struct iio_dev *indio_dev, unsigned int addr,
  164. unsigned int val)
  165. {
  166. struct ads8688_state *st = iio_priv(indio_dev);
  167. u32 tmp;
  168. tmp = ADS8688_PROG_REG(addr) | ADS8688_PROG_WR_BIT | val;
  169. tmp <<= ADS8688_PROG_DONT_CARE_BITS;
  170. st->data[0].d32 = cpu_to_be32(tmp);
  171. return spi_write(st->spi, &st->data[0].d8[1], 3);
  172. }
  173. static int ads8688_reset(struct iio_dev *indio_dev)
  174. {
  175. struct ads8688_state *st = iio_priv(indio_dev);
  176. u32 tmp;
  177. tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_RST);
  178. tmp <<= ADS8688_CMD_DONT_CARE_BITS;
  179. st->data[0].d32 = cpu_to_be32(tmp);
  180. return spi_write(st->spi, &st->data[0].d8[0], 4);
  181. }
  182. static int ads8688_read(struct iio_dev *indio_dev, unsigned int chan)
  183. {
  184. struct ads8688_state *st = iio_priv(indio_dev);
  185. int ret;
  186. u32 tmp;
  187. struct spi_transfer t[] = {
  188. {
  189. .tx_buf = &st->data[0].d8[0],
  190. .len = 4,
  191. .cs_change = 1,
  192. }, {
  193. .tx_buf = &st->data[1].d8[0],
  194. .rx_buf = &st->data[1].d8[0],
  195. .len = 4,
  196. },
  197. };
  198. tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_MAN_CH(chan));
  199. tmp <<= ADS8688_CMD_DONT_CARE_BITS;
  200. st->data[0].d32 = cpu_to_be32(tmp);
  201. tmp = ADS8688_CMD_REG(ADS8688_CMD_REG_NOOP);
  202. tmp <<= ADS8688_CMD_DONT_CARE_BITS;
  203. st->data[1].d32 = cpu_to_be32(tmp);
  204. ret = spi_sync_transfer(st->spi, t, ARRAY_SIZE(t));
  205. if (ret < 0)
  206. return ret;
  207. return be32_to_cpu(st->data[1].d32) & 0xffff;
  208. }
  209. static int ads8688_read_raw(struct iio_dev *indio_dev,
  210. struct iio_chan_spec const *chan,
  211. int *val, int *val2, long m)
  212. {
  213. int ret, offset;
  214. unsigned long scale_mv;
  215. struct ads8688_state *st = iio_priv(indio_dev);
  216. mutex_lock(&st->lock);
  217. switch (m) {
  218. case IIO_CHAN_INFO_RAW:
  219. ret = ads8688_read(indio_dev, chan->channel);
  220. mutex_unlock(&st->lock);
  221. if (ret < 0)
  222. return ret;
  223. *val = ret;
  224. return IIO_VAL_INT;
  225. case IIO_CHAN_INFO_SCALE:
  226. scale_mv = st->vref_mv;
  227. scale_mv *= ads8688_range_def[st->range[chan->channel]].scale;
  228. *val = 0;
  229. *val2 = scale_mv;
  230. mutex_unlock(&st->lock);
  231. return IIO_VAL_INT_PLUS_NANO;
  232. case IIO_CHAN_INFO_OFFSET:
  233. offset = ads8688_range_def[st->range[chan->channel]].offset;
  234. *val = offset;
  235. mutex_unlock(&st->lock);
  236. return IIO_VAL_INT;
  237. }
  238. mutex_unlock(&st->lock);
  239. return -EINVAL;
  240. }
  241. static int ads8688_write_reg_range(struct iio_dev *indio_dev,
  242. struct iio_chan_spec const *chan,
  243. enum ads8688_range range)
  244. {
  245. unsigned int tmp;
  246. tmp = ADS8688_PROG_REG_RANGE_CH(chan->channel);
  247. return ads8688_prog_write(indio_dev, tmp, range);
  248. }
  249. static int ads8688_write_raw(struct iio_dev *indio_dev,
  250. struct iio_chan_spec const *chan,
  251. int val, int val2, long mask)
  252. {
  253. struct ads8688_state *st = iio_priv(indio_dev);
  254. unsigned int scale = 0;
  255. int ret = -EINVAL, i, offset = 0;
  256. mutex_lock(&st->lock);
  257. switch (mask) {
  258. case IIO_CHAN_INFO_SCALE:
  259. /* If the offset is 0 the ±2.5 * VREF mode is not available */
  260. offset = ads8688_range_def[st->range[chan->channel]].offset;
  261. if (offset == 0 && val2 == ads8688_range_def[0].scale * st->vref_mv) {
  262. mutex_unlock(&st->lock);
  263. return -EINVAL;
  264. }
  265. /* Lookup new mode */
  266. for (i = 0; i < ARRAY_SIZE(ads8688_range_def); i++)
  267. if (val2 == ads8688_range_def[i].scale * st->vref_mv &&
  268. offset == ads8688_range_def[i].offset) {
  269. ret = ads8688_write_reg_range(indio_dev, chan,
  270. ads8688_range_def[i].reg);
  271. break;
  272. }
  273. break;
  274. case IIO_CHAN_INFO_OFFSET:
  275. /*
  276. * There are only two available offsets:
  277. * 0 and -(1 << (ADS8688_REALBITS - 1))
  278. */
  279. if (!(ads8688_range_def[0].offset == val ||
  280. ads8688_range_def[3].offset == val)) {
  281. mutex_unlock(&st->lock);
  282. return -EINVAL;
  283. }
  284. /*
  285. * If the device are in ±2.5 * VREF mode, it's not allowed to
  286. * switch to a mode where the offset is 0
  287. */
  288. if (val == 0 &&
  289. st->range[chan->channel] == ADS8688_PLUSMINUS25VREF) {
  290. mutex_unlock(&st->lock);
  291. return -EINVAL;
  292. }
  293. scale = ads8688_range_def[st->range[chan->channel]].scale;
  294. /* Lookup new mode */
  295. for (i = 0; i < ARRAY_SIZE(ads8688_range_def); i++)
  296. if (val == ads8688_range_def[i].offset &&
  297. scale == ads8688_range_def[i].scale) {
  298. ret = ads8688_write_reg_range(indio_dev, chan,
  299. ads8688_range_def[i].reg);
  300. break;
  301. }
  302. break;
  303. }
  304. if (!ret)
  305. st->range[chan->channel] = ads8688_range_def[i].range;
  306. mutex_unlock(&st->lock);
  307. return ret;
  308. }
  309. static int ads8688_write_raw_get_fmt(struct iio_dev *indio_dev,
  310. struct iio_chan_spec const *chan,
  311. long mask)
  312. {
  313. switch (mask) {
  314. case IIO_CHAN_INFO_SCALE:
  315. return IIO_VAL_INT_PLUS_NANO;
  316. case IIO_CHAN_INFO_OFFSET:
  317. return IIO_VAL_INT;
  318. }
  319. return -EINVAL;
  320. }
  321. static const struct iio_info ads8688_info = {
  322. .read_raw = &ads8688_read_raw,
  323. .write_raw = &ads8688_write_raw,
  324. .write_raw_get_fmt = &ads8688_write_raw_get_fmt,
  325. .attrs = &ads8688_attribute_group,
  326. };
  327. static irqreturn_t ads8688_trigger_handler(int irq, void *p)
  328. {
  329. struct iio_poll_func *pf = p;
  330. struct iio_dev *indio_dev = pf->indio_dev;
  331. /* Ensure naturally aligned timestamp */
  332. u16 buffer[ADS8688_MAX_CHANNELS + sizeof(s64)/sizeof(u16)] __aligned(8) = { };
  333. int i, j = 0;
  334. iio_for_each_active_channel(indio_dev, i) {
  335. buffer[j] = ads8688_read(indio_dev, i);
  336. j++;
  337. }
  338. iio_push_to_buffers_with_timestamp(indio_dev, buffer,
  339. iio_get_time_ns(indio_dev));
  340. iio_trigger_notify_done(indio_dev->trig);
  341. return IRQ_HANDLED;
  342. }
  343. static const struct ads8688_chip_info ads8688_chip_info_tbl[] = {
  344. [ID_ADS8684] = {
  345. .channels = ads8684_channels,
  346. .num_channels = ARRAY_SIZE(ads8684_channels),
  347. },
  348. [ID_ADS8688] = {
  349. .channels = ads8688_channels,
  350. .num_channels = ARRAY_SIZE(ads8688_channels),
  351. },
  352. };
  353. static int ads8688_probe(struct spi_device *spi)
  354. {
  355. struct ads8688_state *st;
  356. struct iio_dev *indio_dev;
  357. int ret;
  358. indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
  359. if (indio_dev == NULL)
  360. return -ENOMEM;
  361. st = iio_priv(indio_dev);
  362. ret = devm_regulator_get_enable_read_voltage(&spi->dev, "vref");
  363. if (ret < 0 && ret != -ENODEV)
  364. return ret;
  365. st->vref_mv = ret == -ENODEV ? ADS8688_VREF_MV : ret / 1000;
  366. st->chip_info = &ads8688_chip_info_tbl[spi_get_device_id(spi)->driver_data];
  367. spi->mode = SPI_MODE_1;
  368. st->spi = spi;
  369. indio_dev->name = spi_get_device_id(spi)->name;
  370. indio_dev->modes = INDIO_DIRECT_MODE;
  371. indio_dev->channels = st->chip_info->channels;
  372. indio_dev->num_channels = st->chip_info->num_channels;
  373. indio_dev->info = &ads8688_info;
  374. ads8688_reset(indio_dev);
  375. mutex_init(&st->lock);
  376. ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev, NULL,
  377. ads8688_trigger_handler, NULL);
  378. if (ret < 0)
  379. return dev_err_probe(&spi->dev, ret,
  380. "iio triggered buffer setup failed\n");
  381. return devm_iio_device_register(&spi->dev, indio_dev);
  382. }
  383. static const struct spi_device_id ads8688_id[] = {
  384. { "ads8684", ID_ADS8684 },
  385. { "ads8688", ID_ADS8688 },
  386. { }
  387. };
  388. MODULE_DEVICE_TABLE(spi, ads8688_id);
  389. static const struct of_device_id ads8688_of_match[] = {
  390. { .compatible = "ti,ads8684" },
  391. { .compatible = "ti,ads8688" },
  392. { }
  393. };
  394. MODULE_DEVICE_TABLE(of, ads8688_of_match);
  395. static struct spi_driver ads8688_driver = {
  396. .driver = {
  397. .name = "ads8688",
  398. .of_match_table = ads8688_of_match,
  399. },
  400. .probe = ads8688_probe,
  401. .id_table = ads8688_id,
  402. };
  403. module_spi_driver(ads8688_driver);
  404. MODULE_AUTHOR("Sean Nyekjaer <sean@geanix.dk>");
  405. MODULE_DESCRIPTION("Texas Instruments ADS8688 driver");
  406. MODULE_LICENSE("GPL v2");