ad8366.c 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * AD8366 and similar Gain Amplifiers
  4. * This driver supports the following gain amplifiers:
  5. * AD8366 Dual-Digital Variable Gain Amplifier (VGA)
  6. * ADA4961 BiCMOS RF Digital Gain Amplifier (DGA)
  7. * ADL5240 Digitally controlled variable gain amplifier (VGA)
  8. * HMC792A 0.25 dB LSB GaAs MMIC 6-Bit Digital Attenuator
  9. * HMC1119 0.25 dB LSB, 7-Bit, Silicon Digital Attenuator
  10. *
  11. * Copyright 2012-2019 Analog Devices Inc.
  12. */
  13. #include <linux/device.h>
  14. #include <linux/kernel.h>
  15. #include <linux/slab.h>
  16. #include <linux/sysfs.h>
  17. #include <linux/spi/spi.h>
  18. #include <linux/regulator/consumer.h>
  19. #include <linux/gpio/consumer.h>
  20. #include <linux/err.h>
  21. #include <linux/module.h>
  22. #include <linux/bitrev.h>
  23. #include <linux/iio/iio.h>
  24. #include <linux/iio/sysfs.h>
  25. enum ad8366_type {
  26. ID_AD8366,
  27. ID_ADA4961,
  28. ID_ADL5240,
  29. ID_HMC792,
  30. ID_HMC1119,
  31. };
  32. struct ad8366_info {
  33. int gain_min;
  34. int gain_max;
  35. };
  36. struct ad8366_state {
  37. struct spi_device *spi;
  38. struct regulator *reg;
  39. struct mutex lock; /* protect sensor state */
  40. struct gpio_desc *reset_gpio;
  41. unsigned char ch[2];
  42. enum ad8366_type type;
  43. struct ad8366_info *info;
  44. /*
  45. * DMA (thus cache coherency maintenance) may require the
  46. * transfer buffers to live in their own cache lines.
  47. */
  48. unsigned char data[2] __aligned(IIO_DMA_MINALIGN);
  49. };
  50. static struct ad8366_info ad8366_infos[] = {
  51. [ID_AD8366] = {
  52. .gain_min = 4500,
  53. .gain_max = 20500,
  54. },
  55. [ID_ADA4961] = {
  56. .gain_min = -6000,
  57. .gain_max = 15000,
  58. },
  59. [ID_ADL5240] = {
  60. .gain_min = -11500,
  61. .gain_max = 20000,
  62. },
  63. [ID_HMC792] = {
  64. .gain_min = -15750,
  65. .gain_max = 0,
  66. },
  67. [ID_HMC1119] = {
  68. .gain_min = -31750,
  69. .gain_max = 0,
  70. },
  71. };
  72. static int ad8366_write(struct iio_dev *indio_dev,
  73. unsigned char ch_a, unsigned char ch_b)
  74. {
  75. struct ad8366_state *st = iio_priv(indio_dev);
  76. int ret;
  77. switch (st->type) {
  78. case ID_AD8366:
  79. ch_a = bitrev8(ch_a & 0x3F);
  80. ch_b = bitrev8(ch_b & 0x3F);
  81. st->data[0] = ch_b >> 4;
  82. st->data[1] = (ch_b << 4) | (ch_a >> 2);
  83. break;
  84. case ID_ADA4961:
  85. st->data[0] = ch_a & 0x1F;
  86. break;
  87. case ID_ADL5240:
  88. st->data[0] = (ch_a & 0x3F);
  89. break;
  90. case ID_HMC792:
  91. case ID_HMC1119:
  92. st->data[0] = ch_a;
  93. break;
  94. }
  95. ret = spi_write(st->spi, st->data, indio_dev->num_channels);
  96. if (ret < 0)
  97. dev_err(&indio_dev->dev, "write failed (%d)", ret);
  98. return ret;
  99. }
  100. static int ad8366_read_raw(struct iio_dev *indio_dev,
  101. struct iio_chan_spec const *chan,
  102. int *val,
  103. int *val2,
  104. long m)
  105. {
  106. struct ad8366_state *st = iio_priv(indio_dev);
  107. int ret;
  108. int code, gain = 0;
  109. mutex_lock(&st->lock);
  110. switch (m) {
  111. case IIO_CHAN_INFO_HARDWAREGAIN:
  112. code = st->ch[chan->channel];
  113. switch (st->type) {
  114. case ID_AD8366:
  115. gain = code * 253 + 4500;
  116. break;
  117. case ID_ADA4961:
  118. gain = 15000 - code * 1000;
  119. break;
  120. case ID_ADL5240:
  121. gain = 20000 - 31500 + code * 500;
  122. break;
  123. case ID_HMC792:
  124. gain = -1 * code * 500;
  125. break;
  126. case ID_HMC1119:
  127. gain = -1 * code * 250;
  128. break;
  129. }
  130. /* Values in dB */
  131. *val = gain / 1000;
  132. *val2 = (gain % 1000) * 1000;
  133. ret = IIO_VAL_INT_PLUS_MICRO_DB;
  134. break;
  135. default:
  136. ret = -EINVAL;
  137. }
  138. mutex_unlock(&st->lock);
  139. return ret;
  140. };
  141. static int ad8366_write_raw(struct iio_dev *indio_dev,
  142. struct iio_chan_spec const *chan,
  143. int val,
  144. int val2,
  145. long mask)
  146. {
  147. struct ad8366_state *st = iio_priv(indio_dev);
  148. struct ad8366_info *inf = st->info;
  149. int code = 0, gain;
  150. int ret;
  151. /* Values in dB */
  152. if (val < 0)
  153. gain = (val * 1000) - (val2 / 1000);
  154. else
  155. gain = (val * 1000) + (val2 / 1000);
  156. if (gain > inf->gain_max || gain < inf->gain_min)
  157. return -EINVAL;
  158. switch (st->type) {
  159. case ID_AD8366:
  160. code = (gain - 4500) / 253;
  161. break;
  162. case ID_ADA4961:
  163. code = (15000 - gain) / 1000;
  164. break;
  165. case ID_ADL5240:
  166. code = ((gain - 500 - 20000) / 500) & 0x3F;
  167. break;
  168. case ID_HMC792:
  169. code = (abs(gain) / 500) & 0x3F;
  170. break;
  171. case ID_HMC1119:
  172. code = (abs(gain) / 250) & 0x7F;
  173. break;
  174. }
  175. mutex_lock(&st->lock);
  176. switch (mask) {
  177. case IIO_CHAN_INFO_HARDWAREGAIN:
  178. st->ch[chan->channel] = code;
  179. ret = ad8366_write(indio_dev, st->ch[0], st->ch[1]);
  180. break;
  181. default:
  182. ret = -EINVAL;
  183. }
  184. mutex_unlock(&st->lock);
  185. return ret;
  186. }
  187. static int ad8366_write_raw_get_fmt(struct iio_dev *indio_dev,
  188. struct iio_chan_spec const *chan,
  189. long mask)
  190. {
  191. switch (mask) {
  192. case IIO_CHAN_INFO_HARDWAREGAIN:
  193. return IIO_VAL_INT_PLUS_MICRO_DB;
  194. default:
  195. return -EINVAL;
  196. }
  197. }
  198. static const struct iio_info ad8366_info = {
  199. .read_raw = &ad8366_read_raw,
  200. .write_raw = &ad8366_write_raw,
  201. .write_raw_get_fmt = &ad8366_write_raw_get_fmt,
  202. };
  203. #define AD8366_CHAN(_channel) { \
  204. .type = IIO_VOLTAGE, \
  205. .output = 1, \
  206. .indexed = 1, \
  207. .channel = _channel, \
  208. .info_mask_separate = BIT(IIO_CHAN_INFO_HARDWAREGAIN),\
  209. }
  210. static const struct iio_chan_spec ad8366_channels[] = {
  211. AD8366_CHAN(0),
  212. AD8366_CHAN(1),
  213. };
  214. static const struct iio_chan_spec ada4961_channels[] = {
  215. AD8366_CHAN(0),
  216. };
  217. static int ad8366_probe(struct spi_device *spi)
  218. {
  219. struct iio_dev *indio_dev;
  220. struct ad8366_state *st;
  221. int ret;
  222. indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
  223. if (indio_dev == NULL)
  224. return -ENOMEM;
  225. st = iio_priv(indio_dev);
  226. st->reg = devm_regulator_get(&spi->dev, "vcc");
  227. if (!IS_ERR(st->reg)) {
  228. ret = regulator_enable(st->reg);
  229. if (ret)
  230. return ret;
  231. }
  232. spi_set_drvdata(spi, indio_dev);
  233. mutex_init(&st->lock);
  234. st->spi = spi;
  235. st->type = spi_get_device_id(spi)->driver_data;
  236. switch (st->type) {
  237. case ID_AD8366:
  238. indio_dev->channels = ad8366_channels;
  239. indio_dev->num_channels = ARRAY_SIZE(ad8366_channels);
  240. break;
  241. case ID_ADA4961:
  242. case ID_ADL5240:
  243. case ID_HMC792:
  244. case ID_HMC1119:
  245. st->reset_gpio = devm_gpiod_get_optional(&spi->dev, "reset", GPIOD_OUT_HIGH);
  246. if (IS_ERR(st->reset_gpio)) {
  247. ret = PTR_ERR(st->reset_gpio);
  248. goto error_disable_reg;
  249. }
  250. indio_dev->channels = ada4961_channels;
  251. indio_dev->num_channels = ARRAY_SIZE(ada4961_channels);
  252. break;
  253. default:
  254. dev_err(&spi->dev, "Invalid device ID\n");
  255. ret = -EINVAL;
  256. goto error_disable_reg;
  257. }
  258. st->info = &ad8366_infos[st->type];
  259. indio_dev->name = spi_get_device_id(spi)->name;
  260. indio_dev->info = &ad8366_info;
  261. indio_dev->modes = INDIO_DIRECT_MODE;
  262. ret = ad8366_write(indio_dev, 0, 0);
  263. if (ret < 0)
  264. goto error_disable_reg;
  265. ret = iio_device_register(indio_dev);
  266. if (ret)
  267. goto error_disable_reg;
  268. return 0;
  269. error_disable_reg:
  270. if (!IS_ERR(st->reg))
  271. regulator_disable(st->reg);
  272. return ret;
  273. }
  274. static void ad8366_remove(struct spi_device *spi)
  275. {
  276. struct iio_dev *indio_dev = spi_get_drvdata(spi);
  277. struct ad8366_state *st = iio_priv(indio_dev);
  278. struct regulator *reg = st->reg;
  279. iio_device_unregister(indio_dev);
  280. if (!IS_ERR(reg))
  281. regulator_disable(reg);
  282. }
  283. static const struct spi_device_id ad8366_id[] = {
  284. {"ad8366", ID_AD8366},
  285. {"ada4961", ID_ADA4961},
  286. {"adl5240", ID_ADL5240},
  287. {"hmc792a", ID_HMC792},
  288. {"hmc1119", ID_HMC1119},
  289. {}
  290. };
  291. MODULE_DEVICE_TABLE(spi, ad8366_id);
  292. static struct spi_driver ad8366_driver = {
  293. .driver = {
  294. .name = KBUILD_MODNAME,
  295. },
  296. .probe = ad8366_probe,
  297. .remove = ad8366_remove,
  298. .id_table = ad8366_id,
  299. };
  300. module_spi_driver(ad8366_driver);
  301. MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
  302. MODULE_DESCRIPTION("Analog Devices AD8366 and similar Gain Amplifiers");
  303. MODULE_LICENSE("GPL v2");