ad9739a.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /*
  3. * Analog Devices AD9739a SPI DAC driver
  4. *
  5. * Copyright 2015-2024 Analog Devices Inc.
  6. */
  7. #include <linux/bitfield.h>
  8. #include <linux/bits.h>
  9. #include <linux/clk.h>
  10. #include <linux/delay.h>
  11. #include <linux/device.h>
  12. #include <linux/err.h>
  13. #include <linux/errno.h>
  14. #include <linux/gpio/consumer.h>
  15. #include <linux/minmax.h>
  16. #include <linux/module.h>
  17. #include <linux/mod_devicetable.h>
  18. #include <linux/property.h>
  19. #include <linux/regmap.h>
  20. #include <linux/spi/spi.h>
  21. #include <linux/units.h>
  22. #include <linux/iio/backend.h>
  23. #include <linux/iio/iio.h>
  24. #include <linux/iio/types.h>
  25. #define AD9739A_REG_MODE 0
  26. #define AD9739A_RESET_MASK BIT(5)
  27. #define AD9739A_REG_FSC_1 0x06
  28. #define AD9739A_REG_FSC_2 0x07
  29. #define AD9739A_FSC_MSB GENMASK(1, 0)
  30. #define AD9739A_REG_DEC_CNT 0x8
  31. #define AD9739A_NORMAL_MODE 0
  32. #define AD9739A_MIXED_MODE 2
  33. #define AD9739A_DAC_DEC GENMASK(1, 0)
  34. #define AD9739A_REG_LVDS_REC_CNT1 0x10
  35. #define AD9739A_RCVR_LOOP_EN_MASK GENMASK(1, 0)
  36. #define AD9739A_REG_LVDS_REC_CNT4 0x13
  37. #define AD9739A_FINE_DEL_SKW_MASK GENMASK(3, 0)
  38. #define AD9739A_REG_LVDS_REC_STAT9 0x21
  39. #define AD9739A_RCVR_TRACK_AND_LOCK (BIT(3) | BIT(0))
  40. #define AD9739A_REG_CROSS_CNT1 0x22
  41. #define AD9739A_REG_CROSS_CNT2 0x23
  42. #define AD9739A_REG_PHS_DET 0x24
  43. #define AD9739A_REG_MU_DUTY 0x25
  44. #define AD9739A_REG_MU_CNT1 0x26
  45. #define AD9739A_MU_EN_MASK BIT(0)
  46. #define AD9739A_MU_GAIN_MASK BIT(1)
  47. #define AD9739A_REG_MU_CNT2 0x27
  48. #define AD9739A_REG_MU_CNT3 0x28
  49. #define AD9739A_REG_MU_CNT4 0x29
  50. #define AD9739A_MU_CNT4_DEFAULT 0xcb
  51. #define AD9739A_REG_MU_STAT1 0x2A
  52. #define AD9739A_MU_LOCK_MASK BIT(0)
  53. #define AD9739A_REG_ANA_CNT_1 0x32
  54. #define AD9739A_REG_ID 0x35
  55. #define AD9739A_ID 0x24
  56. #define AD9739A_REG_IS_RESERVED(reg) \
  57. ((reg) == 0x5 || (reg) == 0x9 || (reg) == 0x0E || (reg) == 0x0D || \
  58. (reg) == 0x2B || (reg) == 0x2C || (reg) == 0x34)
  59. #define AD9739A_FSC_MIN 8580
  60. #define AD9739A_FSC_MAX 31700
  61. #define AD9739A_FSC_RANGE (AD9739A_FSC_MAX - AD9739A_FSC_MIN + 1)
  62. #define AD9739A_MIN_DAC_CLK (1600 * MEGA)
  63. #define AD9739A_MAX_DAC_CLK (2500 * MEGA)
  64. #define AD9739A_DAC_CLK_RANGE (AD9739A_MAX_DAC_CLK - AD9739A_MIN_DAC_CLK + 1)
  65. /* as recommended by the datasheet */
  66. #define AD9739A_LOCK_N_TRIES 3
  67. struct ad9739a_state {
  68. struct iio_backend *back;
  69. struct regmap *regmap;
  70. unsigned long sample_rate;
  71. };
  72. static int ad9739a_oper_mode_get(struct iio_dev *indio_dev,
  73. const struct iio_chan_spec *chan)
  74. {
  75. struct ad9739a_state *st = iio_priv(indio_dev);
  76. u32 mode;
  77. int ret;
  78. ret = regmap_read(st->regmap, AD9739A_REG_DEC_CNT, &mode);
  79. if (ret)
  80. return ret;
  81. mode = FIELD_GET(AD9739A_DAC_DEC, mode);
  82. /* sanity check we get valid values from the HW */
  83. if (mode != AD9739A_NORMAL_MODE && mode != AD9739A_MIXED_MODE)
  84. return -EIO;
  85. if (!mode)
  86. return AD9739A_NORMAL_MODE;
  87. /*
  88. * We get 2 from the device but for IIO modes, that means 1. Hence the
  89. * minus 1.
  90. */
  91. return AD9739A_MIXED_MODE - 1;
  92. }
  93. static int ad9739a_oper_mode_set(struct iio_dev *indio_dev,
  94. const struct iio_chan_spec *chan, u32 mode)
  95. {
  96. struct ad9739a_state *st = iio_priv(indio_dev);
  97. /*
  98. * On the IIO interface we have 0 and 1 for mode. But for mixed_mode, we
  99. * need to write 2 in the device. That's what the below check is about.
  100. */
  101. if (mode == AD9739A_MIXED_MODE - 1)
  102. mode = AD9739A_MIXED_MODE;
  103. return regmap_update_bits(st->regmap, AD9739A_REG_DEC_CNT,
  104. AD9739A_DAC_DEC, mode);
  105. }
  106. static int ad9739a_read_raw(struct iio_dev *indio_dev,
  107. struct iio_chan_spec const *chan,
  108. int *val, int *val2, long mask)
  109. {
  110. struct ad9739a_state *st = iio_priv(indio_dev);
  111. switch (mask) {
  112. case IIO_CHAN_INFO_SAMP_FREQ:
  113. *val = st->sample_rate;
  114. *val2 = 0;
  115. return IIO_VAL_INT_64;
  116. default:
  117. return -EINVAL;
  118. }
  119. }
  120. static int ad9739a_buffer_preenable(struct iio_dev *indio_dev)
  121. {
  122. struct ad9739a_state *st = iio_priv(indio_dev);
  123. return iio_backend_data_source_set(st->back, 0, IIO_BACKEND_EXTERNAL);
  124. }
  125. static int ad9739a_buffer_postdisable(struct iio_dev *indio_dev)
  126. {
  127. struct ad9739a_state *st = iio_priv(indio_dev);
  128. return iio_backend_data_source_set(st->back, 0,
  129. IIO_BACKEND_INTERNAL_CONTINUOUS_WAVE);
  130. }
  131. static bool ad9739a_reg_accessible(struct device *dev, unsigned int reg)
  132. {
  133. if (AD9739A_REG_IS_RESERVED(reg))
  134. return false;
  135. if (reg > AD9739A_REG_MU_STAT1 && reg < AD9739A_REG_ANA_CNT_1)
  136. return false;
  137. return true;
  138. }
  139. static int ad9739a_reset(struct device *dev, const struct ad9739a_state *st)
  140. {
  141. struct gpio_desc *gpio;
  142. int ret;
  143. gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH);
  144. if (IS_ERR(gpio))
  145. return PTR_ERR(gpio);
  146. if (gpio) {
  147. /* minimum pulse width of 40ns */
  148. ndelay(40);
  149. gpiod_set_value_cansleep(gpio, 0);
  150. return 0;
  151. }
  152. /* bring all registers to their default state */
  153. ret = regmap_set_bits(st->regmap, AD9739A_REG_MODE, AD9739A_RESET_MASK);
  154. if (ret)
  155. return ret;
  156. ndelay(40);
  157. return regmap_clear_bits(st->regmap, AD9739A_REG_MODE,
  158. AD9739A_RESET_MASK);
  159. }
  160. /*
  161. * Recommended values (as per datasheet) for the dac clk common mode voltage
  162. * and Mu controller. Look at table 29.
  163. */
  164. static const struct reg_sequence ad9739a_clk_mu_ctrl[] = {
  165. /* DAC clk common mode voltage */
  166. { AD9739A_REG_CROSS_CNT1, 0x0f },
  167. { AD9739A_REG_CROSS_CNT2, 0x0f },
  168. /* Mu controller configuration */
  169. { AD9739A_REG_PHS_DET, 0x30 },
  170. { AD9739A_REG_MU_DUTY, 0x80 },
  171. { AD9739A_REG_MU_CNT2, 0x44 },
  172. { AD9739A_REG_MU_CNT3, 0x6c },
  173. };
  174. static int ad9739a_init(struct device *dev, const struct ad9739a_state *st)
  175. {
  176. unsigned int i = 0, lock, fsc;
  177. u32 fsc_raw;
  178. int ret;
  179. ret = regmap_multi_reg_write(st->regmap, ad9739a_clk_mu_ctrl,
  180. ARRAY_SIZE(ad9739a_clk_mu_ctrl));
  181. if (ret)
  182. return ret;
  183. /*
  184. * Try to get the Mu lock. Repeat the below steps AD9739A_LOCK_N_TRIES
  185. * (as specified by the datasheet) until we get the lock.
  186. */
  187. do {
  188. ret = regmap_write(st->regmap, AD9739A_REG_MU_CNT4,
  189. AD9739A_MU_CNT4_DEFAULT);
  190. if (ret)
  191. return ret;
  192. /* Enable the Mu controller search and track mode. */
  193. ret = regmap_write(st->regmap, AD9739A_REG_MU_CNT1,
  194. AD9739A_MU_EN_MASK | AD9739A_MU_GAIN_MASK);
  195. if (ret)
  196. return ret;
  197. /* Ensure the DLL loop is locked */
  198. ret = regmap_read_poll_timeout(st->regmap, AD9739A_REG_MU_STAT1,
  199. lock, lock & AD9739A_MU_LOCK_MASK,
  200. 0, 1000);
  201. if (ret && ret != -ETIMEDOUT)
  202. return ret;
  203. } while (ret && ++i < AD9739A_LOCK_N_TRIES);
  204. if (i == AD9739A_LOCK_N_TRIES)
  205. return dev_err_probe(dev, ret, "Mu lock timeout\n");
  206. /* Receiver tracking and lock. Same deal as the Mu controller */
  207. i = 0;
  208. do {
  209. ret = regmap_update_bits(st->regmap, AD9739A_REG_LVDS_REC_CNT4,
  210. AD9739A_FINE_DEL_SKW_MASK,
  211. FIELD_PREP(AD9739A_FINE_DEL_SKW_MASK, 2));
  212. if (ret)
  213. return ret;
  214. /* Disable the receiver and the loop. */
  215. ret = regmap_write(st->regmap, AD9739A_REG_LVDS_REC_CNT1, 0);
  216. if (ret)
  217. return ret;
  218. /*
  219. * Re-enable the loop so it falls out of lock and begins the
  220. * search/track routine again.
  221. */
  222. ret = regmap_set_bits(st->regmap, AD9739A_REG_LVDS_REC_CNT1,
  223. AD9739A_RCVR_LOOP_EN_MASK);
  224. if (ret)
  225. return ret;
  226. /* Ensure the DLL loop is locked */
  227. ret = regmap_read_poll_timeout(st->regmap,
  228. AD9739A_REG_LVDS_REC_STAT9, lock,
  229. lock == AD9739A_RCVR_TRACK_AND_LOCK,
  230. 0, 1000);
  231. if (ret && ret != -ETIMEDOUT)
  232. return ret;
  233. } while (ret && ++i < AD9739A_LOCK_N_TRIES);
  234. if (i == AD9739A_LOCK_N_TRIES)
  235. return dev_err_probe(dev, ret, "Receiver lock timeout\n");
  236. ret = device_property_read_u32(dev, "adi,full-scale-microamp", &fsc);
  237. if (ret && ret == -EINVAL)
  238. return 0;
  239. if (ret)
  240. return ret;
  241. if (!in_range(fsc, AD9739A_FSC_MIN, AD9739A_FSC_RANGE))
  242. return dev_err_probe(dev, -EINVAL,
  243. "Invalid full scale current(%u) [%u %u]\n",
  244. fsc, AD9739A_FSC_MIN, AD9739A_FSC_MAX);
  245. /*
  246. * IOUTFS is given by
  247. * Ioutfs = 0.0226 * FSC + 8.58
  248. * and is given in mA. Hence we'll have to multiply by 10 * MILLI in
  249. * order to get rid of the fractional.
  250. */
  251. fsc_raw = DIV_ROUND_CLOSEST(fsc * 10 - 85800, 226);
  252. ret = regmap_write(st->regmap, AD9739A_REG_FSC_1, fsc_raw & 0xff);
  253. if (ret)
  254. return ret;
  255. return regmap_update_bits(st->regmap, AD9739A_REG_FSC_2,
  256. AD9739A_FSC_MSB, fsc_raw >> 8);
  257. }
  258. static const char * const ad9739a_modes_avail[] = { "normal", "mixed-mode" };
  259. static const struct iio_enum ad9739a_modes = {
  260. .items = ad9739a_modes_avail,
  261. .num_items = ARRAY_SIZE(ad9739a_modes_avail),
  262. .get = ad9739a_oper_mode_get,
  263. .set = ad9739a_oper_mode_set,
  264. };
  265. static const struct iio_chan_spec_ext_info ad9739a_ext_info[] = {
  266. IIO_ENUM_AVAILABLE("operating_mode", IIO_SEPARATE, &ad9739a_modes),
  267. IIO_ENUM("operating_mode", IIO_SEPARATE, &ad9739a_modes),
  268. { }
  269. };
  270. /*
  271. * The reason for having two different channels is because we have, in reality,
  272. * two sources of data:
  273. * ALTVOLTAGE: It's a Continuous Wave that's internally generated by the
  274. * backend device.
  275. * VOLTAGE: It's the typical data we can have in a DAC device and the source
  276. * of it has nothing to do with the backend. The backend will only
  277. * forward it into our data interface to be sent out.
  278. */
  279. static struct iio_chan_spec ad9739a_channels[] = {
  280. {
  281. .type = IIO_ALTVOLTAGE,
  282. .indexed = 1,
  283. .output = 1,
  284. .scan_index = -1,
  285. },
  286. {
  287. .type = IIO_VOLTAGE,
  288. .indexed = 1,
  289. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  290. .output = 1,
  291. .ext_info = ad9739a_ext_info,
  292. .scan_type = {
  293. .sign = 's',
  294. .storagebits = 16,
  295. .realbits = 16,
  296. },
  297. }
  298. };
  299. static const struct iio_info ad9739a_info = {
  300. .read_raw = ad9739a_read_raw,
  301. };
  302. static const struct iio_buffer_setup_ops ad9739a_buffer_setup_ops = {
  303. .preenable = &ad9739a_buffer_preenable,
  304. .postdisable = &ad9739a_buffer_postdisable,
  305. };
  306. static const struct regmap_config ad9739a_regmap_config = {
  307. .reg_bits = 8,
  308. .val_bits = 8,
  309. .readable_reg = ad9739a_reg_accessible,
  310. .writeable_reg = ad9739a_reg_accessible,
  311. .max_register = AD9739A_REG_ID,
  312. };
  313. static int ad9739a_probe(struct spi_device *spi)
  314. {
  315. struct device *dev = &spi->dev;
  316. struct iio_dev *indio_dev;
  317. struct ad9739a_state *st;
  318. unsigned int id;
  319. struct clk *clk;
  320. int ret;
  321. indio_dev = devm_iio_device_alloc(dev, sizeof(*st));
  322. if (!indio_dev)
  323. return -ENOMEM;
  324. st = iio_priv(indio_dev);
  325. clk = devm_clk_get_enabled(dev, NULL);
  326. if (IS_ERR(clk))
  327. return dev_err_probe(dev, PTR_ERR(clk), "Could not get clkin\n");
  328. st->sample_rate = clk_get_rate(clk);
  329. if (!in_range(st->sample_rate, AD9739A_MIN_DAC_CLK,
  330. AD9739A_DAC_CLK_RANGE))
  331. return dev_err_probe(dev, -EINVAL,
  332. "Invalid dac clk range(%lu) [%lu %lu]\n",
  333. st->sample_rate, AD9739A_MIN_DAC_CLK,
  334. AD9739A_MAX_DAC_CLK);
  335. st->regmap = devm_regmap_init_spi(spi, &ad9739a_regmap_config);
  336. if (IS_ERR(st->regmap))
  337. return PTR_ERR(st->regmap);
  338. ret = regmap_read(st->regmap, AD9739A_REG_ID, &id);
  339. if (ret)
  340. return ret;
  341. if (id != AD9739A_ID)
  342. dev_warn(dev, "Unrecognized CHIP_ID 0x%X", id);
  343. ret = ad9739a_reset(dev, st);
  344. if (ret)
  345. return ret;
  346. ret = ad9739a_init(dev, st);
  347. if (ret)
  348. return ret;
  349. st->back = devm_iio_backend_get(dev, NULL);
  350. if (IS_ERR(st->back))
  351. return PTR_ERR(st->back);
  352. ret = devm_iio_backend_request_buffer(dev, st->back, indio_dev);
  353. if (ret)
  354. return ret;
  355. ret = iio_backend_extend_chan_spec(st->back, &ad9739a_channels[0]);
  356. if (ret)
  357. return ret;
  358. ret = iio_backend_set_sampling_freq(st->back, 0, st->sample_rate);
  359. if (ret)
  360. return ret;
  361. ret = devm_iio_backend_enable(dev, st->back);
  362. if (ret)
  363. return ret;
  364. indio_dev->name = "ad9739a";
  365. indio_dev->info = &ad9739a_info;
  366. indio_dev->channels = ad9739a_channels;
  367. indio_dev->num_channels = ARRAY_SIZE(ad9739a_channels);
  368. indio_dev->setup_ops = &ad9739a_buffer_setup_ops;
  369. ret = devm_iio_device_register(&spi->dev, indio_dev);
  370. if (ret)
  371. return ret;
  372. iio_backend_debugfs_add(st->back, indio_dev);
  373. return 0;
  374. }
  375. static const struct of_device_id ad9739a_of_match[] = {
  376. { .compatible = "adi,ad9739a" },
  377. {}
  378. };
  379. MODULE_DEVICE_TABLE(of, ad9739a_of_match);
  380. static const struct spi_device_id ad9739a_id[] = {
  381. {"ad9739a"},
  382. {}
  383. };
  384. MODULE_DEVICE_TABLE(spi, ad9739a_id);
  385. static struct spi_driver ad9739a_driver = {
  386. .driver = {
  387. .name = "ad9739a",
  388. .of_match_table = ad9739a_of_match,
  389. },
  390. .probe = ad9739a_probe,
  391. .id_table = ad9739a_id,
  392. };
  393. module_spi_driver(ad9739a_driver);
  394. MODULE_AUTHOR("Dragos Bogdan <dragos.bogdan@analog.com>");
  395. MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>");
  396. MODULE_DESCRIPTION("Analog Devices AD9739 DAC");
  397. MODULE_LICENSE("GPL");
  398. MODULE_IMPORT_NS(IIO_BACKEND);