ak8975.c 28 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * A sensor driver for the magnetometer AK8975.
  4. *
  5. * Magnetic compass sensor driver for monitoring magnetic flux information.
  6. *
  7. * Copyright (c) 2010, NVIDIA Corporation.
  8. */
  9. #include <linux/module.h>
  10. #include <linux/mod_devicetable.h>
  11. #include <linux/kernel.h>
  12. #include <linux/slab.h>
  13. #include <linux/i2c.h>
  14. #include <linux/interrupt.h>
  15. #include <linux/err.h>
  16. #include <linux/mutex.h>
  17. #include <linux/delay.h>
  18. #include <linux/bitops.h>
  19. #include <linux/gpio/consumer.h>
  20. #include <linux/regulator/consumer.h>
  21. #include <linux/pm_runtime.h>
  22. #include <linux/iio/iio.h>
  23. #include <linux/iio/sysfs.h>
  24. #include <linux/iio/buffer.h>
  25. #include <linux/iio/trigger.h>
  26. #include <linux/iio/trigger_consumer.h>
  27. #include <linux/iio/triggered_buffer.h>
  28. /*
  29. * Register definitions, as well as various shifts and masks to get at the
  30. * individual fields of the registers.
  31. */
  32. #define AK8975_REG_WIA 0x00
  33. #define AK8975_DEVICE_ID 0x48
  34. #define AK8975_REG_INFO 0x01
  35. #define AK8975_REG_ST1 0x02
  36. #define AK8975_REG_ST1_DRDY_SHIFT 0
  37. #define AK8975_REG_ST1_DRDY_MASK (1 << AK8975_REG_ST1_DRDY_SHIFT)
  38. #define AK8975_REG_HXL 0x03
  39. #define AK8975_REG_HXH 0x04
  40. #define AK8975_REG_HYL 0x05
  41. #define AK8975_REG_HYH 0x06
  42. #define AK8975_REG_HZL 0x07
  43. #define AK8975_REG_HZH 0x08
  44. #define AK8975_REG_ST2 0x09
  45. #define AK8975_REG_ST2_DERR_SHIFT 2
  46. #define AK8975_REG_ST2_DERR_MASK (1 << AK8975_REG_ST2_DERR_SHIFT)
  47. #define AK8975_REG_ST2_HOFL_SHIFT 3
  48. #define AK8975_REG_ST2_HOFL_MASK (1 << AK8975_REG_ST2_HOFL_SHIFT)
  49. #define AK8975_REG_CNTL 0x0A
  50. #define AK8975_REG_CNTL_MODE_SHIFT 0
  51. #define AK8975_REG_CNTL_MODE_MASK (0xF << AK8975_REG_CNTL_MODE_SHIFT)
  52. #define AK8975_REG_CNTL_MODE_POWER_DOWN 0x00
  53. #define AK8975_REG_CNTL_MODE_ONCE 0x01
  54. #define AK8975_REG_CNTL_MODE_SELF_TEST 0x08
  55. #define AK8975_REG_CNTL_MODE_FUSE_ROM 0x0F
  56. #define AK8975_REG_RSVC 0x0B
  57. #define AK8975_REG_ASTC 0x0C
  58. #define AK8975_REG_TS1 0x0D
  59. #define AK8975_REG_TS2 0x0E
  60. #define AK8975_REG_I2CDIS 0x0F
  61. #define AK8975_REG_ASAX 0x10
  62. #define AK8975_REG_ASAY 0x11
  63. #define AK8975_REG_ASAZ 0x12
  64. #define AK8975_MAX_REGS AK8975_REG_ASAZ
  65. /*
  66. * AK09912 Register definitions
  67. */
  68. #define AK09912_REG_WIA1 0x00
  69. #define AK09912_REG_WIA2 0x01
  70. #define AK09918_DEVICE_ID 0x0C
  71. #define AK09916_DEVICE_ID 0x09
  72. #define AK09912_DEVICE_ID 0x04
  73. #define AK09911_DEVICE_ID 0x05
  74. #define AK09911_REG_INFO1 0x02
  75. #define AK09911_REG_INFO2 0x03
  76. #define AK09912_REG_ST1 0x10
  77. #define AK09912_REG_ST1_DRDY_SHIFT 0
  78. #define AK09912_REG_ST1_DRDY_MASK (1 << AK09912_REG_ST1_DRDY_SHIFT)
  79. #define AK09912_REG_HXL 0x11
  80. #define AK09912_REG_HXH 0x12
  81. #define AK09912_REG_HYL 0x13
  82. #define AK09912_REG_HYH 0x14
  83. #define AK09912_REG_HZL 0x15
  84. #define AK09912_REG_HZH 0x16
  85. #define AK09912_REG_TMPS 0x17
  86. #define AK09912_REG_ST2 0x18
  87. #define AK09912_REG_ST2_HOFL_SHIFT 3
  88. #define AK09912_REG_ST2_HOFL_MASK (1 << AK09912_REG_ST2_HOFL_SHIFT)
  89. #define AK09912_REG_CNTL1 0x30
  90. #define AK09912_REG_CNTL2 0x31
  91. #define AK09912_REG_CNTL_MODE_POWER_DOWN 0x00
  92. #define AK09912_REG_CNTL_MODE_ONCE 0x01
  93. #define AK09912_REG_CNTL_MODE_SELF_TEST 0x10
  94. #define AK09912_REG_CNTL_MODE_FUSE_ROM 0x1F
  95. #define AK09912_REG_CNTL2_MODE_SHIFT 0
  96. #define AK09912_REG_CNTL2_MODE_MASK (0x1F << AK09912_REG_CNTL2_MODE_SHIFT)
  97. #define AK09912_REG_CNTL3 0x32
  98. #define AK09912_REG_TS1 0x33
  99. #define AK09912_REG_TS2 0x34
  100. #define AK09912_REG_TS3 0x35
  101. #define AK09912_REG_I2CDIS 0x36
  102. #define AK09912_REG_TS4 0x37
  103. #define AK09912_REG_ASAX 0x60
  104. #define AK09912_REG_ASAY 0x61
  105. #define AK09912_REG_ASAZ 0x62
  106. #define AK09912_MAX_REGS AK09912_REG_ASAZ
  107. /*
  108. * Miscellaneous values.
  109. */
  110. #define AK8975_MAX_CONVERSION_TIMEOUT 500
  111. #define AK8975_CONVERSION_DONE_POLL_TIME 10
  112. #define AK8975_DATA_READY_TIMEOUT ((100*HZ)/1000)
  113. /*
  114. * Precalculate scale factor (in Gauss units) for each axis and
  115. * store in the device data.
  116. *
  117. * This scale factor is axis-dependent, and is derived from 3 calibration
  118. * factors ASA(x), ASA(y), and ASA(z).
  119. *
  120. * These ASA values are read from the sensor device at start of day, and
  121. * cached in the device context struct.
  122. *
  123. * Adjusting the flux value with the sensitivity adjustment value should be
  124. * done via the following formula:
  125. *
  126. * Hadj = H * ( ( ( (ASA-128)*0.5 ) / 128 ) + 1 )
  127. * where H is the raw value, ASA is the sensitivity adjustment, and Hadj
  128. * is the resultant adjusted value.
  129. *
  130. * We reduce the formula to:
  131. *
  132. * Hadj = H * (ASA + 128) / 256
  133. *
  134. * H is in the range of -4096 to 4095. The magnetometer has a range of
  135. * +-1229uT. To go from the raw value to uT is:
  136. *
  137. * HuT = H * 1229/4096, or roughly, 3/10.
  138. *
  139. * Since 1uT = 0.01 gauss, our final scale factor becomes:
  140. *
  141. * Hadj = H * ((ASA + 128) / 256) * 3/10 * 1/100
  142. * Hadj = H * ((ASA + 128) * 0.003) / 256
  143. *
  144. * Since ASA doesn't change, we cache the resultant scale factor into the
  145. * device context in ak8975_setup().
  146. *
  147. * Given we use IIO_VAL_INT_PLUS_MICRO bit when displaying the scale, we
  148. * multiply the stored scale value by 1e6.
  149. */
  150. static long ak8975_raw_to_gauss(u16 data)
  151. {
  152. return (((long)data + 128) * 3000) / 256;
  153. }
  154. /*
  155. * For AK8963 and AK09911, same calculation, but the device is less sensitive:
  156. *
  157. * H is in the range of +-8190. The magnetometer has a range of
  158. * +-4912uT. To go from the raw value to uT is:
  159. *
  160. * HuT = H * 4912/8190, or roughly, 6/10, instead of 3/10.
  161. */
  162. static long ak8963_09911_raw_to_gauss(u16 data)
  163. {
  164. return (((long)data + 128) * 6000) / 256;
  165. }
  166. /*
  167. * For AK09912, same calculation, except the device is more sensitive:
  168. *
  169. * H is in the range of -32752 to 32752. The magnetometer has a range of
  170. * +-4912uT. To go from the raw value to uT is:
  171. *
  172. * HuT = H * 4912/32752, or roughly, 3/20, instead of 3/10.
  173. */
  174. static long ak09912_raw_to_gauss(u16 data)
  175. {
  176. return (((long)data + 128) * 1500) / 256;
  177. }
  178. /* Compatible Asahi Kasei Compass parts */
  179. enum asahi_compass_chipset {
  180. AK8975,
  181. AK8963,
  182. AK09911,
  183. AK09912,
  184. AK09916,
  185. AK09918,
  186. };
  187. enum ak_ctrl_reg_addr {
  188. ST1,
  189. ST2,
  190. CNTL,
  191. ASA_BASE,
  192. MAX_REGS,
  193. REGS_END,
  194. };
  195. enum ak_ctrl_reg_mask {
  196. ST1_DRDY,
  197. ST2_HOFL,
  198. ST2_DERR,
  199. CNTL_MODE,
  200. MASK_END,
  201. };
  202. enum ak_ctrl_mode {
  203. POWER_DOWN,
  204. MODE_ONCE,
  205. SELF_TEST,
  206. FUSE_ROM,
  207. MODE_END,
  208. };
  209. struct ak_def {
  210. enum asahi_compass_chipset type;
  211. long (*raw_to_gauss)(u16 data);
  212. u16 range;
  213. u8 ctrl_regs[REGS_END];
  214. u8 ctrl_masks[MASK_END];
  215. u8 ctrl_modes[MODE_END];
  216. u8 data_regs[3];
  217. };
  218. static const struct ak_def ak_def_array[] = {
  219. [AK8975] = {
  220. .type = AK8975,
  221. .raw_to_gauss = ak8975_raw_to_gauss,
  222. .range = 4096,
  223. .ctrl_regs = {
  224. AK8975_REG_ST1,
  225. AK8975_REG_ST2,
  226. AK8975_REG_CNTL,
  227. AK8975_REG_ASAX,
  228. AK8975_MAX_REGS},
  229. .ctrl_masks = {
  230. AK8975_REG_ST1_DRDY_MASK,
  231. AK8975_REG_ST2_HOFL_MASK,
  232. AK8975_REG_ST2_DERR_MASK,
  233. AK8975_REG_CNTL_MODE_MASK},
  234. .ctrl_modes = {
  235. AK8975_REG_CNTL_MODE_POWER_DOWN,
  236. AK8975_REG_CNTL_MODE_ONCE,
  237. AK8975_REG_CNTL_MODE_SELF_TEST,
  238. AK8975_REG_CNTL_MODE_FUSE_ROM},
  239. .data_regs = {
  240. AK8975_REG_HXL,
  241. AK8975_REG_HYL,
  242. AK8975_REG_HZL},
  243. },
  244. [AK8963] = {
  245. .type = AK8963,
  246. .raw_to_gauss = ak8963_09911_raw_to_gauss,
  247. .range = 8190,
  248. .ctrl_regs = {
  249. AK8975_REG_ST1,
  250. AK8975_REG_ST2,
  251. AK8975_REG_CNTL,
  252. AK8975_REG_ASAX,
  253. AK8975_MAX_REGS},
  254. .ctrl_masks = {
  255. AK8975_REG_ST1_DRDY_MASK,
  256. AK8975_REG_ST2_HOFL_MASK,
  257. 0,
  258. AK8975_REG_CNTL_MODE_MASK},
  259. .ctrl_modes = {
  260. AK8975_REG_CNTL_MODE_POWER_DOWN,
  261. AK8975_REG_CNTL_MODE_ONCE,
  262. AK8975_REG_CNTL_MODE_SELF_TEST,
  263. AK8975_REG_CNTL_MODE_FUSE_ROM},
  264. .data_regs = {
  265. AK8975_REG_HXL,
  266. AK8975_REG_HYL,
  267. AK8975_REG_HZL},
  268. },
  269. [AK09911] = {
  270. .type = AK09911,
  271. .raw_to_gauss = ak8963_09911_raw_to_gauss,
  272. .range = 8192,
  273. .ctrl_regs = {
  274. AK09912_REG_ST1,
  275. AK09912_REG_ST2,
  276. AK09912_REG_CNTL2,
  277. AK09912_REG_ASAX,
  278. AK09912_MAX_REGS},
  279. .ctrl_masks = {
  280. AK09912_REG_ST1_DRDY_MASK,
  281. AK09912_REG_ST2_HOFL_MASK,
  282. 0,
  283. AK09912_REG_CNTL2_MODE_MASK},
  284. .ctrl_modes = {
  285. AK09912_REG_CNTL_MODE_POWER_DOWN,
  286. AK09912_REG_CNTL_MODE_ONCE,
  287. AK09912_REG_CNTL_MODE_SELF_TEST,
  288. AK09912_REG_CNTL_MODE_FUSE_ROM},
  289. .data_regs = {
  290. AK09912_REG_HXL,
  291. AK09912_REG_HYL,
  292. AK09912_REG_HZL},
  293. },
  294. [AK09912] = {
  295. .type = AK09912,
  296. .raw_to_gauss = ak09912_raw_to_gauss,
  297. .range = 32752,
  298. .ctrl_regs = {
  299. AK09912_REG_ST1,
  300. AK09912_REG_ST2,
  301. AK09912_REG_CNTL2,
  302. AK09912_REG_ASAX,
  303. AK09912_MAX_REGS},
  304. .ctrl_masks = {
  305. AK09912_REG_ST1_DRDY_MASK,
  306. AK09912_REG_ST2_HOFL_MASK,
  307. 0,
  308. AK09912_REG_CNTL2_MODE_MASK},
  309. .ctrl_modes = {
  310. AK09912_REG_CNTL_MODE_POWER_DOWN,
  311. AK09912_REG_CNTL_MODE_ONCE,
  312. AK09912_REG_CNTL_MODE_SELF_TEST,
  313. AK09912_REG_CNTL_MODE_FUSE_ROM},
  314. .data_regs = {
  315. AK09912_REG_HXL,
  316. AK09912_REG_HYL,
  317. AK09912_REG_HZL},
  318. },
  319. [AK09916] = {
  320. .type = AK09916,
  321. .raw_to_gauss = ak09912_raw_to_gauss,
  322. .range = 32752,
  323. .ctrl_regs = {
  324. AK09912_REG_ST1,
  325. AK09912_REG_ST2,
  326. AK09912_REG_CNTL2,
  327. AK09912_REG_ASAX,
  328. AK09912_MAX_REGS},
  329. .ctrl_masks = {
  330. AK09912_REG_ST1_DRDY_MASK,
  331. AK09912_REG_ST2_HOFL_MASK,
  332. 0,
  333. AK09912_REG_CNTL2_MODE_MASK},
  334. .ctrl_modes = {
  335. AK09912_REG_CNTL_MODE_POWER_DOWN,
  336. AK09912_REG_CNTL_MODE_ONCE,
  337. AK09912_REG_CNTL_MODE_SELF_TEST,
  338. AK09912_REG_CNTL_MODE_FUSE_ROM},
  339. .data_regs = {
  340. AK09912_REG_HXL,
  341. AK09912_REG_HYL,
  342. AK09912_REG_HZL},
  343. },
  344. [AK09918] = {
  345. /* ak09918 is register compatible with ak09912 this is for avoid
  346. * unknown id messages.
  347. */
  348. .type = AK09918,
  349. .raw_to_gauss = ak09912_raw_to_gauss,
  350. .range = 32752,
  351. .ctrl_regs = {
  352. AK09912_REG_ST1,
  353. AK09912_REG_ST2,
  354. AK09912_REG_CNTL2,
  355. AK09912_REG_ASAX,
  356. AK09912_MAX_REGS},
  357. .ctrl_masks = {
  358. AK09912_REG_ST1_DRDY_MASK,
  359. AK09912_REG_ST2_HOFL_MASK,
  360. 0,
  361. AK09912_REG_CNTL2_MODE_MASK},
  362. .ctrl_modes = {
  363. AK09912_REG_CNTL_MODE_POWER_DOWN,
  364. AK09912_REG_CNTL_MODE_ONCE,
  365. AK09912_REG_CNTL_MODE_SELF_TEST,
  366. AK09912_REG_CNTL_MODE_FUSE_ROM},
  367. .data_regs = {
  368. AK09912_REG_HXL,
  369. AK09912_REG_HYL,
  370. AK09912_REG_HZL},
  371. }
  372. };
  373. /*
  374. * Per-instance context data for the device.
  375. */
  376. struct ak8975_data {
  377. struct i2c_client *client;
  378. const struct ak_def *def;
  379. struct mutex lock;
  380. u8 asa[3];
  381. long raw_to_gauss[3];
  382. struct gpio_desc *eoc_gpiod;
  383. struct gpio_desc *reset_gpiod;
  384. int eoc_irq;
  385. wait_queue_head_t data_ready_queue;
  386. unsigned long flags;
  387. u8 cntl_cache;
  388. struct iio_mount_matrix orientation;
  389. struct regulator *vdd;
  390. struct regulator *vid;
  391. /* Ensure natural alignment of timestamp */
  392. struct {
  393. s16 channels[3];
  394. s64 ts __aligned(8);
  395. } scan;
  396. };
  397. /* Enable attached power regulator if any. */
  398. static int ak8975_power_on(const struct ak8975_data *data)
  399. {
  400. int ret;
  401. ret = regulator_enable(data->vdd);
  402. if (ret) {
  403. dev_warn(&data->client->dev,
  404. "Failed to enable specified Vdd supply\n");
  405. return ret;
  406. }
  407. ret = regulator_enable(data->vid);
  408. if (ret) {
  409. dev_warn(&data->client->dev,
  410. "Failed to enable specified Vid supply\n");
  411. regulator_disable(data->vdd);
  412. return ret;
  413. }
  414. gpiod_set_value_cansleep(data->reset_gpiod, 0);
  415. /*
  416. * According to the datasheet the power supply rise time is 200us
  417. * and the minimum wait time before mode setting is 100us, in
  418. * total 300us. Add some margin and say minimum 500us here.
  419. */
  420. usleep_range(500, 1000);
  421. return 0;
  422. }
  423. /* Disable attached power regulator if any. */
  424. static void ak8975_power_off(const struct ak8975_data *data)
  425. {
  426. gpiod_set_value_cansleep(data->reset_gpiod, 1);
  427. regulator_disable(data->vid);
  428. regulator_disable(data->vdd);
  429. }
  430. /*
  431. * Return 0 if the i2c device is the one we expect.
  432. * return a negative error number otherwise
  433. */
  434. static int ak8975_who_i_am(struct i2c_client *client,
  435. enum asahi_compass_chipset type)
  436. {
  437. u8 wia_val[2];
  438. int ret;
  439. /*
  440. * Signature for each device:
  441. * Device | WIA1 | WIA2
  442. * AK09918 | DEVICE_ID_| AK09918_DEVICE_ID
  443. * AK09916 | DEVICE_ID_| AK09916_DEVICE_ID
  444. * AK09912 | DEVICE_ID | AK09912_DEVICE_ID
  445. * AK09911 | DEVICE_ID | AK09911_DEVICE_ID
  446. * AK8975 | DEVICE_ID | NA
  447. * AK8963 | DEVICE_ID | NA
  448. */
  449. ret = i2c_smbus_read_i2c_block_data_or_emulated(
  450. client, AK09912_REG_WIA1, 2, wia_val);
  451. if (ret < 0) {
  452. dev_err(&client->dev, "Error reading WIA\n");
  453. return ret;
  454. }
  455. if (wia_val[0] != AK8975_DEVICE_ID)
  456. return -ENODEV;
  457. switch (type) {
  458. case AK8975:
  459. case AK8963:
  460. return 0;
  461. case AK09911:
  462. if (wia_val[1] == AK09911_DEVICE_ID)
  463. return 0;
  464. break;
  465. case AK09912:
  466. if (wia_val[1] == AK09912_DEVICE_ID)
  467. return 0;
  468. break;
  469. case AK09916:
  470. if (wia_val[1] == AK09916_DEVICE_ID)
  471. return 0;
  472. break;
  473. case AK09918:
  474. if (wia_val[1] == AK09918_DEVICE_ID)
  475. return 0;
  476. break;
  477. }
  478. dev_info(&client->dev, "Device ID %x is unknown.\n", wia_val[1]);
  479. /*
  480. * Let driver to probe on unknown id for support more register
  481. * compatible variants.
  482. */
  483. return 0;
  484. }
  485. /*
  486. * Helper function to write to CNTL register.
  487. */
  488. static int ak8975_set_mode(struct ak8975_data *data, enum ak_ctrl_mode mode)
  489. {
  490. u8 regval;
  491. int ret;
  492. regval = (data->cntl_cache & ~data->def->ctrl_masks[CNTL_MODE]) |
  493. data->def->ctrl_modes[mode];
  494. ret = i2c_smbus_write_byte_data(data->client,
  495. data->def->ctrl_regs[CNTL], regval);
  496. if (ret < 0) {
  497. return ret;
  498. }
  499. data->cntl_cache = regval;
  500. /* After mode change wait atleast 100us */
  501. usleep_range(100, 500);
  502. return 0;
  503. }
  504. /*
  505. * Handle data ready irq
  506. */
  507. static irqreturn_t ak8975_irq_handler(int irq, void *data)
  508. {
  509. struct ak8975_data *ak8975 = data;
  510. set_bit(0, &ak8975->flags);
  511. wake_up(&ak8975->data_ready_queue);
  512. return IRQ_HANDLED;
  513. }
  514. /*
  515. * Install data ready interrupt handler
  516. */
  517. static int ak8975_setup_irq(struct ak8975_data *data)
  518. {
  519. struct i2c_client *client = data->client;
  520. int rc;
  521. int irq;
  522. init_waitqueue_head(&data->data_ready_queue);
  523. clear_bit(0, &data->flags);
  524. if (client->irq)
  525. irq = client->irq;
  526. else
  527. irq = gpiod_to_irq(data->eoc_gpiod);
  528. rc = devm_request_irq(&client->dev, irq, ak8975_irq_handler,
  529. IRQF_TRIGGER_RISING | IRQF_ONESHOT,
  530. dev_name(&client->dev), data);
  531. if (rc < 0) {
  532. dev_err(&client->dev, "irq %d request failed: %d\n", irq, rc);
  533. return rc;
  534. }
  535. data->eoc_irq = irq;
  536. return rc;
  537. }
  538. /*
  539. * Perform some start-of-day setup, including reading the asa calibration
  540. * values and caching them.
  541. */
  542. static int ak8975_setup(struct i2c_client *client)
  543. {
  544. struct iio_dev *indio_dev = i2c_get_clientdata(client);
  545. struct ak8975_data *data = iio_priv(indio_dev);
  546. int ret;
  547. /* Write the fused rom access mode. */
  548. ret = ak8975_set_mode(data, FUSE_ROM);
  549. if (ret < 0) {
  550. dev_err(&client->dev, "Error in setting fuse access mode\n");
  551. return ret;
  552. }
  553. /* Get asa data and store in the device data. */
  554. ret = i2c_smbus_read_i2c_block_data_or_emulated(
  555. client, data->def->ctrl_regs[ASA_BASE],
  556. 3, data->asa);
  557. if (ret < 0) {
  558. dev_err(&client->dev, "Not able to read asa data\n");
  559. return ret;
  560. }
  561. /* After reading fuse ROM data set power-down mode */
  562. ret = ak8975_set_mode(data, POWER_DOWN);
  563. if (ret < 0) {
  564. dev_err(&client->dev, "Error in setting power-down mode\n");
  565. return ret;
  566. }
  567. if (data->eoc_gpiod || client->irq > 0) {
  568. ret = ak8975_setup_irq(data);
  569. if (ret < 0) {
  570. dev_err(&client->dev,
  571. "Error setting data ready interrupt\n");
  572. return ret;
  573. }
  574. }
  575. data->raw_to_gauss[0] = data->def->raw_to_gauss(data->asa[0]);
  576. data->raw_to_gauss[1] = data->def->raw_to_gauss(data->asa[1]);
  577. data->raw_to_gauss[2] = data->def->raw_to_gauss(data->asa[2]);
  578. return 0;
  579. }
  580. static int wait_conversion_complete_gpio(struct ak8975_data *data)
  581. {
  582. struct i2c_client *client = data->client;
  583. u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
  584. int ret;
  585. /* Wait for the conversion to complete. */
  586. while (timeout_ms) {
  587. msleep(AK8975_CONVERSION_DONE_POLL_TIME);
  588. if (gpiod_get_value(data->eoc_gpiod))
  589. break;
  590. timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
  591. }
  592. if (!timeout_ms) {
  593. dev_err(&client->dev, "Conversion timeout happened\n");
  594. return -EINVAL;
  595. }
  596. ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST1]);
  597. if (ret < 0)
  598. dev_err(&client->dev, "Error in reading ST1\n");
  599. return ret;
  600. }
  601. static int wait_conversion_complete_polled(struct ak8975_data *data)
  602. {
  603. struct i2c_client *client = data->client;
  604. u8 read_status;
  605. u32 timeout_ms = AK8975_MAX_CONVERSION_TIMEOUT;
  606. int ret;
  607. /* Wait for the conversion to complete. */
  608. while (timeout_ms) {
  609. msleep(AK8975_CONVERSION_DONE_POLL_TIME);
  610. ret = i2c_smbus_read_byte_data(client,
  611. data->def->ctrl_regs[ST1]);
  612. if (ret < 0) {
  613. dev_err(&client->dev, "Error in reading ST1\n");
  614. return ret;
  615. }
  616. read_status = ret;
  617. if (read_status)
  618. break;
  619. timeout_ms -= AK8975_CONVERSION_DONE_POLL_TIME;
  620. }
  621. if (!timeout_ms) {
  622. dev_err(&client->dev, "Conversion timeout happened\n");
  623. return -EINVAL;
  624. }
  625. return read_status;
  626. }
  627. /* Returns 0 if the end of conversion interrupt occured or -ETIME otherwise */
  628. static int wait_conversion_complete_interrupt(struct ak8975_data *data)
  629. {
  630. int ret;
  631. ret = wait_event_timeout(data->data_ready_queue,
  632. test_bit(0, &data->flags),
  633. AK8975_DATA_READY_TIMEOUT);
  634. clear_bit(0, &data->flags);
  635. return ret > 0 ? 0 : -ETIME;
  636. }
  637. static int ak8975_start_read_axis(struct ak8975_data *data,
  638. const struct i2c_client *client)
  639. {
  640. /* Set up the device for taking a sample. */
  641. int ret = ak8975_set_mode(data, MODE_ONCE);
  642. if (ret < 0) {
  643. dev_err(&client->dev, "Error in setting operating mode\n");
  644. return ret;
  645. }
  646. /* Wait for the conversion to complete. */
  647. if (data->eoc_irq)
  648. ret = wait_conversion_complete_interrupt(data);
  649. else if (data->eoc_gpiod)
  650. ret = wait_conversion_complete_gpio(data);
  651. else
  652. ret = wait_conversion_complete_polled(data);
  653. if (ret < 0)
  654. return ret;
  655. /* Return with zero if the data is ready. */
  656. return !data->def->ctrl_regs[ST1_DRDY];
  657. }
  658. /* Retrieve raw flux value for one of the x, y, or z axis. */
  659. static int ak8975_read_axis(struct iio_dev *indio_dev, int index, int *val)
  660. {
  661. struct ak8975_data *data = iio_priv(indio_dev);
  662. const struct i2c_client *client = data->client;
  663. const struct ak_def *def = data->def;
  664. __le16 rval;
  665. u16 buff;
  666. int ret;
  667. pm_runtime_get_sync(&data->client->dev);
  668. mutex_lock(&data->lock);
  669. ret = ak8975_start_read_axis(data, client);
  670. if (ret)
  671. goto exit;
  672. ret = i2c_smbus_read_i2c_block_data_or_emulated(
  673. client, def->data_regs[index],
  674. sizeof(rval), (u8*)&rval);
  675. if (ret < 0)
  676. goto exit;
  677. /* Read out ST2 for release lock on measurment data. */
  678. ret = i2c_smbus_read_byte_data(client, data->def->ctrl_regs[ST2]);
  679. if (ret < 0) {
  680. dev_err(&client->dev, "Error in reading ST2\n");
  681. goto exit;
  682. }
  683. if (ret & (data->def->ctrl_masks[ST2_DERR] |
  684. data->def->ctrl_masks[ST2_HOFL])) {
  685. dev_err(&client->dev, "ST2 status error 0x%x\n", ret);
  686. ret = -EINVAL;
  687. goto exit;
  688. }
  689. mutex_unlock(&data->lock);
  690. pm_runtime_mark_last_busy(&data->client->dev);
  691. pm_runtime_put_autosuspend(&data->client->dev);
  692. /* Swap bytes and convert to valid range. */
  693. buff = le16_to_cpu(rval);
  694. *val = clamp_t(s16, buff, -def->range, def->range);
  695. return IIO_VAL_INT;
  696. exit:
  697. mutex_unlock(&data->lock);
  698. dev_err(&client->dev, "Error in reading axis\n");
  699. return ret;
  700. }
  701. static int ak8975_read_raw(struct iio_dev *indio_dev,
  702. struct iio_chan_spec const *chan,
  703. int *val, int *val2,
  704. long mask)
  705. {
  706. struct ak8975_data *data = iio_priv(indio_dev);
  707. switch (mask) {
  708. case IIO_CHAN_INFO_RAW:
  709. return ak8975_read_axis(indio_dev, chan->address, val);
  710. case IIO_CHAN_INFO_SCALE:
  711. *val = 0;
  712. *val2 = data->raw_to_gauss[chan->address];
  713. return IIO_VAL_INT_PLUS_MICRO;
  714. }
  715. return -EINVAL;
  716. }
  717. static const struct iio_mount_matrix *
  718. ak8975_get_mount_matrix(const struct iio_dev *indio_dev,
  719. const struct iio_chan_spec *chan)
  720. {
  721. struct ak8975_data *data = iio_priv(indio_dev);
  722. return &data->orientation;
  723. }
  724. static const struct iio_chan_spec_ext_info ak8975_ext_info[] = {
  725. IIO_MOUNT_MATRIX(IIO_SHARED_BY_DIR, ak8975_get_mount_matrix),
  726. { }
  727. };
  728. #define AK8975_CHANNEL(axis, index) \
  729. { \
  730. .type = IIO_MAGN, \
  731. .modified = 1, \
  732. .channel2 = IIO_MOD_##axis, \
  733. .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
  734. BIT(IIO_CHAN_INFO_SCALE), \
  735. .address = index, \
  736. .scan_index = index, \
  737. .scan_type = { \
  738. .sign = 's', \
  739. .realbits = 16, \
  740. .storagebits = 16, \
  741. .endianness = IIO_CPU \
  742. }, \
  743. .ext_info = ak8975_ext_info, \
  744. }
  745. static const struct iio_chan_spec ak8975_channels[] = {
  746. AK8975_CHANNEL(X, 0), AK8975_CHANNEL(Y, 1), AK8975_CHANNEL(Z, 2),
  747. IIO_CHAN_SOFT_TIMESTAMP(3),
  748. };
  749. static const unsigned long ak8975_scan_masks[] = { 0x7, 0 };
  750. static const struct iio_info ak8975_info = {
  751. .read_raw = &ak8975_read_raw,
  752. };
  753. static void ak8975_fill_buffer(struct iio_dev *indio_dev)
  754. {
  755. struct ak8975_data *data = iio_priv(indio_dev);
  756. const struct i2c_client *client = data->client;
  757. const struct ak_def *def = data->def;
  758. int ret;
  759. __le16 fval[3];
  760. mutex_lock(&data->lock);
  761. ret = ak8975_start_read_axis(data, client);
  762. if (ret)
  763. goto unlock;
  764. /*
  765. * For each axis, read the flux value from the appropriate register
  766. * (the register is specified in the iio device attributes).
  767. */
  768. ret = i2c_smbus_read_i2c_block_data_or_emulated(client,
  769. def->data_regs[0],
  770. 3 * sizeof(fval[0]),
  771. (u8 *)fval);
  772. if (ret < 0)
  773. goto unlock;
  774. mutex_unlock(&data->lock);
  775. /* Clamp to valid range. */
  776. data->scan.channels[0] = clamp_t(s16, le16_to_cpu(fval[0]), -def->range, def->range);
  777. data->scan.channels[1] = clamp_t(s16, le16_to_cpu(fval[1]), -def->range, def->range);
  778. data->scan.channels[2] = clamp_t(s16, le16_to_cpu(fval[2]), -def->range, def->range);
  779. iio_push_to_buffers_with_timestamp(indio_dev, &data->scan,
  780. iio_get_time_ns(indio_dev));
  781. return;
  782. unlock:
  783. mutex_unlock(&data->lock);
  784. dev_err(&client->dev, "Error in reading axes block\n");
  785. }
  786. static irqreturn_t ak8975_handle_trigger(int irq, void *p)
  787. {
  788. const struct iio_poll_func *pf = p;
  789. struct iio_dev *indio_dev = pf->indio_dev;
  790. ak8975_fill_buffer(indio_dev);
  791. iio_trigger_notify_done(indio_dev->trig);
  792. return IRQ_HANDLED;
  793. }
  794. static int ak8975_probe(struct i2c_client *client)
  795. {
  796. const struct i2c_device_id *id = i2c_client_get_device_id(client);
  797. struct ak8975_data *data;
  798. struct iio_dev *indio_dev;
  799. struct gpio_desc *eoc_gpiod;
  800. struct gpio_desc *reset_gpiod;
  801. int err;
  802. const char *name = NULL;
  803. /*
  804. * Grab and set up the supplied GPIO.
  805. * We may not have a GPIO based IRQ to scan, that is fine, we will
  806. * poll if so.
  807. */
  808. eoc_gpiod = devm_gpiod_get_optional(&client->dev, NULL, GPIOD_IN);
  809. if (IS_ERR(eoc_gpiod))
  810. return PTR_ERR(eoc_gpiod);
  811. if (eoc_gpiod)
  812. gpiod_set_consumer_name(eoc_gpiod, "ak_8975");
  813. /*
  814. * According to AK09911 datasheet, if reset GPIO is provided then
  815. * deassert reset on ak8975_power_on() and assert reset on
  816. * ak8975_power_off().
  817. */
  818. reset_gpiod = devm_gpiod_get_optional(&client->dev,
  819. "reset", GPIOD_OUT_HIGH);
  820. if (IS_ERR(reset_gpiod))
  821. return PTR_ERR(reset_gpiod);
  822. /* Register with IIO */
  823. indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data));
  824. if (indio_dev == NULL)
  825. return -ENOMEM;
  826. data = iio_priv(indio_dev);
  827. i2c_set_clientdata(client, indio_dev);
  828. data->client = client;
  829. data->eoc_gpiod = eoc_gpiod;
  830. data->reset_gpiod = reset_gpiod;
  831. data->eoc_irq = 0;
  832. err = iio_read_mount_matrix(&client->dev, &data->orientation);
  833. if (err)
  834. return err;
  835. /* id will be NULL when enumerated via ACPI */
  836. data->def = i2c_get_match_data(client);
  837. if (!data->def)
  838. return -ENODEV;
  839. /* If enumerated via firmware node, fix the ABI */
  840. if (dev_fwnode(&client->dev))
  841. name = dev_name(&client->dev);
  842. else
  843. name = id->name;
  844. /* Fetch the regulators */
  845. data->vdd = devm_regulator_get(&client->dev, "vdd");
  846. if (IS_ERR(data->vdd))
  847. return PTR_ERR(data->vdd);
  848. data->vid = devm_regulator_get(&client->dev, "vid");
  849. if (IS_ERR(data->vid))
  850. return PTR_ERR(data->vid);
  851. err = ak8975_power_on(data);
  852. if (err)
  853. return err;
  854. err = ak8975_who_i_am(client, data->def->type);
  855. if (err < 0) {
  856. dev_err(&client->dev, "Unexpected device\n");
  857. goto power_off;
  858. }
  859. dev_dbg(&client->dev, "Asahi compass chip %s\n", name);
  860. /* Perform some basic start-of-day setup of the device. */
  861. err = ak8975_setup(client);
  862. if (err < 0) {
  863. dev_err(&client->dev, "%s initialization fails\n", name);
  864. goto power_off;
  865. }
  866. mutex_init(&data->lock);
  867. indio_dev->channels = ak8975_channels;
  868. indio_dev->num_channels = ARRAY_SIZE(ak8975_channels);
  869. indio_dev->info = &ak8975_info;
  870. indio_dev->available_scan_masks = ak8975_scan_masks;
  871. indio_dev->modes = INDIO_DIRECT_MODE;
  872. indio_dev->name = name;
  873. err = iio_triggered_buffer_setup(indio_dev, NULL, ak8975_handle_trigger,
  874. NULL);
  875. if (err) {
  876. dev_err(&client->dev, "triggered buffer setup failed\n");
  877. goto power_off;
  878. }
  879. err = iio_device_register(indio_dev);
  880. if (err) {
  881. dev_err(&client->dev, "device register failed\n");
  882. goto cleanup_buffer;
  883. }
  884. /* Enable runtime PM */
  885. pm_runtime_get_noresume(&client->dev);
  886. pm_runtime_set_active(&client->dev);
  887. pm_runtime_enable(&client->dev);
  888. /*
  889. * The device comes online in 500us, so add two orders of magnitude
  890. * of delay before autosuspending: 50 ms.
  891. */
  892. pm_runtime_set_autosuspend_delay(&client->dev, 50);
  893. pm_runtime_use_autosuspend(&client->dev);
  894. pm_runtime_put(&client->dev);
  895. return 0;
  896. cleanup_buffer:
  897. iio_triggered_buffer_cleanup(indio_dev);
  898. power_off:
  899. ak8975_power_off(data);
  900. return err;
  901. }
  902. static void ak8975_remove(struct i2c_client *client)
  903. {
  904. struct iio_dev *indio_dev = i2c_get_clientdata(client);
  905. struct ak8975_data *data = iio_priv(indio_dev);
  906. pm_runtime_get_sync(&client->dev);
  907. pm_runtime_put_noidle(&client->dev);
  908. pm_runtime_disable(&client->dev);
  909. iio_device_unregister(indio_dev);
  910. iio_triggered_buffer_cleanup(indio_dev);
  911. ak8975_set_mode(data, POWER_DOWN);
  912. ak8975_power_off(data);
  913. }
  914. static int ak8975_runtime_suspend(struct device *dev)
  915. {
  916. struct i2c_client *client = to_i2c_client(dev);
  917. struct iio_dev *indio_dev = i2c_get_clientdata(client);
  918. struct ak8975_data *data = iio_priv(indio_dev);
  919. int ret;
  920. /* Set the device in power down if it wasn't already */
  921. ret = ak8975_set_mode(data, POWER_DOWN);
  922. if (ret < 0) {
  923. dev_err(&client->dev, "Error in setting power-down mode\n");
  924. return ret;
  925. }
  926. /* Next cut the regulators */
  927. ak8975_power_off(data);
  928. return 0;
  929. }
  930. static int ak8975_runtime_resume(struct device *dev)
  931. {
  932. struct i2c_client *client = to_i2c_client(dev);
  933. struct iio_dev *indio_dev = i2c_get_clientdata(client);
  934. struct ak8975_data *data = iio_priv(indio_dev);
  935. int ret;
  936. /* Take up the regulators */
  937. ak8975_power_on(data);
  938. /*
  939. * We come up in powered down mode, the reading routines will
  940. * put us in the mode to read values later.
  941. */
  942. ret = ak8975_set_mode(data, POWER_DOWN);
  943. if (ret < 0) {
  944. dev_err(&client->dev, "Error in setting power-down mode\n");
  945. return ret;
  946. }
  947. return 0;
  948. }
  949. static DEFINE_RUNTIME_DEV_PM_OPS(ak8975_dev_pm_ops, ak8975_runtime_suspend,
  950. ak8975_runtime_resume, NULL);
  951. static const struct acpi_device_id ak_acpi_match[] = {
  952. {"AK8963", (kernel_ulong_t)&ak_def_array[AK8963] },
  953. {"AK8975", (kernel_ulong_t)&ak_def_array[AK8975] },
  954. {"AK009911", (kernel_ulong_t)&ak_def_array[AK09911] },
  955. {"AK09911", (kernel_ulong_t)&ak_def_array[AK09911] },
  956. {"AK09912", (kernel_ulong_t)&ak_def_array[AK09912] },
  957. {"AKM9911", (kernel_ulong_t)&ak_def_array[AK09911] },
  958. {"INVN6500", (kernel_ulong_t)&ak_def_array[AK8963] },
  959. { }
  960. };
  961. MODULE_DEVICE_TABLE(acpi, ak_acpi_match);
  962. static const struct i2c_device_id ak8975_id[] = {
  963. {"AK8963", (kernel_ulong_t)&ak_def_array[AK8963] },
  964. {"ak8963", (kernel_ulong_t)&ak_def_array[AK8963] },
  965. {"ak8975", (kernel_ulong_t)&ak_def_array[AK8975] },
  966. {"ak09911", (kernel_ulong_t)&ak_def_array[AK09911] },
  967. {"ak09912", (kernel_ulong_t)&ak_def_array[AK09912] },
  968. {"ak09916", (kernel_ulong_t)&ak_def_array[AK09916] },
  969. {"ak09918", (kernel_ulong_t)&ak_def_array[AK09918] },
  970. {}
  971. };
  972. MODULE_DEVICE_TABLE(i2c, ak8975_id);
  973. static const struct of_device_id ak8975_of_match[] = {
  974. { .compatible = "asahi-kasei,ak8975", .data = &ak_def_array[AK8975] },
  975. { .compatible = "ak8975", .data = &ak_def_array[AK8975] },
  976. { .compatible = "asahi-kasei,ak8963", .data = &ak_def_array[AK8963] },
  977. { .compatible = "ak8963", .data = &ak_def_array[AK8963] },
  978. { .compatible = "asahi-kasei,ak09911", .data = &ak_def_array[AK09911] },
  979. { .compatible = "ak09911", .data = &ak_def_array[AK09911] },
  980. { .compatible = "asahi-kasei,ak09912", .data = &ak_def_array[AK09912] },
  981. { .compatible = "ak09912", .data = &ak_def_array[AK09912] },
  982. { .compatible = "asahi-kasei,ak09916", .data = &ak_def_array[AK09916] },
  983. { .compatible = "asahi-kasei,ak09918", .data = &ak_def_array[AK09918] },
  984. {}
  985. };
  986. MODULE_DEVICE_TABLE(of, ak8975_of_match);
  987. static struct i2c_driver ak8975_driver = {
  988. .driver = {
  989. .name = "ak8975",
  990. .pm = pm_ptr(&ak8975_dev_pm_ops),
  991. .of_match_table = ak8975_of_match,
  992. .acpi_match_table = ak_acpi_match,
  993. },
  994. .probe = ak8975_probe,
  995. .remove = ak8975_remove,
  996. .id_table = ak8975_id,
  997. };
  998. module_i2c_driver(ak8975_driver);
  999. MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
  1000. MODULE_DESCRIPTION("AK8975 magnetometer driver");
  1001. MODULE_LICENSE("GPL");