mlx90632.c 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor
  4. *
  5. * Copyright (c) 2017 Melexis <cmo@melexis.com>
  6. *
  7. * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor
  8. */
  9. #include <linux/bitfield.h>
  10. #include <linux/delay.h>
  11. #include <linux/device.h>
  12. #include <linux/err.h>
  13. #include <linux/gpio/consumer.h>
  14. #include <linux/i2c.h>
  15. #include <linux/iopoll.h>
  16. #include <linux/jiffies.h>
  17. #include <linux/kernel.h>
  18. #include <linux/limits.h>
  19. #include <linux/mod_devicetable.h>
  20. #include <linux/module.h>
  21. #include <linux/math64.h>
  22. #include <linux/pm_runtime.h>
  23. #include <linux/regmap.h>
  24. #include <linux/regulator/consumer.h>
  25. #include <linux/iio/iio.h>
  26. #include <linux/iio/sysfs.h>
  27. /* Memory sections addresses */
  28. #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */
  29. #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */
  30. /* EEPROM addresses - used at startup */
  31. #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */
  32. #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */
  33. #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */
  34. #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */
  35. #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */
  36. #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */
  37. #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */
  38. #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */
  39. #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */
  40. #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */
  41. #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */
  42. #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */
  43. #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */
  44. #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */
  45. #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */
  46. #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */
  47. #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */
  48. #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */
  49. #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */
  50. #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */
  51. #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */
  52. #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */
  53. #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */
  54. #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */
  55. #define MLX90632_EE_MEDICAL_MEAS1 0x24E1 /* Medical measurement 1 16bit */
  56. #define MLX90632_EE_MEDICAL_MEAS2 0x24E2 /* Medical measurement 2 16bit */
  57. #define MLX90632_EE_EXTENDED_MEAS1 0x24F1 /* Extended measurement 1 16bit */
  58. #define MLX90632_EE_EXTENDED_MEAS2 0x24F2 /* Extended measurement 2 16bit */
  59. #define MLX90632_EE_EXTENDED_MEAS3 0x24F3 /* Extended measurement 3 16bit */
  60. /* Register addresses - volatile */
  61. #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */
  62. /* Control register address - volatile */
  63. #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */
  64. #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */
  65. #define MLX90632_CFG_MTYP_MASK GENMASK(8, 4) /* Meas select Mask */
  66. #define MLX90632_CFG_SOB_MASK BIT(11)
  67. /* PowerModes statuses */
  68. #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1)
  69. #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */
  70. #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step */
  71. #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */
  72. #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous */
  73. #define MLX90632_EE_RR GENMASK(10, 8) /* Only Refresh Rate bits */
  74. #define MLX90632_REFRESH_RATE(ee_val) FIELD_GET(MLX90632_EE_RR, ee_val)
  75. /* Extract Refresh Rate from ee register */
  76. #define MLX90632_REFRESH_RATE_STATUS(refresh_rate) (refresh_rate << 8)
  77. /* Measurement types */
  78. #define MLX90632_MTYP_MEDICAL 0
  79. #define MLX90632_MTYP_EXTENDED 17
  80. /* Measurement type select*/
  81. #define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4)
  82. #define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL)
  83. #define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED)
  84. /* I2C command register - volatile */
  85. #define MLX90632_REG_I2C_CMD 0x3005 /* I2C command Register address */
  86. /* Device status register - volatile */
  87. #define MLX90632_REG_STATUS 0x3fff /* Device status register */
  88. #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */
  89. #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */
  90. #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */
  91. #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */
  92. #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */
  93. /* RAM_MEAS address-es for each channel */
  94. #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num)
  95. #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1)
  96. #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2)
  97. /* Name important RAM_MEAS channels */
  98. #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17)
  99. #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18)
  100. #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17)
  101. #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17)
  102. #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18)
  103. #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18)
  104. #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19)
  105. #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19)
  106. /* Magic constants */
  107. #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */
  108. #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */
  109. #define MLX90632_ID_EXTENDED 0x0505 /* EEPROM DSPv5 Extended range device id */
  110. #define MLX90632_ID_MASK GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */
  111. #define MLX90632_DSP_VERSION 5 /* DSP version */
  112. #define MLX90632_DSP_MASK GENMASK(7, 0) /* DSP version in EE_VERSION */
  113. #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */
  114. #define MLX90632_REF_12 12LL /* ResCtrlRef value of Ch 1 or Ch 2 */
  115. #define MLX90632_REF_3 12LL /* ResCtrlRef value of Channel 3 */
  116. #define MLX90632_MAX_MEAS_NUM 31 /* Maximum measurements in list */
  117. #define MLX90632_SLEEP_DELAY_MS 6000 /* Autosleep delay */
  118. #define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */
  119. #define MLX90632_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */
  120. /**
  121. * struct mlx90632_data - private data for the MLX90632 device
  122. * @client: I2C client of the device
  123. * @lock: Internal mutex for multiple reads for single measurement
  124. * @regmap: Regmap of the device
  125. * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1.
  126. * @mtyp: Measurement type physical sensor configuration for extended range
  127. * calculations
  128. * @object_ambient_temperature: Ambient temperature at object (might differ of
  129. * the ambient temperature of sensor.
  130. * @regulator: Regulator of the device
  131. * @powerstatus: Current POWER status of the device
  132. * @interaction_ts: Timestamp of the last temperature read that is used
  133. * for power management in jiffies
  134. */
  135. struct mlx90632_data {
  136. struct i2c_client *client;
  137. struct mutex lock;
  138. struct regmap *regmap;
  139. u16 emissivity;
  140. u8 mtyp;
  141. u32 object_ambient_temperature;
  142. struct regulator *regulator;
  143. int powerstatus;
  144. unsigned long interaction_ts;
  145. };
  146. static const struct regmap_range mlx90632_volatile_reg_range[] = {
  147. regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
  148. regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
  149. regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
  150. regmap_reg_range(MLX90632_RAM_1(0),
  151. MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
  152. };
  153. static const struct regmap_access_table mlx90632_volatile_regs_tbl = {
  154. .yes_ranges = mlx90632_volatile_reg_range,
  155. .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range),
  156. };
  157. static const struct regmap_range mlx90632_read_reg_range[] = {
  158. regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
  159. regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR),
  160. regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb),
  161. regmap_reg_range(MLX90632_EE_MEDICAL_MEAS1, MLX90632_EE_MEDICAL_MEAS2),
  162. regmap_reg_range(MLX90632_EE_EXTENDED_MEAS1, MLX90632_EE_EXTENDED_MEAS3),
  163. regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL),
  164. regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD),
  165. regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS),
  166. regmap_reg_range(MLX90632_RAM_1(0),
  167. MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
  168. };
  169. static const struct regmap_access_table mlx90632_readable_regs_tbl = {
  170. .yes_ranges = mlx90632_read_reg_range,
  171. .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range),
  172. };
  173. static const struct regmap_range mlx90632_no_write_reg_range[] = {
  174. regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka),
  175. regmap_reg_range(MLX90632_RAM_1(0),
  176. MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)),
  177. };
  178. static const struct regmap_access_table mlx90632_writeable_regs_tbl = {
  179. .no_ranges = mlx90632_no_write_reg_range,
  180. .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range),
  181. };
  182. static const struct regmap_config mlx90632_regmap = {
  183. .reg_bits = 16,
  184. .val_bits = 16,
  185. .volatile_table = &mlx90632_volatile_regs_tbl,
  186. .rd_table = &mlx90632_readable_regs_tbl,
  187. .wr_table = &mlx90632_writeable_regs_tbl,
  188. .use_single_read = true,
  189. .use_single_write = true,
  190. .reg_format_endian = REGMAP_ENDIAN_BIG,
  191. .val_format_endian = REGMAP_ENDIAN_BIG,
  192. .cache_type = REGCACHE_RBTREE,
  193. };
  194. static int mlx90632_pwr_set_sleep_step(struct regmap *regmap)
  195. {
  196. struct mlx90632_data *data =
  197. iio_priv(dev_get_drvdata(regmap_get_device(regmap)));
  198. int ret;
  199. if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
  200. return 0;
  201. ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
  202. MLX90632_PWR_STATUS_SLEEP_STEP);
  203. if (ret < 0)
  204. return ret;
  205. data->powerstatus = MLX90632_PWR_STATUS_SLEEP_STEP;
  206. return 0;
  207. }
  208. static int mlx90632_pwr_continuous(struct regmap *regmap)
  209. {
  210. struct mlx90632_data *data =
  211. iio_priv(dev_get_drvdata(regmap_get_device(regmap)));
  212. int ret;
  213. if (data->powerstatus == MLX90632_PWR_STATUS_CONTINUOUS)
  214. return 0;
  215. ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK,
  216. MLX90632_PWR_STATUS_CONTINUOUS);
  217. if (ret < 0)
  218. return ret;
  219. data->powerstatus = MLX90632_PWR_STATUS_CONTINUOUS;
  220. return 0;
  221. }
  222. /**
  223. * mlx90632_reset_delay() - Give the mlx90632 some time to reset properly
  224. * If this is not done, the following I2C command(s) will not be accepted.
  225. */
  226. static void mlx90632_reset_delay(void)
  227. {
  228. usleep_range(150, 200);
  229. }
  230. static int mlx90632_get_measurement_time(struct regmap *regmap, u16 meas)
  231. {
  232. unsigned int reg;
  233. int ret;
  234. ret = regmap_read(regmap, meas, &reg);
  235. if (ret < 0)
  236. return ret;
  237. return MLX90632_MEAS_MAX_TIME >> FIELD_GET(MLX90632_EE_RR, reg);
  238. }
  239. static int mlx90632_calculate_dataset_ready_time(struct mlx90632_data *data)
  240. {
  241. unsigned int refresh_time;
  242. int ret;
  243. if (data->mtyp == MLX90632_MTYP_MEDICAL) {
  244. ret = mlx90632_get_measurement_time(data->regmap,
  245. MLX90632_EE_MEDICAL_MEAS1);
  246. if (ret < 0)
  247. return ret;
  248. refresh_time = ret;
  249. ret = mlx90632_get_measurement_time(data->regmap,
  250. MLX90632_EE_MEDICAL_MEAS2);
  251. if (ret < 0)
  252. return ret;
  253. refresh_time += ret;
  254. } else {
  255. ret = mlx90632_get_measurement_time(data->regmap,
  256. MLX90632_EE_EXTENDED_MEAS1);
  257. if (ret < 0)
  258. return ret;
  259. refresh_time = ret;
  260. ret = mlx90632_get_measurement_time(data->regmap,
  261. MLX90632_EE_EXTENDED_MEAS2);
  262. if (ret < 0)
  263. return ret;
  264. refresh_time += ret;
  265. ret = mlx90632_get_measurement_time(data->regmap,
  266. MLX90632_EE_EXTENDED_MEAS3);
  267. if (ret < 0)
  268. return ret;
  269. refresh_time += ret;
  270. }
  271. return refresh_time;
  272. }
  273. /**
  274. * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle
  275. * @data: pointer to mlx90632_data object containing regmap information
  276. *
  277. * Perform a measurement and return latest measurement cycle position reported
  278. * by sensor. This is a blocking function for 500ms, as that is default sensor
  279. * refresh rate.
  280. */
  281. static int mlx90632_perform_measurement(struct mlx90632_data *data)
  282. {
  283. unsigned int reg_status;
  284. int ret;
  285. ret = regmap_clear_bits(data->regmap, MLX90632_REG_STATUS,
  286. MLX90632_STAT_DATA_RDY);
  287. if (ret < 0)
  288. return ret;
  289. ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status,
  290. !(reg_status & MLX90632_STAT_DATA_RDY), 10000,
  291. 100 * 10000);
  292. if (ret < 0) {
  293. dev_err(&data->client->dev, "data not ready");
  294. return -ETIMEDOUT;
  295. }
  296. return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2;
  297. }
  298. /**
  299. * mlx90632_perform_measurement_burst() - Trigger and retrieve current measurement
  300. * cycle in step sleep mode
  301. * @data: pointer to mlx90632_data object containing regmap information
  302. *
  303. * Perform a measurement and return 2 as measurement cycle position reported
  304. * by sensor. This is a blocking function for amount dependent on the sensor
  305. * refresh rate.
  306. */
  307. static int mlx90632_perform_measurement_burst(struct mlx90632_data *data)
  308. {
  309. unsigned int reg_status;
  310. int ret;
  311. ret = regmap_write_bits(data->regmap, MLX90632_REG_CONTROL,
  312. MLX90632_CFG_SOB_MASK, MLX90632_CFG_SOB_MASK);
  313. if (ret < 0)
  314. return ret;
  315. ret = mlx90632_calculate_dataset_ready_time(data);
  316. if (ret < 0)
  317. return ret;
  318. msleep(ret); /* Wait minimum time for dataset to be ready */
  319. ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS,
  320. reg_status,
  321. (reg_status & MLX90632_STAT_BUSY) == 0,
  322. 10000, 100 * 10000);
  323. if (ret < 0) {
  324. dev_err(&data->client->dev, "data not ready");
  325. return -ETIMEDOUT;
  326. }
  327. return 2;
  328. }
  329. static int mlx90632_set_meas_type(struct mlx90632_data *data, u8 type)
  330. {
  331. int current_powerstatus;
  332. int ret;
  333. if (data->mtyp == type)
  334. return 0;
  335. current_powerstatus = data->powerstatus;
  336. ret = mlx90632_pwr_continuous(data->regmap);
  337. if (ret < 0)
  338. return ret;
  339. ret = regmap_write(data->regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD);
  340. if (ret < 0)
  341. return ret;
  342. mlx90632_reset_delay();
  343. ret = regmap_update_bits(data->regmap, MLX90632_REG_CONTROL,
  344. (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK),
  345. (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT));
  346. if (ret < 0)
  347. return ret;
  348. data->mtyp = type;
  349. data->powerstatus = MLX90632_PWR_STATUS_HALT;
  350. if (current_powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP)
  351. return mlx90632_pwr_set_sleep_step(data->regmap);
  352. return mlx90632_pwr_continuous(data->regmap);
  353. }
  354. static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new,
  355. uint8_t *channel_old)
  356. {
  357. switch (perform_ret) {
  358. case 1:
  359. *channel_new = 1;
  360. *channel_old = 2;
  361. break;
  362. case 2:
  363. *channel_new = 2;
  364. *channel_old = 1;
  365. break;
  366. default:
  367. return -ECHRNG;
  368. }
  369. return 0;
  370. }
  371. static int mlx90632_read_ambient_raw(struct regmap *regmap,
  372. s16 *ambient_new_raw, s16 *ambient_old_raw)
  373. {
  374. unsigned int read_tmp;
  375. int ret;
  376. ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp);
  377. if (ret < 0)
  378. return ret;
  379. *ambient_new_raw = (s16)read_tmp;
  380. ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp);
  381. if (ret < 0)
  382. return ret;
  383. *ambient_old_raw = (s16)read_tmp;
  384. return ret;
  385. }
  386. static int mlx90632_read_object_raw(struct regmap *regmap,
  387. int perform_measurement_ret,
  388. s16 *object_new_raw, s16 *object_old_raw)
  389. {
  390. unsigned int read_tmp;
  391. u8 channel_old = 0;
  392. u8 channel = 0;
  393. s16 read;
  394. int ret;
  395. ret = mlx90632_channel_new_select(perform_measurement_ret, &channel,
  396. &channel_old);
  397. if (ret != 0)
  398. return ret;
  399. ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp);
  400. if (ret < 0)
  401. return ret;
  402. read = (s16)read_tmp;
  403. ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp);
  404. if (ret < 0)
  405. return ret;
  406. *object_new_raw = (read + (s16)read_tmp) / 2;
  407. ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp);
  408. if (ret < 0)
  409. return ret;
  410. read = (s16)read_tmp;
  411. ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp);
  412. if (ret < 0)
  413. return ret;
  414. *object_old_raw = (read + (s16)read_tmp) / 2;
  415. return ret;
  416. }
  417. static int mlx90632_read_all_channel(struct mlx90632_data *data,
  418. s16 *ambient_new_raw, s16 *ambient_old_raw,
  419. s16 *object_new_raw, s16 *object_old_raw)
  420. {
  421. s32 measurement;
  422. int ret;
  423. mutex_lock(&data->lock);
  424. ret = mlx90632_set_meas_type(data, MLX90632_MTYP_MEDICAL);
  425. if (ret < 0)
  426. goto read_unlock;
  427. switch (data->powerstatus) {
  428. case MLX90632_PWR_STATUS_CONTINUOUS:
  429. ret = mlx90632_perform_measurement(data);
  430. if (ret < 0)
  431. goto read_unlock;
  432. break;
  433. case MLX90632_PWR_STATUS_SLEEP_STEP:
  434. ret = mlx90632_perform_measurement_burst(data);
  435. if (ret < 0)
  436. goto read_unlock;
  437. break;
  438. default:
  439. ret = -EOPNOTSUPP;
  440. goto read_unlock;
  441. }
  442. measurement = ret; /* If we came here ret holds the measurement position */
  443. ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw,
  444. ambient_old_raw);
  445. if (ret < 0)
  446. goto read_unlock;
  447. ret = mlx90632_read_object_raw(data->regmap, measurement,
  448. object_new_raw, object_old_raw);
  449. read_unlock:
  450. mutex_unlock(&data->lock);
  451. return ret;
  452. }
  453. static int mlx90632_read_ambient_raw_extended(struct regmap *regmap,
  454. s16 *ambient_new_raw, s16 *ambient_old_raw)
  455. {
  456. unsigned int read_tmp;
  457. int ret;
  458. ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp);
  459. if (ret < 0)
  460. return ret;
  461. *ambient_new_raw = (s16)read_tmp;
  462. ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp);
  463. if (ret < 0)
  464. return ret;
  465. *ambient_old_raw = (s16)read_tmp;
  466. return 0;
  467. }
  468. static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw)
  469. {
  470. unsigned int read_tmp;
  471. s32 read;
  472. int ret;
  473. ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp);
  474. if (ret < 0)
  475. return ret;
  476. read = (s16)read_tmp;
  477. ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp);
  478. if (ret < 0)
  479. return ret;
  480. read = read - (s16)read_tmp;
  481. ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp);
  482. if (ret < 0)
  483. return ret;
  484. read = read - (s16)read_tmp;
  485. ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp);
  486. if (ret < 0)
  487. return ret;
  488. read = (read + (s16)read_tmp) / 2;
  489. ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp);
  490. if (ret < 0)
  491. return ret;
  492. read = read + (s16)read_tmp;
  493. ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp);
  494. if (ret < 0)
  495. return ret;
  496. read = read + (s16)read_tmp;
  497. if (read > S16_MAX || read < S16_MIN)
  498. return -ERANGE;
  499. *object_new_raw = read;
  500. return 0;
  501. }
  502. static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw,
  503. s16 *ambient_new_raw, s16 *ambient_old_raw)
  504. {
  505. s32 ret, meas;
  506. mutex_lock(&data->lock);
  507. ret = mlx90632_set_meas_type(data, MLX90632_MTYP_EXTENDED);
  508. if (ret < 0)
  509. goto read_unlock;
  510. switch (data->powerstatus) {
  511. case MLX90632_PWR_STATUS_CONTINUOUS:
  512. ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19,
  513. 50000, 800000, false, data);
  514. if (ret)
  515. goto read_unlock;
  516. break;
  517. case MLX90632_PWR_STATUS_SLEEP_STEP:
  518. ret = mlx90632_perform_measurement_burst(data);
  519. if (ret < 0)
  520. goto read_unlock;
  521. break;
  522. default:
  523. ret = -EOPNOTSUPP;
  524. goto read_unlock;
  525. }
  526. ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw);
  527. if (ret < 0)
  528. goto read_unlock;
  529. ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw);
  530. read_unlock:
  531. mutex_unlock(&data->lock);
  532. return ret;
  533. }
  534. static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb,
  535. s32 *reg_value)
  536. {
  537. unsigned int read;
  538. u32 value;
  539. int ret;
  540. ret = regmap_read(regmap, reg_lsb, &read);
  541. if (ret < 0)
  542. return ret;
  543. value = read;
  544. ret = regmap_read(regmap, reg_lsb + 1, &read);
  545. if (ret < 0)
  546. return ret;
  547. *reg_value = (read << 16) | (value & 0xffff);
  548. return 0;
  549. }
  550. static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw,
  551. s16 ambient_old_raw, s16 Gb)
  552. {
  553. s64 VR_Ta, kGb, tmp;
  554. kGb = ((s64)Gb * 1000LL) >> 10ULL;
  555. VR_Ta = (s64)ambient_old_raw * 1000000LL +
  556. kGb * div64_s64(((s64)ambient_new_raw * 1000LL),
  557. (MLX90632_REF_3));
  558. tmp = div64_s64(
  559. div64_s64(((s64)ambient_new_raw * 1000000000000LL),
  560. (MLX90632_REF_3)), VR_Ta);
  561. return div64_s64(tmp << 19ULL, 1000LL);
  562. }
  563. static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw,
  564. s16 ambient_new_raw,
  565. s16 ambient_old_raw, s16 Ka)
  566. {
  567. s64 VR_IR, kKa, tmp;
  568. kKa = ((s64)Ka * 1000LL) >> 10ULL;
  569. VR_IR = (s64)ambient_old_raw * 1000000LL +
  570. kKa * div64_s64(((s64)ambient_new_raw * 1000LL),
  571. (MLX90632_REF_3));
  572. tmp = div64_s64(
  573. div64_s64(((s64)((object_new_raw + object_old_raw) / 2)
  574. * 1000000000000LL), (MLX90632_REF_12)),
  575. VR_IR);
  576. return div64_s64((tmp << 19ULL), 1000LL);
  577. }
  578. static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw,
  579. s16 ambient_old_raw, s16 Ka)
  580. {
  581. s64 VR_IR, kKa, tmp;
  582. kKa = ((s64)Ka * 1000LL) >> 10ULL;
  583. VR_IR = (s64)ambient_old_raw * 1000000LL +
  584. kKa * div64_s64((s64)ambient_new_raw * 1000LL,
  585. MLX90632_REF_3);
  586. tmp = div64_s64(
  587. div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12),
  588. VR_IR);
  589. return div64_s64(tmp << 19ULL, 1000LL);
  590. }
  591. static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw,
  592. s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb)
  593. {
  594. s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum;
  595. AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw,
  596. Gb);
  597. Asub = ((s64)P_T * 10000000000LL) >> 44ULL;
  598. Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL);
  599. Ablock = Asub * (Bsub * Bsub);
  600. Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL;
  601. Cblock = ((s64)P_O * 10000000000LL) >> 8ULL;
  602. sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock;
  603. return div64_s64(sum, 10000000LL);
  604. }
  605. static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object,
  606. s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb,
  607. s32 Ga, s16 Ha, s16 Hb,
  608. u16 emissivity)
  609. {
  610. s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr;
  611. s64 Ha_customer, Hb_customer;
  612. Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL;
  613. Hb_customer = ((s64)Hb * 100) >> 10ULL;
  614. calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL)
  615. * 1000LL)) >> 36LL;
  616. calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL;
  617. Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL)
  618. * Ha_customer), 1000LL);
  619. Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA));
  620. Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL);
  621. Alpha_corr = div64_s64(Alpha_corr, 1000LL);
  622. ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr);
  623. return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4))
  624. - 27315 - Hb_customer) * 10;
  625. }
  626. static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale)
  627. {
  628. return (div64_s64(TAdut, scale) + 27315) *
  629. (div64_s64(TAdut, scale) + 27315) *
  630. (div64_s64(TAdut, scale) + 27315) *
  631. (div64_s64(TAdut, scale) + 27315);
  632. }
  633. static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb,
  634. s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb,
  635. u16 tmp_emi)
  636. {
  637. s64 kTA, kTA0, TAdut, TAdut4;
  638. s64 temp = 25000;
  639. s8 i;
  640. kTA = (Ea * 1000LL) >> 16LL;
  641. kTA0 = (Eb * 1000LL) >> 8LL;
  642. TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL;
  643. TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
  644. /* Iterations of calculation as described in datasheet */
  645. for (i = 0; i < 5; ++i) {
  646. temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4,
  647. Fa, Fb, Ga, Ha, Hb,
  648. tmp_emi);
  649. }
  650. return temp;
  651. }
  652. static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected,
  653. s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga,
  654. s16 Ha, s16 Hb, u16 tmp_emi)
  655. {
  656. s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4;
  657. s64 temp = 25000;
  658. s8 i;
  659. kTA = (Ea * 1000LL) >> 16LL;
  660. kTA0 = (Eb * 1000LL) >> 8LL;
  661. TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL;
  662. Tr4 = mlx90632_calc_ta4(reflected, 10);
  663. TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL);
  664. TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000;
  665. /* Iterations of calculation as described in datasheet */
  666. for (i = 0; i < 5; ++i) {
  667. temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4,
  668. Fa / 2, Fb, Ga, Ha, Hb,
  669. tmp_emi);
  670. }
  671. return temp;
  672. }
  673. static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val)
  674. {
  675. s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw;
  676. s32 Ea, Eb, Fa, Fb, Ga;
  677. unsigned int read_tmp;
  678. s64 object, ambient;
  679. s16 Ha, Hb, Gb, Ka;
  680. int ret;
  681. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea);
  682. if (ret < 0)
  683. return ret;
  684. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb);
  685. if (ret < 0)
  686. return ret;
  687. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa);
  688. if (ret < 0)
  689. return ret;
  690. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb);
  691. if (ret < 0)
  692. return ret;
  693. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga);
  694. if (ret < 0)
  695. return ret;
  696. ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp);
  697. if (ret < 0)
  698. return ret;
  699. Ha = (s16)read_tmp;
  700. ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp);
  701. if (ret < 0)
  702. return ret;
  703. Hb = (s16)read_tmp;
  704. ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
  705. if (ret < 0)
  706. return ret;
  707. Gb = (s16)read_tmp;
  708. ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp);
  709. if (ret < 0)
  710. return ret;
  711. Ka = (s16)read_tmp;
  712. ret = mlx90632_read_all_channel(data,
  713. &ambient_new_raw, &ambient_old_raw,
  714. &object_new_raw, &object_old_raw);
  715. if (ret < 0)
  716. return ret;
  717. if (object_new_raw > MLX90632_EXTENDED_LIMIT &&
  718. data->mtyp == MLX90632_MTYP_EXTENDED) {
  719. ret = mlx90632_read_all_channel_extended(data, &object_new_raw,
  720. &ambient_new_raw, &ambient_old_raw);
  721. if (ret < 0)
  722. return ret;
  723. /* Use extended mode calculations */
  724. ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
  725. ambient_old_raw, Gb);
  726. object = mlx90632_preprocess_temp_obj_extended(object_new_raw,
  727. ambient_new_raw,
  728. ambient_old_raw, Ka);
  729. *val = mlx90632_calc_temp_object_extended(object, ambient,
  730. data->object_ambient_temperature,
  731. Ea, Eb, Fa, Fb, Ga,
  732. Ha, Hb, data->emissivity);
  733. return 0;
  734. }
  735. ambient = mlx90632_preprocess_temp_amb(ambient_new_raw,
  736. ambient_old_raw, Gb);
  737. object = mlx90632_preprocess_temp_obj(object_new_raw,
  738. object_old_raw,
  739. ambient_new_raw,
  740. ambient_old_raw, Ka);
  741. *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga,
  742. Ha, Hb, data->emissivity);
  743. return 0;
  744. }
  745. static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val)
  746. {
  747. s16 ambient_new_raw, ambient_old_raw;
  748. unsigned int read_tmp;
  749. s32 PT, PR, PG, PO;
  750. int ret;
  751. s16 Gb;
  752. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR);
  753. if (ret < 0)
  754. return ret;
  755. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG);
  756. if (ret < 0)
  757. return ret;
  758. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT);
  759. if (ret < 0)
  760. return ret;
  761. ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO);
  762. if (ret < 0)
  763. return ret;
  764. ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp);
  765. if (ret < 0)
  766. return ret;
  767. Gb = (s16)read_tmp;
  768. ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw,
  769. &ambient_old_raw);
  770. if (ret < 0)
  771. return ret;
  772. *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw,
  773. PT, PR, PG, PO, Gb);
  774. return ret;
  775. }
  776. static int mlx90632_get_refresh_rate(struct mlx90632_data *data,
  777. int *refresh_rate)
  778. {
  779. unsigned int meas1;
  780. int ret;
  781. ret = regmap_read(data->regmap, MLX90632_EE_MEDICAL_MEAS1, &meas1);
  782. if (ret < 0)
  783. return ret;
  784. *refresh_rate = MLX90632_REFRESH_RATE(meas1);
  785. return ret;
  786. }
  787. static const int mlx90632_freqs[][2] = {
  788. {0, 500000},
  789. {1, 0},
  790. {2, 0},
  791. {4, 0},
  792. {8, 0},
  793. {16, 0},
  794. {32, 0},
  795. {64, 0}
  796. };
  797. /**
  798. * mlx90632_pm_interraction_wakeup() - Measure time between user interactions to change powermode
  799. * @data: pointer to mlx90632_data object containing interaction_ts information
  800. *
  801. * Switch to continuous mode when interaction is faster than MLX90632_MEAS_MAX_TIME. Update the
  802. * interaction_ts for each function call with the jiffies to enable measurement between function
  803. * calls. Initial value of the interaction_ts needs to be set before this function call.
  804. */
  805. static int mlx90632_pm_interraction_wakeup(struct mlx90632_data *data)
  806. {
  807. unsigned long now;
  808. int ret;
  809. now = jiffies;
  810. if (time_in_range(now, data->interaction_ts,
  811. data->interaction_ts +
  812. msecs_to_jiffies(MLX90632_MEAS_MAX_TIME + 100))) {
  813. if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP) {
  814. ret = mlx90632_pwr_continuous(data->regmap);
  815. if (ret < 0)
  816. return ret;
  817. }
  818. }
  819. data->interaction_ts = now;
  820. return 0;
  821. }
  822. static int mlx90632_read_raw(struct iio_dev *indio_dev,
  823. struct iio_chan_spec const *channel, int *val,
  824. int *val2, long mask)
  825. {
  826. struct mlx90632_data *data = iio_priv(indio_dev);
  827. int ret;
  828. int cr;
  829. pm_runtime_get_sync(&data->client->dev);
  830. ret = mlx90632_pm_interraction_wakeup(data);
  831. if (ret < 0)
  832. goto mlx90632_read_raw_pm;
  833. switch (mask) {
  834. case IIO_CHAN_INFO_PROCESSED:
  835. switch (channel->channel2) {
  836. case IIO_MOD_TEMP_AMBIENT:
  837. ret = mlx90632_calc_ambient_dsp105(data, val);
  838. if (ret < 0)
  839. goto mlx90632_read_raw_pm;
  840. ret = IIO_VAL_INT;
  841. break;
  842. case IIO_MOD_TEMP_OBJECT:
  843. ret = mlx90632_calc_object_dsp105(data, val);
  844. if (ret < 0)
  845. goto mlx90632_read_raw_pm;
  846. ret = IIO_VAL_INT;
  847. break;
  848. default:
  849. ret = -EINVAL;
  850. break;
  851. }
  852. break;
  853. case IIO_CHAN_INFO_CALIBEMISSIVITY:
  854. if (data->emissivity == 1000) {
  855. *val = 1;
  856. *val2 = 0;
  857. } else {
  858. *val = 0;
  859. *val2 = data->emissivity * 1000;
  860. }
  861. ret = IIO_VAL_INT_PLUS_MICRO;
  862. break;
  863. case IIO_CHAN_INFO_CALIBAMBIENT:
  864. *val = data->object_ambient_temperature;
  865. ret = IIO_VAL_INT;
  866. break;
  867. case IIO_CHAN_INFO_SAMP_FREQ:
  868. ret = mlx90632_get_refresh_rate(data, &cr);
  869. if (ret < 0)
  870. goto mlx90632_read_raw_pm;
  871. *val = mlx90632_freqs[cr][0];
  872. *val2 = mlx90632_freqs[cr][1];
  873. ret = IIO_VAL_INT_PLUS_MICRO;
  874. break;
  875. default:
  876. ret = -EINVAL;
  877. break;
  878. }
  879. mlx90632_read_raw_pm:
  880. pm_runtime_mark_last_busy(&data->client->dev);
  881. pm_runtime_put_autosuspend(&data->client->dev);
  882. return ret;
  883. }
  884. static int mlx90632_write_raw(struct iio_dev *indio_dev,
  885. struct iio_chan_spec const *channel, int val,
  886. int val2, long mask)
  887. {
  888. struct mlx90632_data *data = iio_priv(indio_dev);
  889. switch (mask) {
  890. case IIO_CHAN_INFO_CALIBEMISSIVITY:
  891. /* Confirm we are within 0 and 1.0 */
  892. if (val < 0 || val2 < 0 || val > 1 ||
  893. (val == 1 && val2 != 0))
  894. return -EINVAL;
  895. data->emissivity = val * 1000 + val2 / 1000;
  896. return 0;
  897. case IIO_CHAN_INFO_CALIBAMBIENT:
  898. data->object_ambient_temperature = val;
  899. return 0;
  900. default:
  901. return -EINVAL;
  902. }
  903. }
  904. static int mlx90632_read_avail(struct iio_dev *indio_dev,
  905. struct iio_chan_spec const *chan,
  906. const int **vals, int *type, int *length,
  907. long mask)
  908. {
  909. switch (mask) {
  910. case IIO_CHAN_INFO_SAMP_FREQ:
  911. *vals = (int *)mlx90632_freqs;
  912. *type = IIO_VAL_INT_PLUS_MICRO;
  913. *length = 2 * ARRAY_SIZE(mlx90632_freqs);
  914. return IIO_AVAIL_LIST;
  915. default:
  916. return -EINVAL;
  917. }
  918. }
  919. static const struct iio_chan_spec mlx90632_channels[] = {
  920. {
  921. .type = IIO_TEMP,
  922. .modified = 1,
  923. .channel2 = IIO_MOD_TEMP_AMBIENT,
  924. .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),
  925. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  926. .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  927. },
  928. {
  929. .type = IIO_TEMP,
  930. .modified = 1,
  931. .channel2 = IIO_MOD_TEMP_OBJECT,
  932. .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) |
  933. BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT),
  934. .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  935. .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ),
  936. },
  937. };
  938. static const struct iio_info mlx90632_info = {
  939. .read_raw = mlx90632_read_raw,
  940. .write_raw = mlx90632_write_raw,
  941. .read_avail = mlx90632_read_avail,
  942. };
  943. static void mlx90632_sleep(void *_data)
  944. {
  945. struct mlx90632_data *data = _data;
  946. mlx90632_pwr_set_sleep_step(data->regmap);
  947. }
  948. static int mlx90632_suspend(struct mlx90632_data *data)
  949. {
  950. regcache_mark_dirty(data->regmap);
  951. dev_dbg(&data->client->dev, "Requesting suspend");
  952. return mlx90632_pwr_set_sleep_step(data->regmap);
  953. }
  954. static int mlx90632_wakeup(struct mlx90632_data *data)
  955. {
  956. int ret;
  957. ret = regcache_sync(data->regmap);
  958. if (ret < 0) {
  959. dev_err(&data->client->dev,
  960. "Failed to sync regmap registers: %d\n", ret);
  961. return ret;
  962. }
  963. dev_dbg(&data->client->dev, "Requesting wake-up\n");
  964. return mlx90632_pwr_continuous(data->regmap);
  965. }
  966. static void mlx90632_disable_regulator(void *_data)
  967. {
  968. struct mlx90632_data *data = _data;
  969. int ret;
  970. ret = regulator_disable(data->regulator);
  971. if (ret < 0)
  972. dev_err(regmap_get_device(data->regmap),
  973. "Failed to disable power regulator: %d\n", ret);
  974. }
  975. static int mlx90632_enable_regulator(struct mlx90632_data *data)
  976. {
  977. int ret;
  978. ret = regulator_enable(data->regulator);
  979. if (ret < 0) {
  980. dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n");
  981. return ret;
  982. }
  983. mlx90632_reset_delay();
  984. return ret;
  985. }
  986. static int mlx90632_probe(struct i2c_client *client)
  987. {
  988. const struct i2c_device_id *id = i2c_client_get_device_id(client);
  989. struct mlx90632_data *mlx90632;
  990. struct iio_dev *indio_dev;
  991. struct regmap *regmap;
  992. unsigned int read;
  993. int ret;
  994. indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632));
  995. if (!indio_dev) {
  996. dev_err(&client->dev, "Failed to allocate device\n");
  997. return -ENOMEM;
  998. }
  999. regmap = devm_regmap_init_i2c(client, &mlx90632_regmap);
  1000. if (IS_ERR(regmap)) {
  1001. ret = PTR_ERR(regmap);
  1002. dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret);
  1003. return ret;
  1004. }
  1005. mlx90632 = iio_priv(indio_dev);
  1006. i2c_set_clientdata(client, indio_dev);
  1007. mlx90632->client = client;
  1008. mlx90632->regmap = regmap;
  1009. mlx90632->mtyp = MLX90632_MTYP_MEDICAL;
  1010. mlx90632->powerstatus = MLX90632_PWR_STATUS_HALT;
  1011. mutex_init(&mlx90632->lock);
  1012. indio_dev->name = id->name;
  1013. indio_dev->modes = INDIO_DIRECT_MODE;
  1014. indio_dev->info = &mlx90632_info;
  1015. indio_dev->channels = mlx90632_channels;
  1016. indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels);
  1017. mlx90632->regulator = devm_regulator_get(&client->dev, "vdd");
  1018. if (IS_ERR(mlx90632->regulator))
  1019. return dev_err_probe(&client->dev, PTR_ERR(mlx90632->regulator),
  1020. "failed to get vdd regulator");
  1021. ret = mlx90632_enable_regulator(mlx90632);
  1022. if (ret < 0)
  1023. return ret;
  1024. ret = devm_add_action_or_reset(&client->dev, mlx90632_disable_regulator,
  1025. mlx90632);
  1026. if (ret < 0) {
  1027. dev_err(&client->dev, "Failed to setup regulator cleanup action %d\n",
  1028. ret);
  1029. return ret;
  1030. }
  1031. ret = mlx90632_wakeup(mlx90632);
  1032. if (ret < 0) {
  1033. dev_err(&client->dev, "Wakeup failed: %d\n", ret);
  1034. return ret;
  1035. }
  1036. ret = devm_add_action_or_reset(&client->dev, mlx90632_sleep, mlx90632);
  1037. if (ret < 0) {
  1038. dev_err(&client->dev, "Failed to setup low power cleanup action %d\n",
  1039. ret);
  1040. return ret;
  1041. }
  1042. ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read);
  1043. if (ret < 0) {
  1044. dev_err(&client->dev, "read of version failed: %d\n", ret);
  1045. return ret;
  1046. }
  1047. read = read & MLX90632_ID_MASK;
  1048. if (read == MLX90632_ID_MEDICAL) {
  1049. dev_dbg(&client->dev,
  1050. "Detected Medical EEPROM calibration %x\n", read);
  1051. } else if (read == MLX90632_ID_CONSUMER) {
  1052. dev_dbg(&client->dev,
  1053. "Detected Consumer EEPROM calibration %x\n", read);
  1054. } else if (read == MLX90632_ID_EXTENDED) {
  1055. dev_dbg(&client->dev,
  1056. "Detected Extended range EEPROM calibration %x\n", read);
  1057. mlx90632->mtyp = MLX90632_MTYP_EXTENDED;
  1058. } else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) {
  1059. dev_dbg(&client->dev,
  1060. "Detected Unknown EEPROM calibration %x\n", read);
  1061. } else {
  1062. dev_err(&client->dev,
  1063. "Wrong DSP version %x (expected %x)\n",
  1064. read, MLX90632_DSP_VERSION);
  1065. return -EPROTONOSUPPORT;
  1066. }
  1067. mlx90632->emissivity = 1000;
  1068. mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */
  1069. mlx90632->interaction_ts = jiffies; /* Set initial value */
  1070. pm_runtime_get_noresume(&client->dev);
  1071. pm_runtime_set_active(&client->dev);
  1072. ret = devm_pm_runtime_enable(&client->dev);
  1073. if (ret)
  1074. return ret;
  1075. pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS);
  1076. pm_runtime_use_autosuspend(&client->dev);
  1077. pm_runtime_put_autosuspend(&client->dev);
  1078. return devm_iio_device_register(&client->dev, indio_dev);
  1079. }
  1080. static const struct i2c_device_id mlx90632_id[] = {
  1081. { "mlx90632" },
  1082. { }
  1083. };
  1084. MODULE_DEVICE_TABLE(i2c, mlx90632_id);
  1085. static const struct of_device_id mlx90632_of_match[] = {
  1086. { .compatible = "melexis,mlx90632" },
  1087. { }
  1088. };
  1089. MODULE_DEVICE_TABLE(of, mlx90632_of_match);
  1090. static int mlx90632_pm_suspend(struct device *dev)
  1091. {
  1092. struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
  1093. int ret;
  1094. ret = mlx90632_suspend(data);
  1095. if (ret < 0)
  1096. return ret;
  1097. ret = regulator_disable(data->regulator);
  1098. if (ret < 0)
  1099. dev_err(regmap_get_device(data->regmap),
  1100. "Failed to disable power regulator: %d\n", ret);
  1101. return ret;
  1102. }
  1103. static int mlx90632_pm_resume(struct device *dev)
  1104. {
  1105. struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
  1106. int ret;
  1107. ret = mlx90632_enable_regulator(data);
  1108. if (ret < 0)
  1109. return ret;
  1110. return mlx90632_wakeup(data);
  1111. }
  1112. static int mlx90632_pm_runtime_suspend(struct device *dev)
  1113. {
  1114. struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev));
  1115. return mlx90632_pwr_set_sleep_step(data->regmap);
  1116. }
  1117. static const struct dev_pm_ops mlx90632_pm_ops = {
  1118. SYSTEM_SLEEP_PM_OPS(mlx90632_pm_suspend, mlx90632_pm_resume)
  1119. RUNTIME_PM_OPS(mlx90632_pm_runtime_suspend, NULL, NULL)
  1120. };
  1121. static struct i2c_driver mlx90632_driver = {
  1122. .driver = {
  1123. .name = "mlx90632",
  1124. .of_match_table = mlx90632_of_match,
  1125. .pm = pm_ptr(&mlx90632_pm_ops),
  1126. },
  1127. .probe = mlx90632_probe,
  1128. .id_table = mlx90632_id,
  1129. };
  1130. module_i2c_driver(mlx90632_driver);
  1131. MODULE_AUTHOR("Crt Mori <cmo@melexis.com>");
  1132. MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver");
  1133. MODULE_LICENSE("GPL v2");