cadence-nand-controller.c 82 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Cadence NAND flash controller driver
  4. *
  5. * Copyright (C) 2019 Cadence
  6. *
  7. * Author: Piotr Sroka <piotrs@cadence.com>
  8. */
  9. #include <linux/bitfield.h>
  10. #include <linux/clk.h>
  11. #include <linux/dma-mapping.h>
  12. #include <linux/dmaengine.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/module.h>
  15. #include <linux/mtd/mtd.h>
  16. #include <linux/mtd/rawnand.h>
  17. #include <linux/iopoll.h>
  18. #include <linux/of.h>
  19. #include <linux/platform_device.h>
  20. #include <linux/property.h>
  21. #include <linux/slab.h>
  22. /*
  23. * HPNFC can work in 3 modes:
  24. * - PIO - can work in master or slave DMA
  25. * - CDMA - needs Master DMA for accessing command descriptors.
  26. * - Generic mode - can use only slave DMA.
  27. * CDMA and PIO modes can be used to execute only base commands.
  28. * Generic mode can be used to execute any command
  29. * on NAND flash memory. Driver uses CDMA mode for
  30. * block erasing, page reading, page programing.
  31. * Generic mode is used for executing rest of commands.
  32. */
  33. #define MAX_ADDRESS_CYC 6
  34. #define MAX_ERASE_ADDRESS_CYC 3
  35. #define MAX_DATA_SIZE 0xFFFC
  36. #define DMA_DATA_SIZE_ALIGN 8
  37. /* Register definition. */
  38. /*
  39. * Command register 0.
  40. * Writing data to this register will initiate a new transaction
  41. * of the NF controller.
  42. */
  43. #define CMD_REG0 0x0000
  44. /* Command type field mask. */
  45. #define CMD_REG0_CT GENMASK(31, 30)
  46. /* Command type CDMA. */
  47. #define CMD_REG0_CT_CDMA 0uL
  48. /* Command type generic. */
  49. #define CMD_REG0_CT_GEN 3uL
  50. /* Command thread number field mask. */
  51. #define CMD_REG0_TN GENMASK(27, 24)
  52. /* Command register 2. */
  53. #define CMD_REG2 0x0008
  54. /* Command register 3. */
  55. #define CMD_REG3 0x000C
  56. /* Pointer register to select which thread status will be selected. */
  57. #define CMD_STATUS_PTR 0x0010
  58. /* Command status register for selected thread. */
  59. #define CMD_STATUS 0x0014
  60. /* Interrupt status register. */
  61. #define INTR_STATUS 0x0110
  62. #define INTR_STATUS_SDMA_ERR BIT(22)
  63. #define INTR_STATUS_SDMA_TRIGG BIT(21)
  64. #define INTR_STATUS_UNSUPP_CMD BIT(19)
  65. #define INTR_STATUS_DDMA_TERR BIT(18)
  66. #define INTR_STATUS_CDMA_TERR BIT(17)
  67. #define INTR_STATUS_CDMA_IDL BIT(16)
  68. /* Interrupt enable register. */
  69. #define INTR_ENABLE 0x0114
  70. #define INTR_ENABLE_INTR_EN BIT(31)
  71. #define INTR_ENABLE_SDMA_ERR_EN BIT(22)
  72. #define INTR_ENABLE_SDMA_TRIGG_EN BIT(21)
  73. #define INTR_ENABLE_UNSUPP_CMD_EN BIT(19)
  74. #define INTR_ENABLE_DDMA_TERR_EN BIT(18)
  75. #define INTR_ENABLE_CDMA_TERR_EN BIT(17)
  76. #define INTR_ENABLE_CDMA_IDLE_EN BIT(16)
  77. /* Controller internal state. */
  78. #define CTRL_STATUS 0x0118
  79. #define CTRL_STATUS_INIT_COMP BIT(9)
  80. #define CTRL_STATUS_CTRL_BUSY BIT(8)
  81. /* Command Engine threads state. */
  82. #define TRD_STATUS 0x0120
  83. /* Command Engine interrupt thread error status. */
  84. #define TRD_ERR_INT_STATUS 0x0128
  85. /* Command Engine interrupt thread error enable. */
  86. #define TRD_ERR_INT_STATUS_EN 0x0130
  87. /* Command Engine interrupt thread complete status. */
  88. #define TRD_COMP_INT_STATUS 0x0138
  89. /*
  90. * Transfer config 0 register.
  91. * Configures data transfer parameters.
  92. */
  93. #define TRAN_CFG_0 0x0400
  94. /* Offset value from the beginning of the page. */
  95. #define TRAN_CFG_0_OFFSET GENMASK(31, 16)
  96. /* Numbers of sectors to transfer within singlNF device's page. */
  97. #define TRAN_CFG_0_SEC_CNT GENMASK(7, 0)
  98. /*
  99. * Transfer config 1 register.
  100. * Configures data transfer parameters.
  101. */
  102. #define TRAN_CFG_1 0x0404
  103. /* Size of last data sector. */
  104. #define TRAN_CFG_1_LAST_SEC_SIZE GENMASK(31, 16)
  105. /* Size of not-last data sector. */
  106. #define TRAN_CFG_1_SECTOR_SIZE GENMASK(15, 0)
  107. /* ECC engine configuration register 0. */
  108. #define ECC_CONFIG_0 0x0428
  109. /* Correction strength. */
  110. #define ECC_CONFIG_0_CORR_STR GENMASK(10, 8)
  111. /* Enable erased pages detection mechanism. */
  112. #define ECC_CONFIG_0_ERASE_DET_EN BIT(1)
  113. /* Enable controller ECC check bits generation and correction. */
  114. #define ECC_CONFIG_0_ECC_EN BIT(0)
  115. /* ECC engine configuration register 1. */
  116. #define ECC_CONFIG_1 0x042C
  117. /* Multiplane settings register. */
  118. #define MULTIPLANE_CFG 0x0434
  119. /* Cache operation settings. */
  120. #define CACHE_CFG 0x0438
  121. /* DMA settings register. */
  122. #define DMA_SETINGS 0x043C
  123. /* Enable SDMA error report on access unprepared slave DMA interface. */
  124. #define DMA_SETINGS_SDMA_ERR_RSP BIT(17)
  125. /* Transferred data block size for the slave DMA module. */
  126. #define SDMA_SIZE 0x0440
  127. /* Thread number associated with transferred data block
  128. * for the slave DMA module.
  129. */
  130. #define SDMA_TRD_NUM 0x0444
  131. /* Thread number mask. */
  132. #define SDMA_TRD_NUM_SDMA_TRD GENMASK(2, 0)
  133. #define CONTROL_DATA_CTRL 0x0494
  134. /* Thread number mask. */
  135. #define CONTROL_DATA_CTRL_SIZE GENMASK(15, 0)
  136. #define CTRL_VERSION 0x800
  137. #define CTRL_VERSION_REV GENMASK(7, 0)
  138. /* Available hardware features of the controller. */
  139. #define CTRL_FEATURES 0x804
  140. /* Support for NV-DDR2/3 work mode. */
  141. #define CTRL_FEATURES_NVDDR_2_3 BIT(28)
  142. /* Support for NV-DDR work mode. */
  143. #define CTRL_FEATURES_NVDDR BIT(27)
  144. /* Support for asynchronous work mode. */
  145. #define CTRL_FEATURES_ASYNC BIT(26)
  146. /* Support for asynchronous work mode. */
  147. #define CTRL_FEATURES_N_BANKS GENMASK(25, 24)
  148. /* Slave and Master DMA data width. */
  149. #define CTRL_FEATURES_DMA_DWITH64 BIT(21)
  150. /* Availability of Control Data feature.*/
  151. #define CTRL_FEATURES_CONTROL_DATA BIT(10)
  152. /* BCH Engine identification register 0 - correction strengths. */
  153. #define BCH_CFG_0 0x838
  154. #define BCH_CFG_0_CORR_CAP_0 GENMASK(7, 0)
  155. #define BCH_CFG_0_CORR_CAP_1 GENMASK(15, 8)
  156. #define BCH_CFG_0_CORR_CAP_2 GENMASK(23, 16)
  157. #define BCH_CFG_0_CORR_CAP_3 GENMASK(31, 24)
  158. /* BCH Engine identification register 1 - correction strengths. */
  159. #define BCH_CFG_1 0x83C
  160. #define BCH_CFG_1_CORR_CAP_4 GENMASK(7, 0)
  161. #define BCH_CFG_1_CORR_CAP_5 GENMASK(15, 8)
  162. #define BCH_CFG_1_CORR_CAP_6 GENMASK(23, 16)
  163. #define BCH_CFG_1_CORR_CAP_7 GENMASK(31, 24)
  164. /* BCH Engine identification register 2 - sector sizes. */
  165. #define BCH_CFG_2 0x840
  166. #define BCH_CFG_2_SECT_0 GENMASK(15, 0)
  167. #define BCH_CFG_2_SECT_1 GENMASK(31, 16)
  168. /* BCH Engine identification register 3. */
  169. #define BCH_CFG_3 0x844
  170. #define BCH_CFG_3_METADATA_SIZE GENMASK(23, 16)
  171. /* Ready/Busy# line status. */
  172. #define RBN_SETINGS 0x1004
  173. /* Common settings. */
  174. #define COMMON_SET 0x1008
  175. /* 16 bit device connected to the NAND Flash interface. */
  176. #define COMMON_SET_DEVICE_16BIT BIT(8)
  177. /* Skip_bytes registers. */
  178. #define SKIP_BYTES_CONF 0x100C
  179. #define SKIP_BYTES_MARKER_VALUE GENMASK(31, 16)
  180. #define SKIP_BYTES_NUM_OF_BYTES GENMASK(7, 0)
  181. #define SKIP_BYTES_OFFSET 0x1010
  182. #define SKIP_BYTES_OFFSET_VALUE GENMASK(23, 0)
  183. /* Timings configuration. */
  184. #define ASYNC_TOGGLE_TIMINGS 0x101c
  185. #define ASYNC_TOGGLE_TIMINGS_TRH GENMASK(28, 24)
  186. #define ASYNC_TOGGLE_TIMINGS_TRP GENMASK(20, 16)
  187. #define ASYNC_TOGGLE_TIMINGS_TWH GENMASK(12, 8)
  188. #define ASYNC_TOGGLE_TIMINGS_TWP GENMASK(4, 0)
  189. #define TIMINGS0 0x1024
  190. #define TIMINGS0_TADL GENMASK(31, 24)
  191. #define TIMINGS0_TCCS GENMASK(23, 16)
  192. #define TIMINGS0_TWHR GENMASK(15, 8)
  193. #define TIMINGS0_TRHW GENMASK(7, 0)
  194. #define TIMINGS1 0x1028
  195. #define TIMINGS1_TRHZ GENMASK(31, 24)
  196. #define TIMINGS1_TWB GENMASK(23, 16)
  197. #define TIMINGS1_TVDLY GENMASK(7, 0)
  198. #define TIMINGS2 0x102c
  199. #define TIMINGS2_TFEAT GENMASK(25, 16)
  200. #define TIMINGS2_CS_HOLD_TIME GENMASK(13, 8)
  201. #define TIMINGS2_CS_SETUP_TIME GENMASK(5, 0)
  202. /* Configuration of the resynchronization of slave DLL of PHY. */
  203. #define DLL_PHY_CTRL 0x1034
  204. #define DLL_PHY_CTRL_DLL_RST_N BIT(24)
  205. #define DLL_PHY_CTRL_EXTENDED_WR_MODE BIT(17)
  206. #define DLL_PHY_CTRL_EXTENDED_RD_MODE BIT(16)
  207. #define DLL_PHY_CTRL_RS_HIGH_WAIT_CNT GENMASK(11, 8)
  208. #define DLL_PHY_CTRL_RS_IDLE_CNT GENMASK(7, 0)
  209. /* Register controlling DQ related timing. */
  210. #define PHY_DQ_TIMING 0x2000
  211. /* Register controlling DSQ related timing. */
  212. #define PHY_DQS_TIMING 0x2004
  213. #define PHY_DQS_TIMING_DQS_SEL_OE_END GENMASK(3, 0)
  214. #define PHY_DQS_TIMING_PHONY_DQS_SEL BIT(16)
  215. #define PHY_DQS_TIMING_USE_PHONY_DQS BIT(20)
  216. /* Register controlling the gate and loopback control related timing. */
  217. #define PHY_GATE_LPBK_CTRL 0x2008
  218. #define PHY_GATE_LPBK_CTRL_RDS GENMASK(24, 19)
  219. /* Register holds the control for the master DLL logic. */
  220. #define PHY_DLL_MASTER_CTRL 0x200C
  221. #define PHY_DLL_MASTER_CTRL_BYPASS_MODE BIT(23)
  222. /* Register holds the control for the slave DLL logic. */
  223. #define PHY_DLL_SLAVE_CTRL 0x2010
  224. /* This register handles the global control settings for the PHY. */
  225. #define PHY_CTRL 0x2080
  226. #define PHY_CTRL_SDR_DQS BIT(14)
  227. #define PHY_CTRL_PHONY_DQS GENMASK(9, 4)
  228. /*
  229. * This register handles the global control settings
  230. * for the termination selects for reads.
  231. */
  232. #define PHY_TSEL 0x2084
  233. /* Generic command layout. */
  234. #define GCMD_LAY_CS GENMASK_ULL(11, 8)
  235. /*
  236. * This bit informs the minicotroller if it has to wait for tWB
  237. * after sending the last CMD/ADDR/DATA in the sequence.
  238. */
  239. #define GCMD_LAY_TWB BIT_ULL(6)
  240. /* Type of generic instruction. */
  241. #define GCMD_LAY_INSTR GENMASK_ULL(5, 0)
  242. /* Generic CMD sequence type. */
  243. #define GCMD_LAY_INSTR_CMD 0
  244. /* Generic ADDR sequence type. */
  245. #define GCMD_LAY_INSTR_ADDR 1
  246. /* Generic data transfer sequence type. */
  247. #define GCMD_LAY_INSTR_DATA 2
  248. /* Input part of generic command type of input is command. */
  249. #define GCMD_LAY_INPUT_CMD GENMASK_ULL(23, 16)
  250. /* Generic command address sequence - address fields. */
  251. #define GCMD_LAY_INPUT_ADDR GENMASK_ULL(63, 16)
  252. /* Generic command address sequence - address size. */
  253. #define GCMD_LAY_INPUT_ADDR_SIZE GENMASK_ULL(13, 11)
  254. /* Transfer direction field of generic command data sequence. */
  255. #define GCMD_DIR BIT_ULL(11)
  256. /* Read transfer direction of generic command data sequence. */
  257. #define GCMD_DIR_READ 0
  258. /* Write transfer direction of generic command data sequence. */
  259. #define GCMD_DIR_WRITE 1
  260. /* ECC enabled flag of generic command data sequence - ECC enabled. */
  261. #define GCMD_ECC_EN BIT_ULL(12)
  262. /* Generic command data sequence - sector size. */
  263. #define GCMD_SECT_SIZE GENMASK_ULL(31, 16)
  264. /* Generic command data sequence - sector count. */
  265. #define GCMD_SECT_CNT GENMASK_ULL(39, 32)
  266. /* Generic command data sequence - last sector size. */
  267. #define GCMD_LAST_SIZE GENMASK_ULL(55, 40)
  268. /* CDMA descriptor fields. */
  269. /* Erase command type of CDMA descriptor. */
  270. #define CDMA_CT_ERASE 0x1000
  271. /* Program page command type of CDMA descriptor. */
  272. #define CDMA_CT_WR 0x2100
  273. /* Read page command type of CDMA descriptor. */
  274. #define CDMA_CT_RD 0x2200
  275. /* Flash pointer memory shift. */
  276. #define CDMA_CFPTR_MEM_SHIFT 24
  277. /* Flash pointer memory mask. */
  278. #define CDMA_CFPTR_MEM GENMASK(26, 24)
  279. /*
  280. * Command DMA descriptor flags. If set causes issue interrupt after
  281. * the completion of descriptor processing.
  282. */
  283. #define CDMA_CF_INT BIT(8)
  284. /*
  285. * Command DMA descriptor flags - the next descriptor
  286. * address field is valid and descriptor processing should continue.
  287. */
  288. #define CDMA_CF_CONT BIT(9)
  289. /* DMA master flag of command DMA descriptor. */
  290. #define CDMA_CF_DMA_MASTER BIT(10)
  291. /* Operation complete status of command descriptor. */
  292. #define CDMA_CS_COMP BIT(15)
  293. /* Operation complete status of command descriptor. */
  294. /* Command descriptor status - operation fail. */
  295. #define CDMA_CS_FAIL BIT(14)
  296. /* Command descriptor status - page erased. */
  297. #define CDMA_CS_ERP BIT(11)
  298. /* Command descriptor status - timeout occurred. */
  299. #define CDMA_CS_TOUT BIT(10)
  300. /*
  301. * Maximum amount of correction applied to one ECC sector.
  302. * It is part of command descriptor status.
  303. */
  304. #define CDMA_CS_MAXERR GENMASK(9, 2)
  305. /* Command descriptor status - uncorrectable ECC error. */
  306. #define CDMA_CS_UNCE BIT(1)
  307. /* Command descriptor status - descriptor error. */
  308. #define CDMA_CS_ERR BIT(0)
  309. /* Status of operation - OK. */
  310. #define STAT_OK 0
  311. /* Status of operation - FAIL. */
  312. #define STAT_FAIL 2
  313. /* Status of operation - uncorrectable ECC error. */
  314. #define STAT_ECC_UNCORR 3
  315. /* Status of operation - page erased. */
  316. #define STAT_ERASED 5
  317. /* Status of operation - correctable ECC error. */
  318. #define STAT_ECC_CORR 6
  319. /* Status of operation - unsuspected state. */
  320. #define STAT_UNKNOWN 7
  321. /* Status of operation - operation is not completed yet. */
  322. #define STAT_BUSY 0xFF
  323. #define BCH_MAX_NUM_CORR_CAPS 8
  324. #define BCH_MAX_NUM_SECTOR_SIZES 2
  325. struct cadence_nand_timings {
  326. u32 async_toggle_timings;
  327. u32 timings0;
  328. u32 timings1;
  329. u32 timings2;
  330. u32 dll_phy_ctrl;
  331. u32 phy_ctrl;
  332. u32 phy_dqs_timing;
  333. u32 phy_gate_lpbk_ctrl;
  334. };
  335. /* Command DMA descriptor. */
  336. struct cadence_nand_cdma_desc {
  337. /* Next descriptor address. */
  338. u64 next_pointer;
  339. /* Flash address is a 32-bit address comprising of BANK and ROW ADDR. */
  340. u32 flash_pointer;
  341. /*field appears in HPNFC version 13*/
  342. u16 bank;
  343. u16 rsvd0;
  344. /* Operation the controller needs to perform. */
  345. u16 command_type;
  346. u16 rsvd1;
  347. /* Flags for operation of this command. */
  348. u16 command_flags;
  349. u16 rsvd2;
  350. /* System/host memory address required for data DMA commands. */
  351. u64 memory_pointer;
  352. /* Status of operation. */
  353. u32 status;
  354. u32 rsvd3;
  355. /* Address pointer to sync buffer location. */
  356. u64 sync_flag_pointer;
  357. /* Controls the buffer sync mechanism. */
  358. u32 sync_arguments;
  359. u32 rsvd4;
  360. /* Control data pointer. */
  361. u64 ctrl_data_ptr;
  362. };
  363. /* Interrupt status. */
  364. struct cadence_nand_irq_status {
  365. /* Thread operation complete status. */
  366. u32 trd_status;
  367. /* Thread operation error. */
  368. u32 trd_error;
  369. /* Controller status. */
  370. u32 status;
  371. };
  372. /* Cadence NAND flash controller capabilities get from driver data. */
  373. struct cadence_nand_dt_devdata {
  374. /* Skew value of the output signals of the NAND Flash interface. */
  375. u32 if_skew;
  376. /* It informs if slave DMA interface is connected to DMA engine. */
  377. unsigned int has_dma:1;
  378. };
  379. /* Cadence NAND flash controller capabilities read from registers. */
  380. struct cdns_nand_caps {
  381. /* Maximum number of banks supported by hardware. */
  382. u8 max_banks;
  383. /* Slave and Master DMA data width in bytes (4 or 8). */
  384. u8 data_dma_width;
  385. /* Control Data feature supported. */
  386. bool data_control_supp;
  387. /* Is PHY type DLL. */
  388. bool is_phy_type_dll;
  389. };
  390. struct cdns_nand_ctrl {
  391. struct device *dev;
  392. struct nand_controller controller;
  393. struct cadence_nand_cdma_desc *cdma_desc;
  394. /* IP capability. */
  395. const struct cadence_nand_dt_devdata *caps1;
  396. struct cdns_nand_caps caps2;
  397. u8 ctrl_rev;
  398. dma_addr_t dma_cdma_desc;
  399. u8 *buf;
  400. u32 buf_size;
  401. u8 curr_corr_str_idx;
  402. /* Register interface. */
  403. void __iomem *reg;
  404. struct {
  405. void __iomem *virt;
  406. dma_addr_t dma;
  407. } io;
  408. int irq;
  409. /* Interrupts that have happened. */
  410. struct cadence_nand_irq_status irq_status;
  411. /* Interrupts we are waiting for. */
  412. struct cadence_nand_irq_status irq_mask;
  413. struct completion complete;
  414. /* Protect irq_mask and irq_status. */
  415. spinlock_t irq_lock;
  416. int ecc_strengths[BCH_MAX_NUM_CORR_CAPS];
  417. struct nand_ecc_step_info ecc_stepinfos[BCH_MAX_NUM_SECTOR_SIZES];
  418. struct nand_ecc_caps ecc_caps;
  419. int curr_trans_type;
  420. struct dma_chan *dmac;
  421. u32 nf_clk_rate;
  422. /*
  423. * Estimated Board delay. The value includes the total
  424. * round trip delay for the signals and is used for deciding on values
  425. * associated with data read capture.
  426. */
  427. u32 board_delay;
  428. struct nand_chip *selected_chip;
  429. unsigned long assigned_cs;
  430. struct list_head chips;
  431. u8 bch_metadata_size;
  432. };
  433. struct cdns_nand_chip {
  434. struct cadence_nand_timings timings;
  435. struct nand_chip chip;
  436. u8 nsels;
  437. struct list_head node;
  438. /*
  439. * part of oob area of NAND flash memory page.
  440. * This part is available for user to read or write.
  441. */
  442. u32 avail_oob_size;
  443. /* Sector size. There are few sectors per mtd->writesize */
  444. u32 sector_size;
  445. u32 sector_count;
  446. /* Offset of BBM. */
  447. u8 bbm_offs;
  448. /* Number of bytes reserved for BBM. */
  449. u8 bbm_len;
  450. /* ECC strength index. */
  451. u8 corr_str_idx;
  452. u8 cs[] __counted_by(nsels);
  453. };
  454. static inline struct
  455. cdns_nand_chip *to_cdns_nand_chip(struct nand_chip *chip)
  456. {
  457. return container_of(chip, struct cdns_nand_chip, chip);
  458. }
  459. static inline struct
  460. cdns_nand_ctrl *to_cdns_nand_ctrl(struct nand_controller *controller)
  461. {
  462. return container_of(controller, struct cdns_nand_ctrl, controller);
  463. }
  464. static bool
  465. cadence_nand_dma_buf_ok(struct cdns_nand_ctrl *cdns_ctrl, const void *buf,
  466. u32 buf_len)
  467. {
  468. u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
  469. return buf && virt_addr_valid(buf) &&
  470. likely(IS_ALIGNED((uintptr_t)buf, data_dma_width)) &&
  471. likely(IS_ALIGNED(buf_len, DMA_DATA_SIZE_ALIGN));
  472. }
  473. static int cadence_nand_wait_for_value(struct cdns_nand_ctrl *cdns_ctrl,
  474. u32 reg_offset, u32 timeout_us,
  475. u32 mask, bool is_clear)
  476. {
  477. u32 val;
  478. int ret;
  479. ret = readl_relaxed_poll_timeout(cdns_ctrl->reg + reg_offset,
  480. val, !(val & mask) == is_clear,
  481. 10, timeout_us);
  482. if (ret < 0) {
  483. dev_err(cdns_ctrl->dev,
  484. "Timeout while waiting for reg %x with mask %x is clear %d\n",
  485. reg_offset, mask, is_clear);
  486. }
  487. return ret;
  488. }
  489. static int cadence_nand_set_ecc_enable(struct cdns_nand_ctrl *cdns_ctrl,
  490. bool enable)
  491. {
  492. u32 reg;
  493. if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
  494. 1000000,
  495. CTRL_STATUS_CTRL_BUSY, true))
  496. return -ETIMEDOUT;
  497. reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
  498. if (enable)
  499. reg |= ECC_CONFIG_0_ECC_EN;
  500. else
  501. reg &= ~ECC_CONFIG_0_ECC_EN;
  502. writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
  503. return 0;
  504. }
  505. static void cadence_nand_set_ecc_strength(struct cdns_nand_ctrl *cdns_ctrl,
  506. u8 corr_str_idx)
  507. {
  508. u32 reg;
  509. if (cdns_ctrl->curr_corr_str_idx == corr_str_idx)
  510. return;
  511. reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
  512. reg &= ~ECC_CONFIG_0_CORR_STR;
  513. reg |= FIELD_PREP(ECC_CONFIG_0_CORR_STR, corr_str_idx);
  514. writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
  515. cdns_ctrl->curr_corr_str_idx = corr_str_idx;
  516. }
  517. static int cadence_nand_get_ecc_strength_idx(struct cdns_nand_ctrl *cdns_ctrl,
  518. u8 strength)
  519. {
  520. int i, corr_str_idx = -1;
  521. for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
  522. if (cdns_ctrl->ecc_strengths[i] == strength) {
  523. corr_str_idx = i;
  524. break;
  525. }
  526. }
  527. return corr_str_idx;
  528. }
  529. static int cadence_nand_set_skip_marker_val(struct cdns_nand_ctrl *cdns_ctrl,
  530. u16 marker_value)
  531. {
  532. u32 reg;
  533. if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
  534. 1000000,
  535. CTRL_STATUS_CTRL_BUSY, true))
  536. return -ETIMEDOUT;
  537. reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
  538. reg &= ~SKIP_BYTES_MARKER_VALUE;
  539. reg |= FIELD_PREP(SKIP_BYTES_MARKER_VALUE,
  540. marker_value);
  541. writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
  542. return 0;
  543. }
  544. static int cadence_nand_set_skip_bytes_conf(struct cdns_nand_ctrl *cdns_ctrl,
  545. u8 num_of_bytes,
  546. u32 offset_value,
  547. int enable)
  548. {
  549. u32 reg, skip_bytes_offset;
  550. if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
  551. 1000000,
  552. CTRL_STATUS_CTRL_BUSY, true))
  553. return -ETIMEDOUT;
  554. if (!enable) {
  555. num_of_bytes = 0;
  556. offset_value = 0;
  557. }
  558. reg = readl_relaxed(cdns_ctrl->reg + SKIP_BYTES_CONF);
  559. reg &= ~SKIP_BYTES_NUM_OF_BYTES;
  560. reg |= FIELD_PREP(SKIP_BYTES_NUM_OF_BYTES,
  561. num_of_bytes);
  562. skip_bytes_offset = FIELD_PREP(SKIP_BYTES_OFFSET_VALUE,
  563. offset_value);
  564. writel_relaxed(reg, cdns_ctrl->reg + SKIP_BYTES_CONF);
  565. writel_relaxed(skip_bytes_offset, cdns_ctrl->reg + SKIP_BYTES_OFFSET);
  566. return 0;
  567. }
  568. /* Functions enables/disables hardware detection of erased data */
  569. static void cadence_nand_set_erase_detection(struct cdns_nand_ctrl *cdns_ctrl,
  570. bool enable,
  571. u8 bitflips_threshold)
  572. {
  573. u32 reg;
  574. reg = readl_relaxed(cdns_ctrl->reg + ECC_CONFIG_0);
  575. if (enable)
  576. reg |= ECC_CONFIG_0_ERASE_DET_EN;
  577. else
  578. reg &= ~ECC_CONFIG_0_ERASE_DET_EN;
  579. writel_relaxed(reg, cdns_ctrl->reg + ECC_CONFIG_0);
  580. writel_relaxed(bitflips_threshold, cdns_ctrl->reg + ECC_CONFIG_1);
  581. }
  582. static int cadence_nand_set_access_width16(struct cdns_nand_ctrl *cdns_ctrl,
  583. bool bit_bus16)
  584. {
  585. u32 reg;
  586. if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
  587. 1000000,
  588. CTRL_STATUS_CTRL_BUSY, true))
  589. return -ETIMEDOUT;
  590. reg = readl_relaxed(cdns_ctrl->reg + COMMON_SET);
  591. if (!bit_bus16)
  592. reg &= ~COMMON_SET_DEVICE_16BIT;
  593. else
  594. reg |= COMMON_SET_DEVICE_16BIT;
  595. writel_relaxed(reg, cdns_ctrl->reg + COMMON_SET);
  596. return 0;
  597. }
  598. static void
  599. cadence_nand_clear_interrupt(struct cdns_nand_ctrl *cdns_ctrl,
  600. struct cadence_nand_irq_status *irq_status)
  601. {
  602. writel_relaxed(irq_status->status, cdns_ctrl->reg + INTR_STATUS);
  603. writel_relaxed(irq_status->trd_status,
  604. cdns_ctrl->reg + TRD_COMP_INT_STATUS);
  605. writel_relaxed(irq_status->trd_error,
  606. cdns_ctrl->reg + TRD_ERR_INT_STATUS);
  607. }
  608. static void
  609. cadence_nand_read_int_status(struct cdns_nand_ctrl *cdns_ctrl,
  610. struct cadence_nand_irq_status *irq_status)
  611. {
  612. irq_status->status = readl_relaxed(cdns_ctrl->reg + INTR_STATUS);
  613. irq_status->trd_status = readl_relaxed(cdns_ctrl->reg
  614. + TRD_COMP_INT_STATUS);
  615. irq_status->trd_error = readl_relaxed(cdns_ctrl->reg
  616. + TRD_ERR_INT_STATUS);
  617. }
  618. static u32 irq_detected(struct cdns_nand_ctrl *cdns_ctrl,
  619. struct cadence_nand_irq_status *irq_status)
  620. {
  621. cadence_nand_read_int_status(cdns_ctrl, irq_status);
  622. return irq_status->status || irq_status->trd_status ||
  623. irq_status->trd_error;
  624. }
  625. static void cadence_nand_reset_irq(struct cdns_nand_ctrl *cdns_ctrl)
  626. {
  627. unsigned long flags;
  628. spin_lock_irqsave(&cdns_ctrl->irq_lock, flags);
  629. memset(&cdns_ctrl->irq_status, 0, sizeof(cdns_ctrl->irq_status));
  630. memset(&cdns_ctrl->irq_mask, 0, sizeof(cdns_ctrl->irq_mask));
  631. spin_unlock_irqrestore(&cdns_ctrl->irq_lock, flags);
  632. }
  633. /*
  634. * This is the interrupt service routine. It handles all interrupts
  635. * sent to this device.
  636. */
  637. static irqreturn_t cadence_nand_isr(int irq, void *dev_id)
  638. {
  639. struct cdns_nand_ctrl *cdns_ctrl = dev_id;
  640. struct cadence_nand_irq_status irq_status;
  641. irqreturn_t result = IRQ_NONE;
  642. spin_lock(&cdns_ctrl->irq_lock);
  643. if (irq_detected(cdns_ctrl, &irq_status)) {
  644. /* Handle interrupt. */
  645. /* First acknowledge it. */
  646. cadence_nand_clear_interrupt(cdns_ctrl, &irq_status);
  647. /* Status in the device context for someone to read. */
  648. cdns_ctrl->irq_status.status |= irq_status.status;
  649. cdns_ctrl->irq_status.trd_status |= irq_status.trd_status;
  650. cdns_ctrl->irq_status.trd_error |= irq_status.trd_error;
  651. /* Notify anyone who cares that it happened. */
  652. complete(&cdns_ctrl->complete);
  653. /* Tell the OS that we've handled this. */
  654. result = IRQ_HANDLED;
  655. }
  656. spin_unlock(&cdns_ctrl->irq_lock);
  657. return result;
  658. }
  659. static void cadence_nand_set_irq_mask(struct cdns_nand_ctrl *cdns_ctrl,
  660. struct cadence_nand_irq_status *irq_mask)
  661. {
  662. writel_relaxed(INTR_ENABLE_INTR_EN | irq_mask->status,
  663. cdns_ctrl->reg + INTR_ENABLE);
  664. writel_relaxed(irq_mask->trd_error,
  665. cdns_ctrl->reg + TRD_ERR_INT_STATUS_EN);
  666. }
  667. static void
  668. cadence_nand_wait_for_irq(struct cdns_nand_ctrl *cdns_ctrl,
  669. struct cadence_nand_irq_status *irq_mask,
  670. struct cadence_nand_irq_status *irq_status)
  671. {
  672. unsigned long timeout = msecs_to_jiffies(10000);
  673. unsigned long time_left;
  674. time_left = wait_for_completion_timeout(&cdns_ctrl->complete,
  675. timeout);
  676. *irq_status = cdns_ctrl->irq_status;
  677. if (time_left == 0) {
  678. /* Timeout error. */
  679. dev_err(cdns_ctrl->dev, "timeout occurred:\n");
  680. dev_err(cdns_ctrl->dev, "\tstatus = 0x%x, mask = 0x%x\n",
  681. irq_status->status, irq_mask->status);
  682. dev_err(cdns_ctrl->dev,
  683. "\ttrd_status = 0x%x, trd_status mask = 0x%x\n",
  684. irq_status->trd_status, irq_mask->trd_status);
  685. dev_err(cdns_ctrl->dev,
  686. "\t trd_error = 0x%x, trd_error mask = 0x%x\n",
  687. irq_status->trd_error, irq_mask->trd_error);
  688. }
  689. }
  690. /* Execute generic command on NAND controller. */
  691. static int cadence_nand_generic_cmd_send(struct cdns_nand_ctrl *cdns_ctrl,
  692. u8 chip_nr,
  693. u64 mini_ctrl_cmd)
  694. {
  695. u32 mini_ctrl_cmd_l, mini_ctrl_cmd_h, reg;
  696. mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_CS, chip_nr);
  697. mini_ctrl_cmd_l = mini_ctrl_cmd & 0xFFFFFFFF;
  698. mini_ctrl_cmd_h = mini_ctrl_cmd >> 32;
  699. if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
  700. 1000000,
  701. CTRL_STATUS_CTRL_BUSY, true))
  702. return -ETIMEDOUT;
  703. cadence_nand_reset_irq(cdns_ctrl);
  704. writel_relaxed(mini_ctrl_cmd_l, cdns_ctrl->reg + CMD_REG2);
  705. writel_relaxed(mini_ctrl_cmd_h, cdns_ctrl->reg + CMD_REG3);
  706. /* Select generic command. */
  707. reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_GEN);
  708. /* Thread number. */
  709. reg |= FIELD_PREP(CMD_REG0_TN, 0);
  710. /* Issue command. */
  711. writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
  712. return 0;
  713. }
  714. /* Wait for data on slave DMA interface. */
  715. static int cadence_nand_wait_on_sdma(struct cdns_nand_ctrl *cdns_ctrl,
  716. u8 *out_sdma_trd,
  717. u32 *out_sdma_size)
  718. {
  719. struct cadence_nand_irq_status irq_mask, irq_status;
  720. irq_mask.trd_status = 0;
  721. irq_mask.trd_error = 0;
  722. irq_mask.status = INTR_STATUS_SDMA_TRIGG
  723. | INTR_STATUS_SDMA_ERR
  724. | INTR_STATUS_UNSUPP_CMD;
  725. cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
  726. cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
  727. if (irq_status.status == 0) {
  728. dev_err(cdns_ctrl->dev, "Timeout while waiting for SDMA\n");
  729. return -ETIMEDOUT;
  730. }
  731. if (irq_status.status & INTR_STATUS_SDMA_TRIGG) {
  732. *out_sdma_size = readl_relaxed(cdns_ctrl->reg + SDMA_SIZE);
  733. *out_sdma_trd = readl_relaxed(cdns_ctrl->reg + SDMA_TRD_NUM);
  734. *out_sdma_trd =
  735. FIELD_GET(SDMA_TRD_NUM_SDMA_TRD, *out_sdma_trd);
  736. } else {
  737. dev_err(cdns_ctrl->dev, "SDMA error - irq_status %x\n",
  738. irq_status.status);
  739. return -EIO;
  740. }
  741. return 0;
  742. }
  743. static void cadence_nand_get_caps(struct cdns_nand_ctrl *cdns_ctrl)
  744. {
  745. u32 reg;
  746. reg = readl_relaxed(cdns_ctrl->reg + CTRL_FEATURES);
  747. cdns_ctrl->caps2.max_banks = 1 << FIELD_GET(CTRL_FEATURES_N_BANKS, reg);
  748. if (FIELD_GET(CTRL_FEATURES_DMA_DWITH64, reg))
  749. cdns_ctrl->caps2.data_dma_width = 8;
  750. else
  751. cdns_ctrl->caps2.data_dma_width = 4;
  752. if (reg & CTRL_FEATURES_CONTROL_DATA)
  753. cdns_ctrl->caps2.data_control_supp = true;
  754. if (reg & (CTRL_FEATURES_NVDDR_2_3
  755. | CTRL_FEATURES_NVDDR))
  756. cdns_ctrl->caps2.is_phy_type_dll = true;
  757. }
  758. /* Prepare CDMA descriptor. */
  759. static void
  760. cadence_nand_cdma_desc_prepare(struct cdns_nand_ctrl *cdns_ctrl,
  761. char nf_mem, u32 flash_ptr, dma_addr_t mem_ptr,
  762. dma_addr_t ctrl_data_ptr, u16 ctype)
  763. {
  764. struct cadence_nand_cdma_desc *cdma_desc = cdns_ctrl->cdma_desc;
  765. memset(cdma_desc, 0, sizeof(struct cadence_nand_cdma_desc));
  766. /* Set fields for one descriptor. */
  767. cdma_desc->flash_pointer = flash_ptr;
  768. if (cdns_ctrl->ctrl_rev >= 13)
  769. cdma_desc->bank = nf_mem;
  770. else
  771. cdma_desc->flash_pointer |= (nf_mem << CDMA_CFPTR_MEM_SHIFT);
  772. cdma_desc->command_flags |= CDMA_CF_DMA_MASTER;
  773. cdma_desc->command_flags |= CDMA_CF_INT;
  774. cdma_desc->memory_pointer = mem_ptr;
  775. cdma_desc->status = 0;
  776. cdma_desc->sync_flag_pointer = 0;
  777. cdma_desc->sync_arguments = 0;
  778. cdma_desc->command_type = ctype;
  779. cdma_desc->ctrl_data_ptr = ctrl_data_ptr;
  780. }
  781. static u8 cadence_nand_check_desc_error(struct cdns_nand_ctrl *cdns_ctrl,
  782. u32 desc_status)
  783. {
  784. if (desc_status & CDMA_CS_ERP)
  785. return STAT_ERASED;
  786. if (desc_status & CDMA_CS_UNCE)
  787. return STAT_ECC_UNCORR;
  788. if (desc_status & CDMA_CS_ERR) {
  789. dev_err(cdns_ctrl->dev, ":CDMA desc error flag detected.\n");
  790. return STAT_FAIL;
  791. }
  792. if (FIELD_GET(CDMA_CS_MAXERR, desc_status))
  793. return STAT_ECC_CORR;
  794. return STAT_FAIL;
  795. }
  796. static int cadence_nand_cdma_finish(struct cdns_nand_ctrl *cdns_ctrl)
  797. {
  798. struct cadence_nand_cdma_desc *desc_ptr = cdns_ctrl->cdma_desc;
  799. u8 status = STAT_BUSY;
  800. if (desc_ptr->status & CDMA_CS_FAIL) {
  801. status = cadence_nand_check_desc_error(cdns_ctrl,
  802. desc_ptr->status);
  803. dev_err(cdns_ctrl->dev, ":CDMA error %x\n", desc_ptr->status);
  804. } else if (desc_ptr->status & CDMA_CS_COMP) {
  805. /* Descriptor finished with no errors. */
  806. if (desc_ptr->command_flags & CDMA_CF_CONT) {
  807. dev_info(cdns_ctrl->dev, "DMA unsupported flag is set");
  808. status = STAT_UNKNOWN;
  809. } else {
  810. /* Last descriptor. */
  811. status = STAT_OK;
  812. }
  813. }
  814. return status;
  815. }
  816. static int cadence_nand_cdma_send(struct cdns_nand_ctrl *cdns_ctrl,
  817. u8 thread)
  818. {
  819. u32 reg;
  820. int status;
  821. /* Wait for thread ready. */
  822. status = cadence_nand_wait_for_value(cdns_ctrl, TRD_STATUS,
  823. 1000000,
  824. BIT(thread), true);
  825. if (status)
  826. return status;
  827. cadence_nand_reset_irq(cdns_ctrl);
  828. reinit_completion(&cdns_ctrl->complete);
  829. writel_relaxed((u32)cdns_ctrl->dma_cdma_desc,
  830. cdns_ctrl->reg + CMD_REG2);
  831. writel_relaxed(0, cdns_ctrl->reg + CMD_REG3);
  832. /* Select CDMA mode. */
  833. reg = FIELD_PREP(CMD_REG0_CT, CMD_REG0_CT_CDMA);
  834. /* Thread number. */
  835. reg |= FIELD_PREP(CMD_REG0_TN, thread);
  836. /* Issue command. */
  837. writel_relaxed(reg, cdns_ctrl->reg + CMD_REG0);
  838. return 0;
  839. }
  840. /* Send SDMA command and wait for finish. */
  841. static u32
  842. cadence_nand_cdma_send_and_wait(struct cdns_nand_ctrl *cdns_ctrl,
  843. u8 thread)
  844. {
  845. struct cadence_nand_irq_status irq_mask, irq_status = {0};
  846. int status;
  847. irq_mask.trd_status = BIT(thread);
  848. irq_mask.trd_error = BIT(thread);
  849. irq_mask.status = INTR_STATUS_CDMA_TERR;
  850. cadence_nand_set_irq_mask(cdns_ctrl, &irq_mask);
  851. status = cadence_nand_cdma_send(cdns_ctrl, thread);
  852. if (status)
  853. return status;
  854. cadence_nand_wait_for_irq(cdns_ctrl, &irq_mask, &irq_status);
  855. if (irq_status.status == 0 && irq_status.trd_status == 0 &&
  856. irq_status.trd_error == 0) {
  857. dev_err(cdns_ctrl->dev, "CDMA command timeout\n");
  858. return -ETIMEDOUT;
  859. }
  860. if (irq_status.status & irq_mask.status) {
  861. dev_err(cdns_ctrl->dev, "CDMA command failed\n");
  862. return -EIO;
  863. }
  864. return 0;
  865. }
  866. /*
  867. * ECC size depends on configured ECC strength and on maximum supported
  868. * ECC step size.
  869. */
  870. static int cadence_nand_calc_ecc_bytes(int max_step_size, int strength)
  871. {
  872. int nbytes = DIV_ROUND_UP(fls(8 * max_step_size) * strength, 8);
  873. return ALIGN(nbytes, 2);
  874. }
  875. #define CADENCE_NAND_CALC_ECC_BYTES(max_step_size) \
  876. static int \
  877. cadence_nand_calc_ecc_bytes_##max_step_size(int step_size, \
  878. int strength)\
  879. {\
  880. return cadence_nand_calc_ecc_bytes(max_step_size, strength);\
  881. }
  882. CADENCE_NAND_CALC_ECC_BYTES(256)
  883. CADENCE_NAND_CALC_ECC_BYTES(512)
  884. CADENCE_NAND_CALC_ECC_BYTES(1024)
  885. CADENCE_NAND_CALC_ECC_BYTES(2048)
  886. CADENCE_NAND_CALC_ECC_BYTES(4096)
  887. /* Function reads BCH capabilities. */
  888. static int cadence_nand_read_bch_caps(struct cdns_nand_ctrl *cdns_ctrl)
  889. {
  890. struct nand_ecc_caps *ecc_caps = &cdns_ctrl->ecc_caps;
  891. int max_step_size = 0, nstrengths, i;
  892. u32 reg;
  893. reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_3);
  894. cdns_ctrl->bch_metadata_size = FIELD_GET(BCH_CFG_3_METADATA_SIZE, reg);
  895. if (cdns_ctrl->bch_metadata_size < 4) {
  896. dev_err(cdns_ctrl->dev,
  897. "Driver needs at least 4 bytes of BCH meta data\n");
  898. return -EIO;
  899. }
  900. reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_0);
  901. cdns_ctrl->ecc_strengths[0] = FIELD_GET(BCH_CFG_0_CORR_CAP_0, reg);
  902. cdns_ctrl->ecc_strengths[1] = FIELD_GET(BCH_CFG_0_CORR_CAP_1, reg);
  903. cdns_ctrl->ecc_strengths[2] = FIELD_GET(BCH_CFG_0_CORR_CAP_2, reg);
  904. cdns_ctrl->ecc_strengths[3] = FIELD_GET(BCH_CFG_0_CORR_CAP_3, reg);
  905. reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_1);
  906. cdns_ctrl->ecc_strengths[4] = FIELD_GET(BCH_CFG_1_CORR_CAP_4, reg);
  907. cdns_ctrl->ecc_strengths[5] = FIELD_GET(BCH_CFG_1_CORR_CAP_5, reg);
  908. cdns_ctrl->ecc_strengths[6] = FIELD_GET(BCH_CFG_1_CORR_CAP_6, reg);
  909. cdns_ctrl->ecc_strengths[7] = FIELD_GET(BCH_CFG_1_CORR_CAP_7, reg);
  910. reg = readl_relaxed(cdns_ctrl->reg + BCH_CFG_2);
  911. cdns_ctrl->ecc_stepinfos[0].stepsize =
  912. FIELD_GET(BCH_CFG_2_SECT_0, reg);
  913. cdns_ctrl->ecc_stepinfos[1].stepsize =
  914. FIELD_GET(BCH_CFG_2_SECT_1, reg);
  915. nstrengths = 0;
  916. for (i = 0; i < BCH_MAX_NUM_CORR_CAPS; i++) {
  917. if (cdns_ctrl->ecc_strengths[i] != 0)
  918. nstrengths++;
  919. }
  920. ecc_caps->nstepinfos = 0;
  921. for (i = 0; i < BCH_MAX_NUM_SECTOR_SIZES; i++) {
  922. /* ECC strengths are common for all step infos. */
  923. cdns_ctrl->ecc_stepinfos[i].nstrengths = nstrengths;
  924. cdns_ctrl->ecc_stepinfos[i].strengths =
  925. cdns_ctrl->ecc_strengths;
  926. if (cdns_ctrl->ecc_stepinfos[i].stepsize != 0)
  927. ecc_caps->nstepinfos++;
  928. if (cdns_ctrl->ecc_stepinfos[i].stepsize > max_step_size)
  929. max_step_size = cdns_ctrl->ecc_stepinfos[i].stepsize;
  930. }
  931. ecc_caps->stepinfos = &cdns_ctrl->ecc_stepinfos[0];
  932. switch (max_step_size) {
  933. case 256:
  934. ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_256;
  935. break;
  936. case 512:
  937. ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_512;
  938. break;
  939. case 1024:
  940. ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_1024;
  941. break;
  942. case 2048:
  943. ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_2048;
  944. break;
  945. case 4096:
  946. ecc_caps->calc_ecc_bytes = &cadence_nand_calc_ecc_bytes_4096;
  947. break;
  948. default:
  949. dev_err(cdns_ctrl->dev,
  950. "Unsupported sector size(ecc step size) %d\n",
  951. max_step_size);
  952. return -EIO;
  953. }
  954. return 0;
  955. }
  956. /* Hardware initialization. */
  957. static int cadence_nand_hw_init(struct cdns_nand_ctrl *cdns_ctrl)
  958. {
  959. int status;
  960. u32 reg;
  961. status = cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
  962. 1000000,
  963. CTRL_STATUS_INIT_COMP, false);
  964. if (status)
  965. return status;
  966. reg = readl_relaxed(cdns_ctrl->reg + CTRL_VERSION);
  967. cdns_ctrl->ctrl_rev = FIELD_GET(CTRL_VERSION_REV, reg);
  968. dev_info(cdns_ctrl->dev,
  969. "%s: cadence nand controller version reg %x\n",
  970. __func__, reg);
  971. /* Disable cache and multiplane. */
  972. writel_relaxed(0, cdns_ctrl->reg + MULTIPLANE_CFG);
  973. writel_relaxed(0, cdns_ctrl->reg + CACHE_CFG);
  974. /* Clear all interrupts. */
  975. writel_relaxed(0xFFFFFFFF, cdns_ctrl->reg + INTR_STATUS);
  976. cadence_nand_get_caps(cdns_ctrl);
  977. if (cadence_nand_read_bch_caps(cdns_ctrl))
  978. return -EIO;
  979. #ifndef CONFIG_64BIT
  980. if (cdns_ctrl->caps2.data_dma_width == 8) {
  981. dev_err(cdns_ctrl->dev,
  982. "cannot access 64-bit dma on !64-bit architectures");
  983. return -EIO;
  984. }
  985. #endif
  986. /*
  987. * Set IO width access to 8.
  988. * It is because during SW device discovering width access
  989. * is expected to be 8.
  990. */
  991. status = cadence_nand_set_access_width16(cdns_ctrl, false);
  992. return status;
  993. }
  994. #define TT_MAIN_OOB_AREAS 2
  995. #define TT_RAW_PAGE 3
  996. #define TT_BBM 4
  997. #define TT_MAIN_OOB_AREA_EXT 5
  998. /* Prepare size of data to transfer. */
  999. static void
  1000. cadence_nand_prepare_data_size(struct nand_chip *chip,
  1001. int transfer_type)
  1002. {
  1003. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1004. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1005. struct mtd_info *mtd = nand_to_mtd(chip);
  1006. u32 sec_size = 0, offset = 0, sec_cnt = 1;
  1007. u32 last_sec_size = cdns_chip->sector_size;
  1008. u32 data_ctrl_size = 0;
  1009. u32 reg = 0;
  1010. if (cdns_ctrl->curr_trans_type == transfer_type)
  1011. return;
  1012. switch (transfer_type) {
  1013. case TT_MAIN_OOB_AREA_EXT:
  1014. sec_cnt = cdns_chip->sector_count;
  1015. sec_size = cdns_chip->sector_size;
  1016. data_ctrl_size = cdns_chip->avail_oob_size;
  1017. break;
  1018. case TT_MAIN_OOB_AREAS:
  1019. sec_cnt = cdns_chip->sector_count;
  1020. last_sec_size = cdns_chip->sector_size
  1021. + cdns_chip->avail_oob_size;
  1022. sec_size = cdns_chip->sector_size;
  1023. break;
  1024. case TT_RAW_PAGE:
  1025. last_sec_size = mtd->writesize + mtd->oobsize;
  1026. break;
  1027. case TT_BBM:
  1028. offset = mtd->writesize + cdns_chip->bbm_offs;
  1029. last_sec_size = 8;
  1030. break;
  1031. }
  1032. reg = 0;
  1033. reg |= FIELD_PREP(TRAN_CFG_0_OFFSET, offset);
  1034. reg |= FIELD_PREP(TRAN_CFG_0_SEC_CNT, sec_cnt);
  1035. writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_0);
  1036. reg = 0;
  1037. reg |= FIELD_PREP(TRAN_CFG_1_LAST_SEC_SIZE, last_sec_size);
  1038. reg |= FIELD_PREP(TRAN_CFG_1_SECTOR_SIZE, sec_size);
  1039. writel_relaxed(reg, cdns_ctrl->reg + TRAN_CFG_1);
  1040. if (cdns_ctrl->caps2.data_control_supp) {
  1041. reg = readl_relaxed(cdns_ctrl->reg + CONTROL_DATA_CTRL);
  1042. reg &= ~CONTROL_DATA_CTRL_SIZE;
  1043. reg |= FIELD_PREP(CONTROL_DATA_CTRL_SIZE, data_ctrl_size);
  1044. writel_relaxed(reg, cdns_ctrl->reg + CONTROL_DATA_CTRL);
  1045. }
  1046. cdns_ctrl->curr_trans_type = transfer_type;
  1047. }
  1048. static int
  1049. cadence_nand_cdma_transfer(struct cdns_nand_ctrl *cdns_ctrl, u8 chip_nr,
  1050. int page, void *buf, void *ctrl_dat, u32 buf_size,
  1051. u32 ctrl_dat_size, enum dma_data_direction dir,
  1052. bool with_ecc)
  1053. {
  1054. dma_addr_t dma_buf, dma_ctrl_dat = 0;
  1055. u8 thread_nr = chip_nr;
  1056. int status;
  1057. u16 ctype;
  1058. if (dir == DMA_FROM_DEVICE)
  1059. ctype = CDMA_CT_RD;
  1060. else
  1061. ctype = CDMA_CT_WR;
  1062. cadence_nand_set_ecc_enable(cdns_ctrl, with_ecc);
  1063. dma_buf = dma_map_single(cdns_ctrl->dev, buf, buf_size, dir);
  1064. if (dma_mapping_error(cdns_ctrl->dev, dma_buf)) {
  1065. dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
  1066. return -EIO;
  1067. }
  1068. if (ctrl_dat && ctrl_dat_size) {
  1069. dma_ctrl_dat = dma_map_single(cdns_ctrl->dev, ctrl_dat,
  1070. ctrl_dat_size, dir);
  1071. if (dma_mapping_error(cdns_ctrl->dev, dma_ctrl_dat)) {
  1072. dma_unmap_single(cdns_ctrl->dev, dma_buf,
  1073. buf_size, dir);
  1074. dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
  1075. return -EIO;
  1076. }
  1077. }
  1078. cadence_nand_cdma_desc_prepare(cdns_ctrl, chip_nr, page,
  1079. dma_buf, dma_ctrl_dat, ctype);
  1080. status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
  1081. dma_unmap_single(cdns_ctrl->dev, dma_buf,
  1082. buf_size, dir);
  1083. if (ctrl_dat && ctrl_dat_size)
  1084. dma_unmap_single(cdns_ctrl->dev, dma_ctrl_dat,
  1085. ctrl_dat_size, dir);
  1086. if (status)
  1087. return status;
  1088. return cadence_nand_cdma_finish(cdns_ctrl);
  1089. }
  1090. static void cadence_nand_set_timings(struct cdns_nand_ctrl *cdns_ctrl,
  1091. struct cadence_nand_timings *t)
  1092. {
  1093. writel_relaxed(t->async_toggle_timings,
  1094. cdns_ctrl->reg + ASYNC_TOGGLE_TIMINGS);
  1095. writel_relaxed(t->timings0, cdns_ctrl->reg + TIMINGS0);
  1096. writel_relaxed(t->timings1, cdns_ctrl->reg + TIMINGS1);
  1097. writel_relaxed(t->timings2, cdns_ctrl->reg + TIMINGS2);
  1098. if (cdns_ctrl->caps2.is_phy_type_dll)
  1099. writel_relaxed(t->dll_phy_ctrl, cdns_ctrl->reg + DLL_PHY_CTRL);
  1100. writel_relaxed(t->phy_ctrl, cdns_ctrl->reg + PHY_CTRL);
  1101. if (cdns_ctrl->caps2.is_phy_type_dll) {
  1102. writel_relaxed(0, cdns_ctrl->reg + PHY_TSEL);
  1103. writel_relaxed(2, cdns_ctrl->reg + PHY_DQ_TIMING);
  1104. writel_relaxed(t->phy_dqs_timing,
  1105. cdns_ctrl->reg + PHY_DQS_TIMING);
  1106. writel_relaxed(t->phy_gate_lpbk_ctrl,
  1107. cdns_ctrl->reg + PHY_GATE_LPBK_CTRL);
  1108. writel_relaxed(PHY_DLL_MASTER_CTRL_BYPASS_MODE,
  1109. cdns_ctrl->reg + PHY_DLL_MASTER_CTRL);
  1110. writel_relaxed(0, cdns_ctrl->reg + PHY_DLL_SLAVE_CTRL);
  1111. }
  1112. }
  1113. static int cadence_nand_select_target(struct nand_chip *chip)
  1114. {
  1115. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1116. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1117. if (chip == cdns_ctrl->selected_chip)
  1118. return 0;
  1119. if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
  1120. 1000000,
  1121. CTRL_STATUS_CTRL_BUSY, true))
  1122. return -ETIMEDOUT;
  1123. cadence_nand_set_timings(cdns_ctrl, &cdns_chip->timings);
  1124. cadence_nand_set_ecc_strength(cdns_ctrl,
  1125. cdns_chip->corr_str_idx);
  1126. cadence_nand_set_erase_detection(cdns_ctrl, true,
  1127. chip->ecc.strength);
  1128. cdns_ctrl->curr_trans_type = -1;
  1129. cdns_ctrl->selected_chip = chip;
  1130. return 0;
  1131. }
  1132. static int cadence_nand_erase(struct nand_chip *chip, u32 page)
  1133. {
  1134. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1135. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1136. int status;
  1137. u8 thread_nr = cdns_chip->cs[chip->cur_cs];
  1138. cadence_nand_cdma_desc_prepare(cdns_ctrl,
  1139. cdns_chip->cs[chip->cur_cs],
  1140. page, 0, 0,
  1141. CDMA_CT_ERASE);
  1142. status = cadence_nand_cdma_send_and_wait(cdns_ctrl, thread_nr);
  1143. if (status) {
  1144. dev_err(cdns_ctrl->dev, "erase operation failed\n");
  1145. return -EIO;
  1146. }
  1147. status = cadence_nand_cdma_finish(cdns_ctrl);
  1148. if (status)
  1149. return status;
  1150. return 0;
  1151. }
  1152. static int cadence_nand_read_bbm(struct nand_chip *chip, int page, u8 *buf)
  1153. {
  1154. int status;
  1155. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1156. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1157. struct mtd_info *mtd = nand_to_mtd(chip);
  1158. cadence_nand_prepare_data_size(chip, TT_BBM);
  1159. cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
  1160. /*
  1161. * Read only bad block marker from offset
  1162. * defined by a memory manufacturer.
  1163. */
  1164. status = cadence_nand_cdma_transfer(cdns_ctrl,
  1165. cdns_chip->cs[chip->cur_cs],
  1166. page, cdns_ctrl->buf, NULL,
  1167. mtd->oobsize,
  1168. 0, DMA_FROM_DEVICE, false);
  1169. if (status) {
  1170. dev_err(cdns_ctrl->dev, "read BBM failed\n");
  1171. return -EIO;
  1172. }
  1173. memcpy(buf + cdns_chip->bbm_offs, cdns_ctrl->buf, cdns_chip->bbm_len);
  1174. return 0;
  1175. }
  1176. static int cadence_nand_write_page(struct nand_chip *chip,
  1177. const u8 *buf, int oob_required,
  1178. int page)
  1179. {
  1180. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1181. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1182. struct mtd_info *mtd = nand_to_mtd(chip);
  1183. int status;
  1184. u16 marker_val = 0xFFFF;
  1185. status = cadence_nand_select_target(chip);
  1186. if (status)
  1187. return status;
  1188. cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
  1189. mtd->writesize
  1190. + cdns_chip->bbm_offs,
  1191. 1);
  1192. if (oob_required) {
  1193. marker_val = *(u16 *)(chip->oob_poi
  1194. + cdns_chip->bbm_offs);
  1195. } else {
  1196. /* Set oob data to 0xFF. */
  1197. memset(cdns_ctrl->buf + mtd->writesize, 0xFF,
  1198. cdns_chip->avail_oob_size);
  1199. }
  1200. cadence_nand_set_skip_marker_val(cdns_ctrl, marker_val);
  1201. cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
  1202. if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
  1203. cdns_ctrl->caps2.data_control_supp) {
  1204. u8 *oob;
  1205. if (oob_required)
  1206. oob = chip->oob_poi;
  1207. else
  1208. oob = cdns_ctrl->buf + mtd->writesize;
  1209. status = cadence_nand_cdma_transfer(cdns_ctrl,
  1210. cdns_chip->cs[chip->cur_cs],
  1211. page, (void *)buf, oob,
  1212. mtd->writesize,
  1213. cdns_chip->avail_oob_size,
  1214. DMA_TO_DEVICE, true);
  1215. if (status) {
  1216. dev_err(cdns_ctrl->dev, "write page failed\n");
  1217. return -EIO;
  1218. }
  1219. return 0;
  1220. }
  1221. if (oob_required) {
  1222. /* Transfer the data to the oob area. */
  1223. memcpy(cdns_ctrl->buf + mtd->writesize, chip->oob_poi,
  1224. cdns_chip->avail_oob_size);
  1225. }
  1226. memcpy(cdns_ctrl->buf, buf, mtd->writesize);
  1227. cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
  1228. return cadence_nand_cdma_transfer(cdns_ctrl,
  1229. cdns_chip->cs[chip->cur_cs],
  1230. page, cdns_ctrl->buf, NULL,
  1231. mtd->writesize
  1232. + cdns_chip->avail_oob_size,
  1233. 0, DMA_TO_DEVICE, true);
  1234. }
  1235. static int cadence_nand_write_oob(struct nand_chip *chip, int page)
  1236. {
  1237. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1238. struct mtd_info *mtd = nand_to_mtd(chip);
  1239. memset(cdns_ctrl->buf, 0xFF, mtd->writesize);
  1240. return cadence_nand_write_page(chip, cdns_ctrl->buf, 1, page);
  1241. }
  1242. static int cadence_nand_write_page_raw(struct nand_chip *chip,
  1243. const u8 *buf, int oob_required,
  1244. int page)
  1245. {
  1246. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1247. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1248. struct mtd_info *mtd = nand_to_mtd(chip);
  1249. int writesize = mtd->writesize;
  1250. int oobsize = mtd->oobsize;
  1251. int ecc_steps = chip->ecc.steps;
  1252. int ecc_size = chip->ecc.size;
  1253. int ecc_bytes = chip->ecc.bytes;
  1254. void *tmp_buf = cdns_ctrl->buf;
  1255. int oob_skip = cdns_chip->bbm_len;
  1256. size_t size = writesize + oobsize;
  1257. int i, pos, len;
  1258. int status = 0;
  1259. status = cadence_nand_select_target(chip);
  1260. if (status)
  1261. return status;
  1262. /*
  1263. * Fill the buffer with 0xff first except the full page transfer.
  1264. * This simplifies the logic.
  1265. */
  1266. if (!buf || !oob_required)
  1267. memset(tmp_buf, 0xff, size);
  1268. cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
  1269. /* Arrange the buffer for syndrome payload/ecc layout. */
  1270. if (buf) {
  1271. for (i = 0; i < ecc_steps; i++) {
  1272. pos = i * (ecc_size + ecc_bytes);
  1273. len = ecc_size;
  1274. if (pos >= writesize)
  1275. pos += oob_skip;
  1276. else if (pos + len > writesize)
  1277. len = writesize - pos;
  1278. memcpy(tmp_buf + pos, buf, len);
  1279. buf += len;
  1280. if (len < ecc_size) {
  1281. len = ecc_size - len;
  1282. memcpy(tmp_buf + writesize + oob_skip, buf,
  1283. len);
  1284. buf += len;
  1285. }
  1286. }
  1287. }
  1288. if (oob_required) {
  1289. const u8 *oob = chip->oob_poi;
  1290. u32 oob_data_offset = (cdns_chip->sector_count - 1) *
  1291. (cdns_chip->sector_size + chip->ecc.bytes)
  1292. + cdns_chip->sector_size + oob_skip;
  1293. /* BBM at the beginning of the OOB area. */
  1294. memcpy(tmp_buf + writesize, oob, oob_skip);
  1295. /* OOB free. */
  1296. memcpy(tmp_buf + oob_data_offset, oob,
  1297. cdns_chip->avail_oob_size);
  1298. oob += cdns_chip->avail_oob_size;
  1299. /* OOB ECC. */
  1300. for (i = 0; i < ecc_steps; i++) {
  1301. pos = ecc_size + i * (ecc_size + ecc_bytes);
  1302. if (i == (ecc_steps - 1))
  1303. pos += cdns_chip->avail_oob_size;
  1304. len = ecc_bytes;
  1305. if (pos >= writesize)
  1306. pos += oob_skip;
  1307. else if (pos + len > writesize)
  1308. len = writesize - pos;
  1309. memcpy(tmp_buf + pos, oob, len);
  1310. oob += len;
  1311. if (len < ecc_bytes) {
  1312. len = ecc_bytes - len;
  1313. memcpy(tmp_buf + writesize + oob_skip, oob,
  1314. len);
  1315. oob += len;
  1316. }
  1317. }
  1318. }
  1319. cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
  1320. return cadence_nand_cdma_transfer(cdns_ctrl,
  1321. cdns_chip->cs[chip->cur_cs],
  1322. page, cdns_ctrl->buf, NULL,
  1323. mtd->writesize +
  1324. mtd->oobsize,
  1325. 0, DMA_TO_DEVICE, false);
  1326. }
  1327. static int cadence_nand_write_oob_raw(struct nand_chip *chip,
  1328. int page)
  1329. {
  1330. return cadence_nand_write_page_raw(chip, NULL, true, page);
  1331. }
  1332. static int cadence_nand_read_page(struct nand_chip *chip,
  1333. u8 *buf, int oob_required, int page)
  1334. {
  1335. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1336. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1337. struct mtd_info *mtd = nand_to_mtd(chip);
  1338. int status = 0;
  1339. int ecc_err_count = 0;
  1340. status = cadence_nand_select_target(chip);
  1341. if (status)
  1342. return status;
  1343. cadence_nand_set_skip_bytes_conf(cdns_ctrl, cdns_chip->bbm_len,
  1344. mtd->writesize
  1345. + cdns_chip->bbm_offs, 1);
  1346. /*
  1347. * If data buffer can be accessed by DMA and data_control feature
  1348. * is supported then transfer data and oob directly.
  1349. */
  1350. if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, mtd->writesize) &&
  1351. cdns_ctrl->caps2.data_control_supp) {
  1352. u8 *oob;
  1353. if (oob_required)
  1354. oob = chip->oob_poi;
  1355. else
  1356. oob = cdns_ctrl->buf + mtd->writesize;
  1357. cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREA_EXT);
  1358. status = cadence_nand_cdma_transfer(cdns_ctrl,
  1359. cdns_chip->cs[chip->cur_cs],
  1360. page, buf, oob,
  1361. mtd->writesize,
  1362. cdns_chip->avail_oob_size,
  1363. DMA_FROM_DEVICE, true);
  1364. /* Otherwise use bounce buffer. */
  1365. } else {
  1366. cadence_nand_prepare_data_size(chip, TT_MAIN_OOB_AREAS);
  1367. status = cadence_nand_cdma_transfer(cdns_ctrl,
  1368. cdns_chip->cs[chip->cur_cs],
  1369. page, cdns_ctrl->buf,
  1370. NULL, mtd->writesize
  1371. + cdns_chip->avail_oob_size,
  1372. 0, DMA_FROM_DEVICE, true);
  1373. memcpy(buf, cdns_ctrl->buf, mtd->writesize);
  1374. if (oob_required)
  1375. memcpy(chip->oob_poi,
  1376. cdns_ctrl->buf + mtd->writesize,
  1377. mtd->oobsize);
  1378. }
  1379. switch (status) {
  1380. case STAT_ECC_UNCORR:
  1381. mtd->ecc_stats.failed++;
  1382. ecc_err_count++;
  1383. break;
  1384. case STAT_ECC_CORR:
  1385. ecc_err_count = FIELD_GET(CDMA_CS_MAXERR,
  1386. cdns_ctrl->cdma_desc->status);
  1387. mtd->ecc_stats.corrected += ecc_err_count;
  1388. break;
  1389. case STAT_ERASED:
  1390. case STAT_OK:
  1391. break;
  1392. default:
  1393. dev_err(cdns_ctrl->dev, "read page failed\n");
  1394. return -EIO;
  1395. }
  1396. if (oob_required)
  1397. if (cadence_nand_read_bbm(chip, page, chip->oob_poi))
  1398. return -EIO;
  1399. return ecc_err_count;
  1400. }
  1401. /* Reads OOB data from the device. */
  1402. static int cadence_nand_read_oob(struct nand_chip *chip, int page)
  1403. {
  1404. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1405. return cadence_nand_read_page(chip, cdns_ctrl->buf, 1, page);
  1406. }
  1407. static int cadence_nand_read_page_raw(struct nand_chip *chip,
  1408. u8 *buf, int oob_required, int page)
  1409. {
  1410. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1411. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1412. struct mtd_info *mtd = nand_to_mtd(chip);
  1413. int oob_skip = cdns_chip->bbm_len;
  1414. int writesize = mtd->writesize;
  1415. int ecc_steps = chip->ecc.steps;
  1416. int ecc_size = chip->ecc.size;
  1417. int ecc_bytes = chip->ecc.bytes;
  1418. void *tmp_buf = cdns_ctrl->buf;
  1419. int i, pos, len;
  1420. int status = 0;
  1421. status = cadence_nand_select_target(chip);
  1422. if (status)
  1423. return status;
  1424. cadence_nand_set_skip_bytes_conf(cdns_ctrl, 0, 0, 0);
  1425. cadence_nand_prepare_data_size(chip, TT_RAW_PAGE);
  1426. status = cadence_nand_cdma_transfer(cdns_ctrl,
  1427. cdns_chip->cs[chip->cur_cs],
  1428. page, cdns_ctrl->buf, NULL,
  1429. mtd->writesize
  1430. + mtd->oobsize,
  1431. 0, DMA_FROM_DEVICE, false);
  1432. switch (status) {
  1433. case STAT_ERASED:
  1434. case STAT_OK:
  1435. break;
  1436. default:
  1437. dev_err(cdns_ctrl->dev, "read raw page failed\n");
  1438. return -EIO;
  1439. }
  1440. /* Arrange the buffer for syndrome payload/ecc layout. */
  1441. if (buf) {
  1442. for (i = 0; i < ecc_steps; i++) {
  1443. pos = i * (ecc_size + ecc_bytes);
  1444. len = ecc_size;
  1445. if (pos >= writesize)
  1446. pos += oob_skip;
  1447. else if (pos + len > writesize)
  1448. len = writesize - pos;
  1449. memcpy(buf, tmp_buf + pos, len);
  1450. buf += len;
  1451. if (len < ecc_size) {
  1452. len = ecc_size - len;
  1453. memcpy(buf, tmp_buf + writesize + oob_skip,
  1454. len);
  1455. buf += len;
  1456. }
  1457. }
  1458. }
  1459. if (oob_required) {
  1460. u8 *oob = chip->oob_poi;
  1461. u32 oob_data_offset = (cdns_chip->sector_count - 1) *
  1462. (cdns_chip->sector_size + chip->ecc.bytes)
  1463. + cdns_chip->sector_size + oob_skip;
  1464. /* OOB free. */
  1465. memcpy(oob, tmp_buf + oob_data_offset,
  1466. cdns_chip->avail_oob_size);
  1467. /* BBM at the beginning of the OOB area. */
  1468. memcpy(oob, tmp_buf + writesize, oob_skip);
  1469. oob += cdns_chip->avail_oob_size;
  1470. /* OOB ECC */
  1471. for (i = 0; i < ecc_steps; i++) {
  1472. pos = ecc_size + i * (ecc_size + ecc_bytes);
  1473. len = ecc_bytes;
  1474. if (i == (ecc_steps - 1))
  1475. pos += cdns_chip->avail_oob_size;
  1476. if (pos >= writesize)
  1477. pos += oob_skip;
  1478. else if (pos + len > writesize)
  1479. len = writesize - pos;
  1480. memcpy(oob, tmp_buf + pos, len);
  1481. oob += len;
  1482. if (len < ecc_bytes) {
  1483. len = ecc_bytes - len;
  1484. memcpy(oob, tmp_buf + writesize + oob_skip,
  1485. len);
  1486. oob += len;
  1487. }
  1488. }
  1489. }
  1490. return 0;
  1491. }
  1492. static int cadence_nand_read_oob_raw(struct nand_chip *chip,
  1493. int page)
  1494. {
  1495. return cadence_nand_read_page_raw(chip, NULL, true, page);
  1496. }
  1497. static void cadence_nand_slave_dma_transfer_finished(void *data)
  1498. {
  1499. struct completion *finished = data;
  1500. complete(finished);
  1501. }
  1502. static int cadence_nand_slave_dma_transfer(struct cdns_nand_ctrl *cdns_ctrl,
  1503. void *buf,
  1504. dma_addr_t dev_dma, size_t len,
  1505. enum dma_data_direction dir)
  1506. {
  1507. DECLARE_COMPLETION_ONSTACK(finished);
  1508. struct dma_chan *chan;
  1509. struct dma_device *dma_dev;
  1510. dma_addr_t src_dma, dst_dma, buf_dma;
  1511. struct dma_async_tx_descriptor *tx;
  1512. dma_cookie_t cookie;
  1513. chan = cdns_ctrl->dmac;
  1514. dma_dev = chan->device;
  1515. buf_dma = dma_map_single(dma_dev->dev, buf, len, dir);
  1516. if (dma_mapping_error(dma_dev->dev, buf_dma)) {
  1517. dev_err(cdns_ctrl->dev, "Failed to map DMA buffer\n");
  1518. goto err;
  1519. }
  1520. if (dir == DMA_FROM_DEVICE) {
  1521. src_dma = cdns_ctrl->io.dma;
  1522. dst_dma = buf_dma;
  1523. } else {
  1524. src_dma = buf_dma;
  1525. dst_dma = cdns_ctrl->io.dma;
  1526. }
  1527. tx = dmaengine_prep_dma_memcpy(cdns_ctrl->dmac, dst_dma, src_dma, len,
  1528. DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
  1529. if (!tx) {
  1530. dev_err(cdns_ctrl->dev, "Failed to prepare DMA memcpy\n");
  1531. goto err_unmap;
  1532. }
  1533. tx->callback = cadence_nand_slave_dma_transfer_finished;
  1534. tx->callback_param = &finished;
  1535. cookie = dmaengine_submit(tx);
  1536. if (dma_submit_error(cookie)) {
  1537. dev_err(cdns_ctrl->dev, "Failed to do DMA tx_submit\n");
  1538. goto err_unmap;
  1539. }
  1540. dma_async_issue_pending(cdns_ctrl->dmac);
  1541. wait_for_completion(&finished);
  1542. dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
  1543. return 0;
  1544. err_unmap:
  1545. dma_unmap_single(cdns_ctrl->dev, buf_dma, len, dir);
  1546. err:
  1547. dev_dbg(cdns_ctrl->dev, "Fall back to CPU I/O\n");
  1548. return -EIO;
  1549. }
  1550. static int cadence_nand_read_buf(struct cdns_nand_ctrl *cdns_ctrl,
  1551. u8 *buf, int len)
  1552. {
  1553. u8 thread_nr = 0;
  1554. u32 sdma_size;
  1555. int status;
  1556. /* Wait until slave DMA interface is ready to data transfer. */
  1557. status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
  1558. if (status)
  1559. return status;
  1560. if (!cdns_ctrl->caps1->has_dma) {
  1561. u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
  1562. int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
  1563. /* read alingment data */
  1564. if (data_dma_width == 4)
  1565. ioread32_rep(cdns_ctrl->io.virt, buf, len_in_words);
  1566. #ifdef CONFIG_64BIT
  1567. else
  1568. readsq(cdns_ctrl->io.virt, buf, len_in_words);
  1569. #endif
  1570. if (sdma_size > len) {
  1571. int read_bytes = (data_dma_width == 4) ?
  1572. len_in_words << 2 : len_in_words << 3;
  1573. /* read rest data from slave DMA interface if any */
  1574. if (data_dma_width == 4)
  1575. ioread32_rep(cdns_ctrl->io.virt,
  1576. cdns_ctrl->buf,
  1577. sdma_size / 4 - len_in_words);
  1578. #ifdef CONFIG_64BIT
  1579. else
  1580. readsq(cdns_ctrl->io.virt, cdns_ctrl->buf,
  1581. sdma_size / 8 - len_in_words);
  1582. #endif
  1583. /* copy rest of data */
  1584. memcpy(buf + read_bytes, cdns_ctrl->buf,
  1585. len - read_bytes);
  1586. }
  1587. return 0;
  1588. }
  1589. if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
  1590. status = cadence_nand_slave_dma_transfer(cdns_ctrl, buf,
  1591. cdns_ctrl->io.dma,
  1592. len, DMA_FROM_DEVICE);
  1593. if (status == 0)
  1594. return 0;
  1595. dev_warn(cdns_ctrl->dev,
  1596. "Slave DMA transfer failed. Try again using bounce buffer.");
  1597. }
  1598. /* If DMA transfer is not possible or failed then use bounce buffer. */
  1599. status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
  1600. cdns_ctrl->io.dma,
  1601. sdma_size, DMA_FROM_DEVICE);
  1602. if (status) {
  1603. dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
  1604. return status;
  1605. }
  1606. memcpy(buf, cdns_ctrl->buf, len);
  1607. return 0;
  1608. }
  1609. static int cadence_nand_write_buf(struct cdns_nand_ctrl *cdns_ctrl,
  1610. const u8 *buf, int len)
  1611. {
  1612. u8 thread_nr = 0;
  1613. u32 sdma_size;
  1614. int status;
  1615. /* Wait until slave DMA interface is ready to data transfer. */
  1616. status = cadence_nand_wait_on_sdma(cdns_ctrl, &thread_nr, &sdma_size);
  1617. if (status)
  1618. return status;
  1619. if (!cdns_ctrl->caps1->has_dma) {
  1620. u8 data_dma_width = cdns_ctrl->caps2.data_dma_width;
  1621. int len_in_words = (data_dma_width == 4) ? len >> 2 : len >> 3;
  1622. if (data_dma_width == 4)
  1623. iowrite32_rep(cdns_ctrl->io.virt, buf, len_in_words);
  1624. #ifdef CONFIG_64BIT
  1625. else
  1626. writesq(cdns_ctrl->io.virt, buf, len_in_words);
  1627. #endif
  1628. if (sdma_size > len) {
  1629. int written_bytes = (data_dma_width == 4) ?
  1630. len_in_words << 2 : len_in_words << 3;
  1631. /* copy rest of data */
  1632. memcpy(cdns_ctrl->buf, buf + written_bytes,
  1633. len - written_bytes);
  1634. /* write all expected by nand controller data */
  1635. if (data_dma_width == 4)
  1636. iowrite32_rep(cdns_ctrl->io.virt,
  1637. cdns_ctrl->buf,
  1638. sdma_size / 4 - len_in_words);
  1639. #ifdef CONFIG_64BIT
  1640. else
  1641. writesq(cdns_ctrl->io.virt, cdns_ctrl->buf,
  1642. sdma_size / 8 - len_in_words);
  1643. #endif
  1644. }
  1645. return 0;
  1646. }
  1647. if (cadence_nand_dma_buf_ok(cdns_ctrl, buf, len)) {
  1648. status = cadence_nand_slave_dma_transfer(cdns_ctrl, (void *)buf,
  1649. cdns_ctrl->io.dma,
  1650. len, DMA_TO_DEVICE);
  1651. if (status == 0)
  1652. return 0;
  1653. dev_warn(cdns_ctrl->dev,
  1654. "Slave DMA transfer failed. Try again using bounce buffer.");
  1655. }
  1656. /* If DMA transfer is not possible or failed then use bounce buffer. */
  1657. memcpy(cdns_ctrl->buf, buf, len);
  1658. status = cadence_nand_slave_dma_transfer(cdns_ctrl, cdns_ctrl->buf,
  1659. cdns_ctrl->io.dma,
  1660. sdma_size, DMA_TO_DEVICE);
  1661. if (status)
  1662. dev_err(cdns_ctrl->dev, "Slave DMA transfer failed");
  1663. return status;
  1664. }
  1665. static int cadence_nand_force_byte_access(struct nand_chip *chip,
  1666. bool force_8bit)
  1667. {
  1668. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1669. /*
  1670. * Callers of this function do not verify if the NAND is using a 16-bit
  1671. * an 8-bit bus for normal operations, so we need to take care of that
  1672. * here by leaving the configuration unchanged if the NAND does not have
  1673. * the NAND_BUSWIDTH_16 flag set.
  1674. */
  1675. if (!(chip->options & NAND_BUSWIDTH_16))
  1676. return 0;
  1677. return cadence_nand_set_access_width16(cdns_ctrl, !force_8bit);
  1678. }
  1679. static int cadence_nand_cmd_opcode(struct nand_chip *chip,
  1680. const struct nand_subop *subop)
  1681. {
  1682. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1683. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1684. const struct nand_op_instr *instr;
  1685. unsigned int op_id = 0;
  1686. u64 mini_ctrl_cmd = 0;
  1687. int ret;
  1688. instr = &subop->instrs[op_id];
  1689. if (instr->delay_ns > 0)
  1690. mini_ctrl_cmd |= GCMD_LAY_TWB;
  1691. mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
  1692. GCMD_LAY_INSTR_CMD);
  1693. mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_CMD,
  1694. instr->ctx.cmd.opcode);
  1695. ret = cadence_nand_generic_cmd_send(cdns_ctrl,
  1696. cdns_chip->cs[chip->cur_cs],
  1697. mini_ctrl_cmd);
  1698. if (ret)
  1699. dev_err(cdns_ctrl->dev, "send cmd %x failed\n",
  1700. instr->ctx.cmd.opcode);
  1701. return ret;
  1702. }
  1703. static int cadence_nand_cmd_address(struct nand_chip *chip,
  1704. const struct nand_subop *subop)
  1705. {
  1706. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1707. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1708. const struct nand_op_instr *instr;
  1709. unsigned int op_id = 0;
  1710. u64 mini_ctrl_cmd = 0;
  1711. unsigned int offset, naddrs;
  1712. u64 address = 0;
  1713. const u8 *addrs;
  1714. int ret;
  1715. int i;
  1716. instr = &subop->instrs[op_id];
  1717. if (instr->delay_ns > 0)
  1718. mini_ctrl_cmd |= GCMD_LAY_TWB;
  1719. mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
  1720. GCMD_LAY_INSTR_ADDR);
  1721. offset = nand_subop_get_addr_start_off(subop, op_id);
  1722. naddrs = nand_subop_get_num_addr_cyc(subop, op_id);
  1723. addrs = &instr->ctx.addr.addrs[offset];
  1724. for (i = 0; i < naddrs; i++)
  1725. address |= (u64)addrs[i] << (8 * i);
  1726. mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR,
  1727. address);
  1728. mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INPUT_ADDR_SIZE,
  1729. naddrs - 1);
  1730. ret = cadence_nand_generic_cmd_send(cdns_ctrl,
  1731. cdns_chip->cs[chip->cur_cs],
  1732. mini_ctrl_cmd);
  1733. if (ret)
  1734. dev_err(cdns_ctrl->dev, "send address %llx failed\n", address);
  1735. return ret;
  1736. }
  1737. static int cadence_nand_cmd_erase(struct nand_chip *chip,
  1738. const struct nand_subop *subop)
  1739. {
  1740. unsigned int op_id;
  1741. if (subop->instrs[0].ctx.cmd.opcode == NAND_CMD_ERASE1) {
  1742. int i;
  1743. const struct nand_op_instr *instr = NULL;
  1744. unsigned int offset, naddrs;
  1745. const u8 *addrs;
  1746. u32 page = 0;
  1747. instr = &subop->instrs[1];
  1748. offset = nand_subop_get_addr_start_off(subop, 1);
  1749. naddrs = nand_subop_get_num_addr_cyc(subop, 1);
  1750. addrs = &instr->ctx.addr.addrs[offset];
  1751. for (i = 0; i < naddrs; i++)
  1752. page |= (u32)addrs[i] << (8 * i);
  1753. return cadence_nand_erase(chip, page);
  1754. }
  1755. /*
  1756. * If it is not an erase operation then handle operation
  1757. * by calling exec_op function.
  1758. */
  1759. for (op_id = 0; op_id < subop->ninstrs; op_id++) {
  1760. int ret;
  1761. const struct nand_operation nand_op = {
  1762. .cs = chip->cur_cs,
  1763. .instrs = &subop->instrs[op_id],
  1764. .ninstrs = 1};
  1765. ret = chip->controller->ops->exec_op(chip, &nand_op, false);
  1766. if (ret)
  1767. return ret;
  1768. }
  1769. return 0;
  1770. }
  1771. static int cadence_nand_cmd_data(struct nand_chip *chip,
  1772. const struct nand_subop *subop)
  1773. {
  1774. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1775. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1776. const struct nand_op_instr *instr;
  1777. unsigned int offset, op_id = 0;
  1778. u64 mini_ctrl_cmd = 0;
  1779. int len = 0;
  1780. int ret;
  1781. instr = &subop->instrs[op_id];
  1782. if (instr->delay_ns > 0)
  1783. mini_ctrl_cmd |= GCMD_LAY_TWB;
  1784. mini_ctrl_cmd |= FIELD_PREP(GCMD_LAY_INSTR,
  1785. GCMD_LAY_INSTR_DATA);
  1786. if (instr->type == NAND_OP_DATA_OUT_INSTR)
  1787. mini_ctrl_cmd |= FIELD_PREP(GCMD_DIR,
  1788. GCMD_DIR_WRITE);
  1789. len = nand_subop_get_data_len(subop, op_id);
  1790. offset = nand_subop_get_data_start_off(subop, op_id);
  1791. mini_ctrl_cmd |= FIELD_PREP(GCMD_SECT_CNT, 1);
  1792. mini_ctrl_cmd |= FIELD_PREP(GCMD_LAST_SIZE, len);
  1793. if (instr->ctx.data.force_8bit) {
  1794. ret = cadence_nand_force_byte_access(chip, true);
  1795. if (ret) {
  1796. dev_err(cdns_ctrl->dev,
  1797. "cannot change byte access generic data cmd failed\n");
  1798. return ret;
  1799. }
  1800. }
  1801. ret = cadence_nand_generic_cmd_send(cdns_ctrl,
  1802. cdns_chip->cs[chip->cur_cs],
  1803. mini_ctrl_cmd);
  1804. if (ret) {
  1805. dev_err(cdns_ctrl->dev, "send generic data cmd failed\n");
  1806. return ret;
  1807. }
  1808. if (instr->type == NAND_OP_DATA_IN_INSTR) {
  1809. void *buf = instr->ctx.data.buf.in + offset;
  1810. ret = cadence_nand_read_buf(cdns_ctrl, buf, len);
  1811. } else {
  1812. const void *buf = instr->ctx.data.buf.out + offset;
  1813. ret = cadence_nand_write_buf(cdns_ctrl, buf, len);
  1814. }
  1815. if (ret) {
  1816. dev_err(cdns_ctrl->dev, "data transfer failed for generic command\n");
  1817. return ret;
  1818. }
  1819. if (instr->ctx.data.force_8bit) {
  1820. ret = cadence_nand_force_byte_access(chip, false);
  1821. if (ret) {
  1822. dev_err(cdns_ctrl->dev,
  1823. "cannot change byte access generic data cmd failed\n");
  1824. }
  1825. }
  1826. return ret;
  1827. }
  1828. static int cadence_nand_cmd_waitrdy(struct nand_chip *chip,
  1829. const struct nand_subop *subop)
  1830. {
  1831. int status;
  1832. unsigned int op_id = 0;
  1833. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1834. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1835. const struct nand_op_instr *instr = &subop->instrs[op_id];
  1836. u32 timeout_us = instr->ctx.waitrdy.timeout_ms * 1000;
  1837. status = cadence_nand_wait_for_value(cdns_ctrl, RBN_SETINGS,
  1838. timeout_us,
  1839. BIT(cdns_chip->cs[chip->cur_cs]),
  1840. false);
  1841. return status;
  1842. }
  1843. static const struct nand_op_parser cadence_nand_op_parser = NAND_OP_PARSER(
  1844. NAND_OP_PARSER_PATTERN(
  1845. cadence_nand_cmd_erase,
  1846. NAND_OP_PARSER_PAT_CMD_ELEM(false),
  1847. NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ERASE_ADDRESS_CYC),
  1848. NAND_OP_PARSER_PAT_CMD_ELEM(false),
  1849. NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
  1850. NAND_OP_PARSER_PATTERN(
  1851. cadence_nand_cmd_opcode,
  1852. NAND_OP_PARSER_PAT_CMD_ELEM(false)),
  1853. NAND_OP_PARSER_PATTERN(
  1854. cadence_nand_cmd_address,
  1855. NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYC)),
  1856. NAND_OP_PARSER_PATTERN(
  1857. cadence_nand_cmd_data,
  1858. NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, MAX_DATA_SIZE)),
  1859. NAND_OP_PARSER_PATTERN(
  1860. cadence_nand_cmd_data,
  1861. NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, MAX_DATA_SIZE)),
  1862. NAND_OP_PARSER_PATTERN(
  1863. cadence_nand_cmd_waitrdy,
  1864. NAND_OP_PARSER_PAT_WAITRDY_ELEM(false))
  1865. );
  1866. static int cadence_nand_exec_op(struct nand_chip *chip,
  1867. const struct nand_operation *op,
  1868. bool check_only)
  1869. {
  1870. if (!check_only) {
  1871. int status = cadence_nand_select_target(chip);
  1872. if (status)
  1873. return status;
  1874. }
  1875. return nand_op_parser_exec_op(chip, &cadence_nand_op_parser, op,
  1876. check_only);
  1877. }
  1878. static int cadence_nand_ooblayout_free(struct mtd_info *mtd, int section,
  1879. struct mtd_oob_region *oobregion)
  1880. {
  1881. struct nand_chip *chip = mtd_to_nand(mtd);
  1882. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1883. if (section)
  1884. return -ERANGE;
  1885. oobregion->offset = cdns_chip->bbm_len;
  1886. oobregion->length = cdns_chip->avail_oob_size
  1887. - cdns_chip->bbm_len;
  1888. return 0;
  1889. }
  1890. static int cadence_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
  1891. struct mtd_oob_region *oobregion)
  1892. {
  1893. struct nand_chip *chip = mtd_to_nand(mtd);
  1894. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1895. if (section)
  1896. return -ERANGE;
  1897. oobregion->offset = cdns_chip->avail_oob_size;
  1898. oobregion->length = chip->ecc.total;
  1899. return 0;
  1900. }
  1901. static const struct mtd_ooblayout_ops cadence_nand_ooblayout_ops = {
  1902. .free = cadence_nand_ooblayout_free,
  1903. .ecc = cadence_nand_ooblayout_ecc,
  1904. };
  1905. static int calc_cycl(u32 timing, u32 clock)
  1906. {
  1907. if (timing == 0 || clock == 0)
  1908. return 0;
  1909. if ((timing % clock) > 0)
  1910. return timing / clock;
  1911. else
  1912. return timing / clock - 1;
  1913. }
  1914. /* Calculate max data valid window. */
  1915. static inline u32 calc_tdvw_max(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
  1916. u32 board_delay_skew_min, u32 ext_mode)
  1917. {
  1918. if (ext_mode == 0)
  1919. clk_period /= 2;
  1920. return (trp_cnt + 1) * clk_period + trhoh_min +
  1921. board_delay_skew_min;
  1922. }
  1923. /* Calculate data valid window. */
  1924. static inline u32 calc_tdvw(u32 trp_cnt, u32 clk_period, u32 trhoh_min,
  1925. u32 trea_max, u32 ext_mode)
  1926. {
  1927. if (ext_mode == 0)
  1928. clk_period /= 2;
  1929. return (trp_cnt + 1) * clk_period + trhoh_min - trea_max;
  1930. }
  1931. static int
  1932. cadence_nand_setup_interface(struct nand_chip *chip, int chipnr,
  1933. const struct nand_interface_config *conf)
  1934. {
  1935. const struct nand_sdr_timings *sdr;
  1936. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  1937. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  1938. struct cadence_nand_timings *t = &cdns_chip->timings;
  1939. u32 reg;
  1940. u32 board_delay = cdns_ctrl->board_delay;
  1941. u32 clk_period = DIV_ROUND_DOWN_ULL(1000000000000ULL,
  1942. cdns_ctrl->nf_clk_rate);
  1943. u32 tceh_cnt, tcs_cnt, tadl_cnt, tccs_cnt;
  1944. u32 tfeat_cnt, trhz_cnt, tvdly_cnt;
  1945. u32 trhw_cnt, twb_cnt, twh_cnt = 0, twhr_cnt;
  1946. u32 twp_cnt = 0, trp_cnt = 0, trh_cnt = 0;
  1947. u32 if_skew = cdns_ctrl->caps1->if_skew;
  1948. u32 board_delay_skew_min = board_delay - if_skew;
  1949. u32 board_delay_skew_max = board_delay + if_skew;
  1950. u32 dqs_sampl_res, phony_dqs_mod;
  1951. u32 tdvw, tdvw_min, tdvw_max;
  1952. u32 ext_rd_mode, ext_wr_mode;
  1953. u32 dll_phy_dqs_timing = 0, phony_dqs_timing = 0, rd_del_sel = 0;
  1954. u32 sampling_point;
  1955. sdr = nand_get_sdr_timings(conf);
  1956. if (IS_ERR(sdr))
  1957. return PTR_ERR(sdr);
  1958. memset(t, 0, sizeof(*t));
  1959. /* Sampling point calculation. */
  1960. if (cdns_ctrl->caps2.is_phy_type_dll)
  1961. phony_dqs_mod = 2;
  1962. else
  1963. phony_dqs_mod = 1;
  1964. dqs_sampl_res = clk_period / phony_dqs_mod;
  1965. tdvw_min = sdr->tREA_max + board_delay_skew_max;
  1966. /*
  1967. * The idea of those calculation is to get the optimum value
  1968. * for tRP and tRH timings. If it is NOT possible to sample data
  1969. * with optimal tRP/tRH settings, the parameters will be extended.
  1970. * If clk_period is 50ns (the lowest value) this condition is met
  1971. * for SDR timing modes 1, 2, 3, 4 and 5.
  1972. * If clk_period is 20ns the condition is met only for SDR timing
  1973. * mode 5.
  1974. */
  1975. if (sdr->tRC_min <= clk_period &&
  1976. sdr->tRP_min <= (clk_period / 2) &&
  1977. sdr->tREH_min <= (clk_period / 2)) {
  1978. /* Performance mode. */
  1979. ext_rd_mode = 0;
  1980. tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
  1981. sdr->tREA_max, ext_rd_mode);
  1982. tdvw_max = calc_tdvw_max(trp_cnt, clk_period, sdr->tRHOH_min,
  1983. board_delay_skew_min,
  1984. ext_rd_mode);
  1985. /*
  1986. * Check if data valid window and sampling point can be found
  1987. * and is not on the edge (ie. we have hold margin).
  1988. * If not extend the tRP timings.
  1989. */
  1990. if (tdvw > 0) {
  1991. if (tdvw_max <= tdvw_min ||
  1992. (tdvw_max % dqs_sampl_res) == 0) {
  1993. /*
  1994. * No valid sampling point so the RE pulse need
  1995. * to be widen widening by half clock cycle.
  1996. */
  1997. ext_rd_mode = 1;
  1998. }
  1999. } else {
  2000. /*
  2001. * There is no valid window
  2002. * to be able to sample data the tRP need to be widen.
  2003. * Very safe calculations are performed here.
  2004. */
  2005. trp_cnt = (sdr->tREA_max + board_delay_skew_max
  2006. + dqs_sampl_res) / clk_period;
  2007. ext_rd_mode = 1;
  2008. }
  2009. } else {
  2010. /* Extended read mode. */
  2011. u32 trh;
  2012. ext_rd_mode = 1;
  2013. trp_cnt = calc_cycl(sdr->tRP_min, clk_period);
  2014. trh = sdr->tRC_min - ((trp_cnt + 1) * clk_period);
  2015. if (sdr->tREH_min >= trh)
  2016. trh_cnt = calc_cycl(sdr->tREH_min, clk_period);
  2017. else
  2018. trh_cnt = calc_cycl(trh, clk_period);
  2019. tdvw = calc_tdvw(trp_cnt, clk_period, sdr->tRHOH_min,
  2020. sdr->tREA_max, ext_rd_mode);
  2021. /*
  2022. * Check if data valid window and sampling point can be found
  2023. * or if it is at the edge check if previous is valid
  2024. * - if not extend the tRP timings.
  2025. */
  2026. if (tdvw > 0) {
  2027. tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
  2028. sdr->tRHOH_min,
  2029. board_delay_skew_min,
  2030. ext_rd_mode);
  2031. if ((((tdvw_max / dqs_sampl_res)
  2032. * dqs_sampl_res) <= tdvw_min) ||
  2033. (((tdvw_max % dqs_sampl_res) == 0) &&
  2034. (((tdvw_max / dqs_sampl_res - 1)
  2035. * dqs_sampl_res) <= tdvw_min))) {
  2036. /*
  2037. * Data valid window width is lower than
  2038. * sampling resolution and do not hit any
  2039. * sampling point to be sure the sampling point
  2040. * will be found the RE low pulse width will be
  2041. * extended by one clock cycle.
  2042. */
  2043. trp_cnt = trp_cnt + 1;
  2044. }
  2045. } else {
  2046. /*
  2047. * There is no valid window to be able to sample data.
  2048. * The tRP need to be widen.
  2049. * Very safe calculations are performed here.
  2050. */
  2051. trp_cnt = (sdr->tREA_max + board_delay_skew_max
  2052. + dqs_sampl_res) / clk_period;
  2053. }
  2054. }
  2055. tdvw_max = calc_tdvw_max(trp_cnt, clk_period,
  2056. sdr->tRHOH_min,
  2057. board_delay_skew_min, ext_rd_mode);
  2058. if (sdr->tWC_min <= clk_period &&
  2059. (sdr->tWP_min + if_skew) <= (clk_period / 2) &&
  2060. (sdr->tWH_min + if_skew) <= (clk_period / 2)) {
  2061. ext_wr_mode = 0;
  2062. } else {
  2063. u32 twh;
  2064. ext_wr_mode = 1;
  2065. twp_cnt = calc_cycl(sdr->tWP_min + if_skew, clk_period);
  2066. if ((twp_cnt + 1) * clk_period < (sdr->tALS_min + if_skew))
  2067. twp_cnt = calc_cycl(sdr->tALS_min + if_skew,
  2068. clk_period);
  2069. twh = (sdr->tWC_min - (twp_cnt + 1) * clk_period);
  2070. if (sdr->tWH_min >= twh)
  2071. twh = sdr->tWH_min;
  2072. twh_cnt = calc_cycl(twh + if_skew, clk_period);
  2073. }
  2074. reg = FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRH, trh_cnt);
  2075. reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TRP, trp_cnt);
  2076. reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWH, twh_cnt);
  2077. reg |= FIELD_PREP(ASYNC_TOGGLE_TIMINGS_TWP, twp_cnt);
  2078. t->async_toggle_timings = reg;
  2079. dev_dbg(cdns_ctrl->dev, "ASYNC_TOGGLE_TIMINGS_SDR\t%x\n", reg);
  2080. tadl_cnt = calc_cycl((sdr->tADL_min + if_skew), clk_period);
  2081. tccs_cnt = calc_cycl((sdr->tCCS_min + if_skew), clk_period);
  2082. twhr_cnt = calc_cycl((sdr->tWHR_min + if_skew), clk_period);
  2083. trhw_cnt = calc_cycl((sdr->tRHW_min + if_skew), clk_period);
  2084. reg = FIELD_PREP(TIMINGS0_TADL, tadl_cnt);
  2085. /*
  2086. * If timing exceeds delay field in timing register
  2087. * then use maximum value.
  2088. */
  2089. if (FIELD_FIT(TIMINGS0_TCCS, tccs_cnt))
  2090. reg |= FIELD_PREP(TIMINGS0_TCCS, tccs_cnt);
  2091. else
  2092. reg |= TIMINGS0_TCCS;
  2093. reg |= FIELD_PREP(TIMINGS0_TWHR, twhr_cnt);
  2094. reg |= FIELD_PREP(TIMINGS0_TRHW, trhw_cnt);
  2095. t->timings0 = reg;
  2096. dev_dbg(cdns_ctrl->dev, "TIMINGS0_SDR\t%x\n", reg);
  2097. /* The following is related to single signal so skew is not needed. */
  2098. trhz_cnt = calc_cycl(sdr->tRHZ_max, clk_period);
  2099. trhz_cnt = trhz_cnt + 1;
  2100. twb_cnt = calc_cycl((sdr->tWB_max + board_delay), clk_period);
  2101. /*
  2102. * Because of the two stage syncflop the value must be increased by 3
  2103. * first value is related with sync, second value is related
  2104. * with output if delay.
  2105. */
  2106. twb_cnt = twb_cnt + 3 + 5;
  2107. /*
  2108. * The following is related to the we edge of the random data input
  2109. * sequence so skew is not needed.
  2110. */
  2111. tvdly_cnt = calc_cycl(500000 + if_skew, clk_period);
  2112. reg = FIELD_PREP(TIMINGS1_TRHZ, trhz_cnt);
  2113. reg |= FIELD_PREP(TIMINGS1_TWB, twb_cnt);
  2114. reg |= FIELD_PREP(TIMINGS1_TVDLY, tvdly_cnt);
  2115. t->timings1 = reg;
  2116. dev_dbg(cdns_ctrl->dev, "TIMINGS1_SDR\t%x\n", reg);
  2117. tfeat_cnt = calc_cycl(sdr->tFEAT_max, clk_period);
  2118. if (tfeat_cnt < twb_cnt)
  2119. tfeat_cnt = twb_cnt;
  2120. tceh_cnt = calc_cycl(sdr->tCEH_min, clk_period);
  2121. tcs_cnt = calc_cycl((sdr->tCS_min + if_skew), clk_period);
  2122. reg = FIELD_PREP(TIMINGS2_TFEAT, tfeat_cnt);
  2123. reg |= FIELD_PREP(TIMINGS2_CS_HOLD_TIME, tceh_cnt);
  2124. reg |= FIELD_PREP(TIMINGS2_CS_SETUP_TIME, tcs_cnt);
  2125. t->timings2 = reg;
  2126. dev_dbg(cdns_ctrl->dev, "TIMINGS2_SDR\t%x\n", reg);
  2127. if (cdns_ctrl->caps2.is_phy_type_dll) {
  2128. reg = DLL_PHY_CTRL_DLL_RST_N;
  2129. if (ext_wr_mode)
  2130. reg |= DLL_PHY_CTRL_EXTENDED_WR_MODE;
  2131. if (ext_rd_mode)
  2132. reg |= DLL_PHY_CTRL_EXTENDED_RD_MODE;
  2133. reg |= FIELD_PREP(DLL_PHY_CTRL_RS_HIGH_WAIT_CNT, 7);
  2134. reg |= FIELD_PREP(DLL_PHY_CTRL_RS_IDLE_CNT, 7);
  2135. t->dll_phy_ctrl = reg;
  2136. dev_dbg(cdns_ctrl->dev, "DLL_PHY_CTRL_SDR\t%x\n", reg);
  2137. }
  2138. /* Sampling point calculation. */
  2139. if ((tdvw_max % dqs_sampl_res) > 0)
  2140. sampling_point = tdvw_max / dqs_sampl_res;
  2141. else
  2142. sampling_point = (tdvw_max / dqs_sampl_res - 1);
  2143. if (sampling_point * dqs_sampl_res > tdvw_min) {
  2144. dll_phy_dqs_timing =
  2145. FIELD_PREP(PHY_DQS_TIMING_DQS_SEL_OE_END, 4);
  2146. dll_phy_dqs_timing |= PHY_DQS_TIMING_USE_PHONY_DQS;
  2147. phony_dqs_timing = sampling_point / phony_dqs_mod;
  2148. if ((sampling_point % 2) > 0) {
  2149. dll_phy_dqs_timing |= PHY_DQS_TIMING_PHONY_DQS_SEL;
  2150. if ((tdvw_max % dqs_sampl_res) == 0)
  2151. /*
  2152. * Calculation for sampling point at the edge
  2153. * of data and being odd number.
  2154. */
  2155. phony_dqs_timing = (tdvw_max / dqs_sampl_res)
  2156. / phony_dqs_mod - 1;
  2157. if (!cdns_ctrl->caps2.is_phy_type_dll)
  2158. phony_dqs_timing--;
  2159. } else {
  2160. phony_dqs_timing--;
  2161. }
  2162. rd_del_sel = phony_dqs_timing + 3;
  2163. } else {
  2164. dev_warn(cdns_ctrl->dev,
  2165. "ERROR : cannot find valid sampling point\n");
  2166. }
  2167. reg = FIELD_PREP(PHY_CTRL_PHONY_DQS, phony_dqs_timing);
  2168. if (cdns_ctrl->caps2.is_phy_type_dll)
  2169. reg |= PHY_CTRL_SDR_DQS;
  2170. t->phy_ctrl = reg;
  2171. dev_dbg(cdns_ctrl->dev, "PHY_CTRL_REG_SDR\t%x\n", reg);
  2172. if (cdns_ctrl->caps2.is_phy_type_dll) {
  2173. dev_dbg(cdns_ctrl->dev, "PHY_TSEL_REG_SDR\t%x\n", 0);
  2174. dev_dbg(cdns_ctrl->dev, "PHY_DQ_TIMING_REG_SDR\t%x\n", 2);
  2175. dev_dbg(cdns_ctrl->dev, "PHY_DQS_TIMING_REG_SDR\t%x\n",
  2176. dll_phy_dqs_timing);
  2177. t->phy_dqs_timing = dll_phy_dqs_timing;
  2178. reg = FIELD_PREP(PHY_GATE_LPBK_CTRL_RDS, rd_del_sel);
  2179. dev_dbg(cdns_ctrl->dev, "PHY_GATE_LPBK_CTRL_REG_SDR\t%x\n",
  2180. reg);
  2181. t->phy_gate_lpbk_ctrl = reg;
  2182. dev_dbg(cdns_ctrl->dev, "PHY_DLL_MASTER_CTRL_REG_SDR\t%lx\n",
  2183. PHY_DLL_MASTER_CTRL_BYPASS_MODE);
  2184. dev_dbg(cdns_ctrl->dev, "PHY_DLL_SLAVE_CTRL_REG_SDR\t%x\n", 0);
  2185. }
  2186. return 0;
  2187. }
  2188. static int cadence_nand_attach_chip(struct nand_chip *chip)
  2189. {
  2190. struct cdns_nand_ctrl *cdns_ctrl = to_cdns_nand_ctrl(chip->controller);
  2191. struct cdns_nand_chip *cdns_chip = to_cdns_nand_chip(chip);
  2192. u32 ecc_size;
  2193. struct mtd_info *mtd = nand_to_mtd(chip);
  2194. int ret;
  2195. if (chip->options & NAND_BUSWIDTH_16) {
  2196. ret = cadence_nand_set_access_width16(cdns_ctrl, true);
  2197. if (ret)
  2198. return ret;
  2199. }
  2200. chip->bbt_options |= NAND_BBT_USE_FLASH;
  2201. chip->bbt_options |= NAND_BBT_NO_OOB;
  2202. chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
  2203. chip->options |= NAND_NO_SUBPAGE_WRITE;
  2204. cdns_chip->bbm_offs = chip->badblockpos;
  2205. cdns_chip->bbm_offs &= ~0x01;
  2206. /* this value should be even number */
  2207. cdns_chip->bbm_len = 2;
  2208. ret = nand_ecc_choose_conf(chip,
  2209. &cdns_ctrl->ecc_caps,
  2210. mtd->oobsize - cdns_chip->bbm_len);
  2211. if (ret) {
  2212. dev_err(cdns_ctrl->dev, "ECC configuration failed\n");
  2213. return ret;
  2214. }
  2215. dev_dbg(cdns_ctrl->dev,
  2216. "chosen ECC settings: step=%d, strength=%d, bytes=%d\n",
  2217. chip->ecc.size, chip->ecc.strength, chip->ecc.bytes);
  2218. /* Error correction configuration. */
  2219. cdns_chip->sector_size = chip->ecc.size;
  2220. cdns_chip->sector_count = mtd->writesize / cdns_chip->sector_size;
  2221. ecc_size = cdns_chip->sector_count * chip->ecc.bytes;
  2222. cdns_chip->avail_oob_size = mtd->oobsize - ecc_size;
  2223. if (cdns_chip->avail_oob_size > cdns_ctrl->bch_metadata_size)
  2224. cdns_chip->avail_oob_size = cdns_ctrl->bch_metadata_size;
  2225. if ((cdns_chip->avail_oob_size + cdns_chip->bbm_len + ecc_size)
  2226. > mtd->oobsize)
  2227. cdns_chip->avail_oob_size -= 4;
  2228. ret = cadence_nand_get_ecc_strength_idx(cdns_ctrl, chip->ecc.strength);
  2229. if (ret < 0)
  2230. return -EINVAL;
  2231. cdns_chip->corr_str_idx = (u8)ret;
  2232. if (cadence_nand_wait_for_value(cdns_ctrl, CTRL_STATUS,
  2233. 1000000,
  2234. CTRL_STATUS_CTRL_BUSY, true))
  2235. return -ETIMEDOUT;
  2236. cadence_nand_set_ecc_strength(cdns_ctrl,
  2237. cdns_chip->corr_str_idx);
  2238. cadence_nand_set_erase_detection(cdns_ctrl, true,
  2239. chip->ecc.strength);
  2240. /* Override the default read operations. */
  2241. chip->ecc.read_page = cadence_nand_read_page;
  2242. chip->ecc.read_page_raw = cadence_nand_read_page_raw;
  2243. chip->ecc.write_page = cadence_nand_write_page;
  2244. chip->ecc.write_page_raw = cadence_nand_write_page_raw;
  2245. chip->ecc.read_oob = cadence_nand_read_oob;
  2246. chip->ecc.write_oob = cadence_nand_write_oob;
  2247. chip->ecc.read_oob_raw = cadence_nand_read_oob_raw;
  2248. chip->ecc.write_oob_raw = cadence_nand_write_oob_raw;
  2249. if ((mtd->writesize + mtd->oobsize) > cdns_ctrl->buf_size)
  2250. cdns_ctrl->buf_size = mtd->writesize + mtd->oobsize;
  2251. /* Is 32-bit DMA supported? */
  2252. ret = dma_set_mask(cdns_ctrl->dev, DMA_BIT_MASK(32));
  2253. if (ret) {
  2254. dev_err(cdns_ctrl->dev, "no usable DMA configuration\n");
  2255. return ret;
  2256. }
  2257. mtd_set_ooblayout(mtd, &cadence_nand_ooblayout_ops);
  2258. return 0;
  2259. }
  2260. static const struct nand_controller_ops cadence_nand_controller_ops = {
  2261. .attach_chip = cadence_nand_attach_chip,
  2262. .exec_op = cadence_nand_exec_op,
  2263. .setup_interface = cadence_nand_setup_interface,
  2264. };
  2265. static int cadence_nand_chip_init(struct cdns_nand_ctrl *cdns_ctrl,
  2266. struct device_node *np)
  2267. {
  2268. struct cdns_nand_chip *cdns_chip;
  2269. struct mtd_info *mtd;
  2270. struct nand_chip *chip;
  2271. int nsels, ret, i;
  2272. u32 cs;
  2273. nsels = of_property_count_elems_of_size(np, "reg", sizeof(u32));
  2274. if (nsels <= 0) {
  2275. dev_err(cdns_ctrl->dev, "missing/invalid reg property\n");
  2276. return -EINVAL;
  2277. }
  2278. /* Allocate the nand chip structure. */
  2279. cdns_chip = devm_kzalloc(cdns_ctrl->dev, sizeof(*cdns_chip) +
  2280. (nsels * sizeof(u8)),
  2281. GFP_KERNEL);
  2282. if (!cdns_chip) {
  2283. dev_err(cdns_ctrl->dev, "could not allocate chip structure\n");
  2284. return -ENOMEM;
  2285. }
  2286. cdns_chip->nsels = nsels;
  2287. for (i = 0; i < nsels; i++) {
  2288. /* Retrieve CS id. */
  2289. ret = of_property_read_u32_index(np, "reg", i, &cs);
  2290. if (ret) {
  2291. dev_err(cdns_ctrl->dev,
  2292. "could not retrieve reg property: %d\n",
  2293. ret);
  2294. return ret;
  2295. }
  2296. if (cs >= cdns_ctrl->caps2.max_banks) {
  2297. dev_err(cdns_ctrl->dev,
  2298. "invalid reg value: %u (max CS = %d)\n",
  2299. cs, cdns_ctrl->caps2.max_banks);
  2300. return -EINVAL;
  2301. }
  2302. if (test_and_set_bit(cs, &cdns_ctrl->assigned_cs)) {
  2303. dev_err(cdns_ctrl->dev,
  2304. "CS %d already assigned\n", cs);
  2305. return -EINVAL;
  2306. }
  2307. cdns_chip->cs[i] = cs;
  2308. }
  2309. chip = &cdns_chip->chip;
  2310. chip->controller = &cdns_ctrl->controller;
  2311. nand_set_flash_node(chip, np);
  2312. mtd = nand_to_mtd(chip);
  2313. mtd->dev.parent = cdns_ctrl->dev;
  2314. /*
  2315. * Default to HW ECC engine mode. If the nand-ecc-mode property is given
  2316. * in the DT node, this entry will be overwritten in nand_scan_ident().
  2317. */
  2318. chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
  2319. ret = nand_scan(chip, cdns_chip->nsels);
  2320. if (ret) {
  2321. dev_err(cdns_ctrl->dev, "could not scan the nand chip\n");
  2322. return ret;
  2323. }
  2324. ret = mtd_device_register(mtd, NULL, 0);
  2325. if (ret) {
  2326. dev_err(cdns_ctrl->dev,
  2327. "failed to register mtd device: %d\n", ret);
  2328. nand_cleanup(chip);
  2329. return ret;
  2330. }
  2331. list_add_tail(&cdns_chip->node, &cdns_ctrl->chips);
  2332. return 0;
  2333. }
  2334. static void cadence_nand_chips_cleanup(struct cdns_nand_ctrl *cdns_ctrl)
  2335. {
  2336. struct cdns_nand_chip *entry, *temp;
  2337. struct nand_chip *chip;
  2338. int ret;
  2339. list_for_each_entry_safe(entry, temp, &cdns_ctrl->chips, node) {
  2340. chip = &entry->chip;
  2341. ret = mtd_device_unregister(nand_to_mtd(chip));
  2342. WARN_ON(ret);
  2343. nand_cleanup(chip);
  2344. list_del(&entry->node);
  2345. }
  2346. }
  2347. static int cadence_nand_chips_init(struct cdns_nand_ctrl *cdns_ctrl)
  2348. {
  2349. struct device_node *np = cdns_ctrl->dev->of_node;
  2350. int max_cs = cdns_ctrl->caps2.max_banks;
  2351. int nchips, ret;
  2352. nchips = of_get_child_count(np);
  2353. if (nchips > max_cs) {
  2354. dev_err(cdns_ctrl->dev,
  2355. "too many NAND chips: %d (max = %d CS)\n",
  2356. nchips, max_cs);
  2357. return -EINVAL;
  2358. }
  2359. for_each_child_of_node_scoped(np, nand_np) {
  2360. ret = cadence_nand_chip_init(cdns_ctrl, nand_np);
  2361. if (ret) {
  2362. cadence_nand_chips_cleanup(cdns_ctrl);
  2363. return ret;
  2364. }
  2365. }
  2366. return 0;
  2367. }
  2368. static void
  2369. cadence_nand_irq_cleanup(int irqnum, struct cdns_nand_ctrl *cdns_ctrl)
  2370. {
  2371. /* Disable interrupts. */
  2372. writel_relaxed(INTR_ENABLE_INTR_EN, cdns_ctrl->reg + INTR_ENABLE);
  2373. }
  2374. static int cadence_nand_init(struct cdns_nand_ctrl *cdns_ctrl)
  2375. {
  2376. dma_cap_mask_t mask;
  2377. int ret;
  2378. cdns_ctrl->cdma_desc = dma_alloc_coherent(cdns_ctrl->dev,
  2379. sizeof(*cdns_ctrl->cdma_desc),
  2380. &cdns_ctrl->dma_cdma_desc,
  2381. GFP_KERNEL);
  2382. if (!cdns_ctrl->dma_cdma_desc)
  2383. return -ENOMEM;
  2384. cdns_ctrl->buf_size = SZ_16K;
  2385. cdns_ctrl->buf = kmalloc(cdns_ctrl->buf_size, GFP_KERNEL);
  2386. if (!cdns_ctrl->buf) {
  2387. ret = -ENOMEM;
  2388. goto free_buf_desc;
  2389. }
  2390. if (devm_request_irq(cdns_ctrl->dev, cdns_ctrl->irq, cadence_nand_isr,
  2391. IRQF_SHARED, "cadence-nand-controller",
  2392. cdns_ctrl)) {
  2393. dev_err(cdns_ctrl->dev, "Unable to allocate IRQ\n");
  2394. ret = -ENODEV;
  2395. goto free_buf;
  2396. }
  2397. spin_lock_init(&cdns_ctrl->irq_lock);
  2398. init_completion(&cdns_ctrl->complete);
  2399. ret = cadence_nand_hw_init(cdns_ctrl);
  2400. if (ret)
  2401. goto disable_irq;
  2402. dma_cap_zero(mask);
  2403. dma_cap_set(DMA_MEMCPY, mask);
  2404. if (cdns_ctrl->caps1->has_dma) {
  2405. cdns_ctrl->dmac = dma_request_channel(mask, NULL, NULL);
  2406. if (!cdns_ctrl->dmac) {
  2407. dev_err(cdns_ctrl->dev,
  2408. "Unable to get a DMA channel\n");
  2409. ret = -EBUSY;
  2410. goto disable_irq;
  2411. }
  2412. }
  2413. nand_controller_init(&cdns_ctrl->controller);
  2414. INIT_LIST_HEAD(&cdns_ctrl->chips);
  2415. cdns_ctrl->controller.ops = &cadence_nand_controller_ops;
  2416. cdns_ctrl->curr_corr_str_idx = 0xFF;
  2417. ret = cadence_nand_chips_init(cdns_ctrl);
  2418. if (ret) {
  2419. dev_err(cdns_ctrl->dev, "Failed to register MTD: %d\n",
  2420. ret);
  2421. goto dma_release_chnl;
  2422. }
  2423. kfree(cdns_ctrl->buf);
  2424. cdns_ctrl->buf = kzalloc(cdns_ctrl->buf_size, GFP_KERNEL);
  2425. if (!cdns_ctrl->buf) {
  2426. ret = -ENOMEM;
  2427. goto dma_release_chnl;
  2428. }
  2429. return 0;
  2430. dma_release_chnl:
  2431. if (cdns_ctrl->dmac)
  2432. dma_release_channel(cdns_ctrl->dmac);
  2433. disable_irq:
  2434. cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
  2435. free_buf:
  2436. kfree(cdns_ctrl->buf);
  2437. free_buf_desc:
  2438. dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
  2439. cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
  2440. return ret;
  2441. }
  2442. /* Driver exit point. */
  2443. static void cadence_nand_remove(struct cdns_nand_ctrl *cdns_ctrl)
  2444. {
  2445. cadence_nand_chips_cleanup(cdns_ctrl);
  2446. cadence_nand_irq_cleanup(cdns_ctrl->irq, cdns_ctrl);
  2447. kfree(cdns_ctrl->buf);
  2448. dma_free_coherent(cdns_ctrl->dev, sizeof(struct cadence_nand_cdma_desc),
  2449. cdns_ctrl->cdma_desc, cdns_ctrl->dma_cdma_desc);
  2450. if (cdns_ctrl->dmac)
  2451. dma_release_channel(cdns_ctrl->dmac);
  2452. }
  2453. struct cadence_nand_dt {
  2454. struct cdns_nand_ctrl cdns_ctrl;
  2455. struct clk *clk;
  2456. };
  2457. static const struct cadence_nand_dt_devdata cadence_nand_default = {
  2458. .if_skew = 0,
  2459. .has_dma = 1,
  2460. };
  2461. static const struct of_device_id cadence_nand_dt_ids[] = {
  2462. {
  2463. .compatible = "cdns,hp-nfc",
  2464. .data = &cadence_nand_default
  2465. }, {}
  2466. };
  2467. MODULE_DEVICE_TABLE(of, cadence_nand_dt_ids);
  2468. static int cadence_nand_dt_probe(struct platform_device *ofdev)
  2469. {
  2470. struct resource *res;
  2471. struct cadence_nand_dt *dt;
  2472. struct cdns_nand_ctrl *cdns_ctrl;
  2473. int ret;
  2474. const struct cadence_nand_dt_devdata *devdata;
  2475. u32 val;
  2476. devdata = device_get_match_data(&ofdev->dev);
  2477. if (!devdata) {
  2478. pr_err("Failed to find the right device id.\n");
  2479. return -ENOMEM;
  2480. }
  2481. dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
  2482. if (!dt)
  2483. return -ENOMEM;
  2484. cdns_ctrl = &dt->cdns_ctrl;
  2485. cdns_ctrl->caps1 = devdata;
  2486. cdns_ctrl->dev = &ofdev->dev;
  2487. cdns_ctrl->irq = platform_get_irq(ofdev, 0);
  2488. if (cdns_ctrl->irq < 0)
  2489. return cdns_ctrl->irq;
  2490. dev_info(cdns_ctrl->dev, "IRQ: nr %d\n", cdns_ctrl->irq);
  2491. cdns_ctrl->reg = devm_platform_ioremap_resource(ofdev, 0);
  2492. if (IS_ERR(cdns_ctrl->reg))
  2493. return PTR_ERR(cdns_ctrl->reg);
  2494. cdns_ctrl->io.virt = devm_platform_get_and_ioremap_resource(ofdev, 1, &res);
  2495. if (IS_ERR(cdns_ctrl->io.virt))
  2496. return PTR_ERR(cdns_ctrl->io.virt);
  2497. cdns_ctrl->io.dma = res->start;
  2498. dt->clk = devm_clk_get(cdns_ctrl->dev, "nf_clk");
  2499. if (IS_ERR(dt->clk))
  2500. return PTR_ERR(dt->clk);
  2501. cdns_ctrl->nf_clk_rate = clk_get_rate(dt->clk);
  2502. ret = of_property_read_u32(ofdev->dev.of_node,
  2503. "cdns,board-delay-ps", &val);
  2504. if (ret) {
  2505. val = 4830;
  2506. dev_info(cdns_ctrl->dev,
  2507. "missing cdns,board-delay-ps property, %d was set\n",
  2508. val);
  2509. }
  2510. cdns_ctrl->board_delay = val;
  2511. ret = cadence_nand_init(cdns_ctrl);
  2512. if (ret)
  2513. return ret;
  2514. platform_set_drvdata(ofdev, dt);
  2515. return 0;
  2516. }
  2517. static void cadence_nand_dt_remove(struct platform_device *ofdev)
  2518. {
  2519. struct cadence_nand_dt *dt = platform_get_drvdata(ofdev);
  2520. cadence_nand_remove(&dt->cdns_ctrl);
  2521. }
  2522. static struct platform_driver cadence_nand_dt_driver = {
  2523. .probe = cadence_nand_dt_probe,
  2524. .remove_new = cadence_nand_dt_remove,
  2525. .driver = {
  2526. .name = "cadence-nand-controller",
  2527. .of_match_table = cadence_nand_dt_ids,
  2528. },
  2529. };
  2530. module_platform_driver(cadence_nand_dt_driver);
  2531. MODULE_AUTHOR("Piotr Sroka <piotrs@cadence.com>");
  2532. MODULE_LICENSE("GPL v2");
  2533. MODULE_DESCRIPTION("Driver for Cadence NAND flash controller");