of_reserved_mem.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688
  1. // SPDX-License-Identifier: GPL-2.0+
  2. /*
  3. * Device tree based initialization code for reserved memory.
  4. *
  5. * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
  6. * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
  7. * http://www.samsung.com
  8. * Author: Marek Szyprowski <m.szyprowski@samsung.com>
  9. * Author: Josh Cartwright <joshc@codeaurora.org>
  10. */
  11. #define pr_fmt(fmt) "OF: reserved mem: " fmt
  12. #include <linux/err.h>
  13. #include <linux/libfdt.h>
  14. #include <linux/of.h>
  15. #include <linux/of_fdt.h>
  16. #include <linux/of_platform.h>
  17. #include <linux/mm.h>
  18. #include <linux/sizes.h>
  19. #include <linux/of_reserved_mem.h>
  20. #include <linux/sort.h>
  21. #include <linux/slab.h>
  22. #include <linux/memblock.h>
  23. #include <linux/kmemleak.h>
  24. #include <linux/cma.h>
  25. #include "of_private.h"
  26. static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
  27. static int reserved_mem_count;
  28. static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
  29. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  30. phys_addr_t *res_base)
  31. {
  32. phys_addr_t base;
  33. int err = 0;
  34. end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
  35. align = !align ? SMP_CACHE_BYTES : align;
  36. base = memblock_phys_alloc_range(size, align, start, end);
  37. if (!base)
  38. return -ENOMEM;
  39. *res_base = base;
  40. if (nomap) {
  41. err = memblock_mark_nomap(base, size);
  42. if (err)
  43. memblock_phys_free(base, size);
  44. }
  45. if (!err)
  46. kmemleak_ignore_phys(base);
  47. return err;
  48. }
  49. static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem);
  50. /*
  51. * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
  52. */
  53. static void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
  54. phys_addr_t base, phys_addr_t size)
  55. {
  56. struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
  57. if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
  58. pr_err("not enough space for all defined regions.\n");
  59. return;
  60. }
  61. rmem->fdt_node = node;
  62. rmem->name = uname;
  63. rmem->base = base;
  64. rmem->size = size;
  65. /* Call the region specific initialization function */
  66. fdt_init_reserved_mem_node(rmem);
  67. reserved_mem_count++;
  68. return;
  69. }
  70. static int __init early_init_dt_reserve_memory(phys_addr_t base,
  71. phys_addr_t size, bool nomap)
  72. {
  73. if (nomap) {
  74. /*
  75. * If the memory is already reserved (by another region), we
  76. * should not allow it to be marked nomap, but don't worry
  77. * if the region isn't memory as it won't be mapped.
  78. */
  79. if (memblock_overlaps_region(&memblock.memory, base, size) &&
  80. memblock_is_region_reserved(base, size))
  81. return -EBUSY;
  82. return memblock_mark_nomap(base, size);
  83. }
  84. return memblock_reserve(base, size);
  85. }
  86. /*
  87. * __reserved_mem_reserve_reg() - reserve all memory described in 'reg' property
  88. */
  89. static int __init __reserved_mem_reserve_reg(unsigned long node,
  90. const char *uname)
  91. {
  92. int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  93. phys_addr_t base, size;
  94. int len;
  95. const __be32 *prop;
  96. bool nomap;
  97. prop = of_get_flat_dt_prop(node, "reg", &len);
  98. if (!prop)
  99. return -ENOENT;
  100. if (len && len % t_len != 0) {
  101. pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
  102. uname);
  103. return -EINVAL;
  104. }
  105. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  106. while (len >= t_len) {
  107. base = dt_mem_next_cell(dt_root_addr_cells, &prop);
  108. size = dt_mem_next_cell(dt_root_size_cells, &prop);
  109. if (size &&
  110. early_init_dt_reserve_memory(base, size, nomap) == 0)
  111. pr_debug("Reserved memory: reserved region for node '%s': base %pa, size %lu MiB\n",
  112. uname, &base, (unsigned long)(size / SZ_1M));
  113. else
  114. pr_err("Reserved memory: failed to reserve memory for node '%s': base %pa, size %lu MiB\n",
  115. uname, &base, (unsigned long)(size / SZ_1M));
  116. len -= t_len;
  117. }
  118. return 0;
  119. }
  120. /*
  121. * __reserved_mem_check_root() - check if #size-cells, #address-cells provided
  122. * in /reserved-memory matches the values supported by the current implementation,
  123. * also check if ranges property has been provided
  124. */
  125. static int __init __reserved_mem_check_root(unsigned long node)
  126. {
  127. const __be32 *prop;
  128. prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
  129. if (!prop || be32_to_cpup(prop) != dt_root_size_cells)
  130. return -EINVAL;
  131. prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
  132. if (!prop || be32_to_cpup(prop) != dt_root_addr_cells)
  133. return -EINVAL;
  134. prop = of_get_flat_dt_prop(node, "ranges", NULL);
  135. if (!prop)
  136. return -EINVAL;
  137. return 0;
  138. }
  139. static void __init __rmem_check_for_overlap(void);
  140. /**
  141. * fdt_scan_reserved_mem_reg_nodes() - Store info for the "reg" defined
  142. * reserved memory regions.
  143. *
  144. * This function is used to scan through the DT and store the
  145. * information for the reserved memory regions that are defined using
  146. * the "reg" property. The region node number, name, base address, and
  147. * size are all stored in the reserved_mem array by calling the
  148. * fdt_reserved_mem_save_node() function.
  149. */
  150. void __init fdt_scan_reserved_mem_reg_nodes(void)
  151. {
  152. int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  153. const void *fdt = initial_boot_params;
  154. phys_addr_t base, size;
  155. const __be32 *prop;
  156. int node, child;
  157. int len;
  158. if (!fdt)
  159. return;
  160. node = fdt_path_offset(fdt, "/reserved-memory");
  161. if (node < 0) {
  162. pr_info("Reserved memory: No reserved-memory node in the DT\n");
  163. return;
  164. }
  165. if (__reserved_mem_check_root(node)) {
  166. pr_err("Reserved memory: unsupported node format, ignoring\n");
  167. return;
  168. }
  169. fdt_for_each_subnode(child, fdt, node) {
  170. const char *uname;
  171. prop = of_get_flat_dt_prop(child, "reg", &len);
  172. if (!prop)
  173. continue;
  174. if (!of_fdt_device_is_available(fdt, child))
  175. continue;
  176. uname = fdt_get_name(fdt, child, NULL);
  177. if (len && len % t_len != 0) {
  178. pr_err("Reserved memory: invalid reg property in '%s', skipping node.\n",
  179. uname);
  180. continue;
  181. }
  182. if (len > t_len)
  183. pr_warn("%s() ignores %d regions in node '%s'\n",
  184. __func__, len / t_len - 1, uname);
  185. base = dt_mem_next_cell(dt_root_addr_cells, &prop);
  186. size = dt_mem_next_cell(dt_root_size_cells, &prop);
  187. if (size)
  188. fdt_reserved_mem_save_node(child, uname, base, size);
  189. }
  190. /* check for overlapping reserved regions */
  191. __rmem_check_for_overlap();
  192. }
  193. static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname);
  194. /*
  195. * fdt_scan_reserved_mem() - scan a single FDT node for reserved memory
  196. */
  197. int __init fdt_scan_reserved_mem(void)
  198. {
  199. int node, child;
  200. int dynamic_nodes_cnt = 0;
  201. int dynamic_nodes[MAX_RESERVED_REGIONS];
  202. const void *fdt = initial_boot_params;
  203. node = fdt_path_offset(fdt, "/reserved-memory");
  204. if (node < 0)
  205. return -ENODEV;
  206. if (__reserved_mem_check_root(node) != 0) {
  207. pr_err("Reserved memory: unsupported node format, ignoring\n");
  208. return -EINVAL;
  209. }
  210. fdt_for_each_subnode(child, fdt, node) {
  211. const char *uname;
  212. int err;
  213. if (!of_fdt_device_is_available(fdt, child))
  214. continue;
  215. uname = fdt_get_name(fdt, child, NULL);
  216. err = __reserved_mem_reserve_reg(child, uname);
  217. /*
  218. * Save the nodes for the dynamically-placed regions
  219. * into an array which will be used for allocation right
  220. * after all the statically-placed regions are reserved
  221. * or marked as no-map. This is done to avoid dynamically
  222. * allocating from one of the statically-placed regions.
  223. */
  224. if (err == -ENOENT && of_get_flat_dt_prop(child, "size", NULL)) {
  225. dynamic_nodes[dynamic_nodes_cnt] = child;
  226. dynamic_nodes_cnt++;
  227. }
  228. }
  229. for (int i = 0; i < dynamic_nodes_cnt; i++) {
  230. const char *uname;
  231. child = dynamic_nodes[i];
  232. uname = fdt_get_name(fdt, child, NULL);
  233. __reserved_mem_alloc_size(child, uname);
  234. }
  235. return 0;
  236. }
  237. /*
  238. * __reserved_mem_alloc_in_range() - allocate reserved memory described with
  239. * 'alloc-ranges'. Choose bottom-up/top-down depending on nearby existing
  240. * reserved regions to keep the reserved memory contiguous if possible.
  241. */
  242. static int __init __reserved_mem_alloc_in_range(phys_addr_t size,
  243. phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
  244. phys_addr_t *res_base)
  245. {
  246. bool prev_bottom_up = memblock_bottom_up();
  247. bool bottom_up = false, top_down = false;
  248. int ret, i;
  249. for (i = 0; i < reserved_mem_count; i++) {
  250. struct reserved_mem *rmem = &reserved_mem[i];
  251. /* Skip regions that were not reserved yet */
  252. if (rmem->size == 0)
  253. continue;
  254. /*
  255. * If range starts next to an existing reservation, use bottom-up:
  256. * |....RRRR................RRRRRRRR..............|
  257. * --RRRR------
  258. */
  259. if (start >= rmem->base && start <= (rmem->base + rmem->size))
  260. bottom_up = true;
  261. /*
  262. * If range ends next to an existing reservation, use top-down:
  263. * |....RRRR................RRRRRRRR..............|
  264. * -------RRRR-----
  265. */
  266. if (end >= rmem->base && end <= (rmem->base + rmem->size))
  267. top_down = true;
  268. }
  269. /* Change setting only if either bottom-up or top-down was selected */
  270. if (bottom_up != top_down)
  271. memblock_set_bottom_up(bottom_up);
  272. ret = early_init_dt_alloc_reserved_memory_arch(size, align,
  273. start, end, nomap, res_base);
  274. /* Restore old setting if needed */
  275. if (bottom_up != top_down)
  276. memblock_set_bottom_up(prev_bottom_up);
  277. return ret;
  278. }
  279. /*
  280. * __reserved_mem_alloc_size() - allocate reserved memory described by
  281. * 'size', 'alignment' and 'alloc-ranges' properties.
  282. */
  283. static int __init __reserved_mem_alloc_size(unsigned long node, const char *uname)
  284. {
  285. int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
  286. phys_addr_t start = 0, end = 0;
  287. phys_addr_t base = 0, align = 0, size;
  288. int len;
  289. const __be32 *prop;
  290. bool nomap;
  291. int ret;
  292. prop = of_get_flat_dt_prop(node, "size", &len);
  293. if (!prop)
  294. return -EINVAL;
  295. if (len != dt_root_size_cells * sizeof(__be32)) {
  296. pr_err("invalid size property in '%s' node.\n", uname);
  297. return -EINVAL;
  298. }
  299. size = dt_mem_next_cell(dt_root_size_cells, &prop);
  300. prop = of_get_flat_dt_prop(node, "alignment", &len);
  301. if (prop) {
  302. if (len != dt_root_size_cells * sizeof(__be32)) {
  303. pr_err("invalid alignment property in '%s' node.\n",
  304. uname);
  305. return -EINVAL;
  306. }
  307. align = dt_mem_next_cell(dt_root_size_cells, &prop);
  308. }
  309. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  310. /* Need adjust the alignment to satisfy the CMA requirement */
  311. if (IS_ENABLED(CONFIG_CMA)
  312. && of_flat_dt_is_compatible(node, "shared-dma-pool")
  313. && of_get_flat_dt_prop(node, "reusable", NULL)
  314. && !nomap)
  315. align = max_t(phys_addr_t, align, CMA_MIN_ALIGNMENT_BYTES);
  316. prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
  317. if (prop) {
  318. if (len % t_len != 0) {
  319. pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
  320. uname);
  321. return -EINVAL;
  322. }
  323. base = 0;
  324. while (len > 0) {
  325. start = dt_mem_next_cell(dt_root_addr_cells, &prop);
  326. end = start + dt_mem_next_cell(dt_root_size_cells,
  327. &prop);
  328. ret = __reserved_mem_alloc_in_range(size, align,
  329. start, end, nomap, &base);
  330. if (ret == 0) {
  331. pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
  332. uname, &base,
  333. (unsigned long)(size / SZ_1M));
  334. break;
  335. }
  336. len -= t_len;
  337. }
  338. } else {
  339. ret = early_init_dt_alloc_reserved_memory_arch(size, align,
  340. 0, 0, nomap, &base);
  341. if (ret == 0)
  342. pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
  343. uname, &base, (unsigned long)(size / SZ_1M));
  344. }
  345. if (base == 0) {
  346. pr_err("failed to allocate memory for node '%s': size %lu MiB\n",
  347. uname, (unsigned long)(size / SZ_1M));
  348. return -ENOMEM;
  349. }
  350. /* Save region in the reserved_mem array */
  351. fdt_reserved_mem_save_node(node, uname, base, size);
  352. return 0;
  353. }
  354. static const struct of_device_id __rmem_of_table_sentinel
  355. __used __section("__reservedmem_of_table_end");
  356. /*
  357. * __reserved_mem_init_node() - call region specific reserved memory init code
  358. */
  359. static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
  360. {
  361. extern const struct of_device_id __reservedmem_of_table[];
  362. const struct of_device_id *i;
  363. int ret = -ENOENT;
  364. for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
  365. reservedmem_of_init_fn initfn = i->data;
  366. const char *compat = i->compatible;
  367. if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
  368. continue;
  369. ret = initfn(rmem);
  370. if (ret == 0) {
  371. pr_info("initialized node %s, compatible id %s\n",
  372. rmem->name, compat);
  373. break;
  374. }
  375. }
  376. return ret;
  377. }
  378. static int __init __rmem_cmp(const void *a, const void *b)
  379. {
  380. const struct reserved_mem *ra = a, *rb = b;
  381. if (ra->base < rb->base)
  382. return -1;
  383. if (ra->base > rb->base)
  384. return 1;
  385. /*
  386. * Put the dynamic allocations (address == 0, size == 0) before static
  387. * allocations at address 0x0 so that overlap detection works
  388. * correctly.
  389. */
  390. if (ra->size < rb->size)
  391. return -1;
  392. if (ra->size > rb->size)
  393. return 1;
  394. if (ra->fdt_node < rb->fdt_node)
  395. return -1;
  396. if (ra->fdt_node > rb->fdt_node)
  397. return 1;
  398. return 0;
  399. }
  400. static void __init __rmem_check_for_overlap(void)
  401. {
  402. int i;
  403. if (reserved_mem_count < 2)
  404. return;
  405. sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
  406. __rmem_cmp, NULL);
  407. for (i = 0; i < reserved_mem_count - 1; i++) {
  408. struct reserved_mem *this, *next;
  409. this = &reserved_mem[i];
  410. next = &reserved_mem[i + 1];
  411. if (this->base + this->size > next->base) {
  412. phys_addr_t this_end, next_end;
  413. this_end = this->base + this->size;
  414. next_end = next->base + next->size;
  415. pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
  416. this->name, &this->base, &this_end,
  417. next->name, &next->base, &next_end);
  418. }
  419. }
  420. }
  421. /**
  422. * fdt_init_reserved_mem_node() - Initialize a reserved memory region
  423. * @rmem: reserved_mem struct of the memory region to be initialized.
  424. *
  425. * This function is used to call the region specific initialization
  426. * function for a reserved memory region.
  427. */
  428. static void __init fdt_init_reserved_mem_node(struct reserved_mem *rmem)
  429. {
  430. unsigned long node = rmem->fdt_node;
  431. int err = 0;
  432. bool nomap;
  433. nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
  434. err = __reserved_mem_init_node(rmem);
  435. if (err != 0 && err != -ENOENT) {
  436. pr_info("node %s compatible matching fail\n", rmem->name);
  437. if (nomap)
  438. memblock_clear_nomap(rmem->base, rmem->size);
  439. else
  440. memblock_phys_free(rmem->base, rmem->size);
  441. } else {
  442. phys_addr_t end = rmem->base + rmem->size - 1;
  443. bool reusable =
  444. (of_get_flat_dt_prop(node, "reusable", NULL)) != NULL;
  445. pr_info("%pa..%pa (%lu KiB) %s %s %s\n",
  446. &rmem->base, &end, (unsigned long)(rmem->size / SZ_1K),
  447. nomap ? "nomap" : "map",
  448. reusable ? "reusable" : "non-reusable",
  449. rmem->name ? rmem->name : "unknown");
  450. }
  451. }
  452. struct rmem_assigned_device {
  453. struct device *dev;
  454. struct reserved_mem *rmem;
  455. struct list_head list;
  456. };
  457. static LIST_HEAD(of_rmem_assigned_device_list);
  458. static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
  459. /**
  460. * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
  461. * given device
  462. * @dev: Pointer to the device to configure
  463. * @np: Pointer to the device_node with 'reserved-memory' property
  464. * @idx: Index of selected region
  465. *
  466. * This function assigns respective DMA-mapping operations based on reserved
  467. * memory region specified by 'memory-region' property in @np node to the @dev
  468. * device. When driver needs to use more than one reserved memory region, it
  469. * should allocate child devices and initialize regions by name for each of
  470. * child device.
  471. *
  472. * Returns error code or zero on success.
  473. */
  474. int of_reserved_mem_device_init_by_idx(struct device *dev,
  475. struct device_node *np, int idx)
  476. {
  477. struct rmem_assigned_device *rd;
  478. struct device_node *target;
  479. struct reserved_mem *rmem;
  480. int ret;
  481. if (!np || !dev)
  482. return -EINVAL;
  483. target = of_parse_phandle(np, "memory-region", idx);
  484. if (!target)
  485. return -ENODEV;
  486. if (!of_device_is_available(target)) {
  487. of_node_put(target);
  488. return 0;
  489. }
  490. rmem = of_reserved_mem_lookup(target);
  491. of_node_put(target);
  492. if (!rmem || !rmem->ops || !rmem->ops->device_init)
  493. return -EINVAL;
  494. rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
  495. if (!rd)
  496. return -ENOMEM;
  497. ret = rmem->ops->device_init(rmem, dev);
  498. if (ret == 0) {
  499. rd->dev = dev;
  500. rd->rmem = rmem;
  501. mutex_lock(&of_rmem_assigned_device_mutex);
  502. list_add(&rd->list, &of_rmem_assigned_device_list);
  503. mutex_unlock(&of_rmem_assigned_device_mutex);
  504. dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
  505. } else {
  506. kfree(rd);
  507. }
  508. return ret;
  509. }
  510. EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
  511. /**
  512. * of_reserved_mem_device_init_by_name() - assign named reserved memory region
  513. * to given device
  514. * @dev: pointer to the device to configure
  515. * @np: pointer to the device node with 'memory-region' property
  516. * @name: name of the selected memory region
  517. *
  518. * Returns: 0 on success or a negative error-code on failure.
  519. */
  520. int of_reserved_mem_device_init_by_name(struct device *dev,
  521. struct device_node *np,
  522. const char *name)
  523. {
  524. int idx = of_property_match_string(np, "memory-region-names", name);
  525. return of_reserved_mem_device_init_by_idx(dev, np, idx);
  526. }
  527. EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
  528. /**
  529. * of_reserved_mem_device_release() - release reserved memory device structures
  530. * @dev: Pointer to the device to deconfigure
  531. *
  532. * This function releases structures allocated for memory region handling for
  533. * the given device.
  534. */
  535. void of_reserved_mem_device_release(struct device *dev)
  536. {
  537. struct rmem_assigned_device *rd, *tmp;
  538. LIST_HEAD(release_list);
  539. mutex_lock(&of_rmem_assigned_device_mutex);
  540. list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
  541. if (rd->dev == dev)
  542. list_move_tail(&rd->list, &release_list);
  543. }
  544. mutex_unlock(&of_rmem_assigned_device_mutex);
  545. list_for_each_entry_safe(rd, tmp, &release_list, list) {
  546. if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
  547. rd->rmem->ops->device_release(rd->rmem, dev);
  548. kfree(rd);
  549. }
  550. }
  551. EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
  552. /**
  553. * of_reserved_mem_lookup() - acquire reserved_mem from a device node
  554. * @np: node pointer of the desired reserved-memory region
  555. *
  556. * This function allows drivers to acquire a reference to the reserved_mem
  557. * struct based on a device node handle.
  558. *
  559. * Returns a reserved_mem reference, or NULL on error.
  560. */
  561. struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
  562. {
  563. const char *name;
  564. int i;
  565. if (!np->full_name)
  566. return NULL;
  567. name = kbasename(np->full_name);
  568. for (i = 0; i < reserved_mem_count; i++)
  569. if (!strcmp(reserved_mem[i].name, name))
  570. return &reserved_mem[i];
  571. return NULL;
  572. }
  573. EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);