ptp_ocp.c 112 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902
  1. // SPDX-License-Identifier: GPL-2.0-only
  2. /* Copyright (c) 2020 Facebook */
  3. #include <linux/bits.h>
  4. #include <linux/err.h>
  5. #include <linux/kernel.h>
  6. #include <linux/module.h>
  7. #include <linux/debugfs.h>
  8. #include <linux/init.h>
  9. #include <linux/pci.h>
  10. #include <linux/serial_8250.h>
  11. #include <linux/clkdev.h>
  12. #include <linux/clk-provider.h>
  13. #include <linux/platform_device.h>
  14. #include <linux/platform_data/i2c-xiic.h>
  15. #include <linux/platform_data/i2c-ocores.h>
  16. #include <linux/ptp_clock_kernel.h>
  17. #include <linux/spi/spi.h>
  18. #include <linux/spi/xilinx_spi.h>
  19. #include <linux/spi/altera.h>
  20. #include <net/devlink.h>
  21. #include <linux/i2c.h>
  22. #include <linux/mtd/mtd.h>
  23. #include <linux/nvmem-consumer.h>
  24. #include <linux/crc16.h>
  25. #include <linux/dpll.h>
  26. #define PCI_VENDOR_ID_FACEBOOK 0x1d9b
  27. #define PCI_DEVICE_ID_FACEBOOK_TIMECARD 0x0400
  28. #define PCI_VENDOR_ID_CELESTICA 0x18d4
  29. #define PCI_DEVICE_ID_CELESTICA_TIMECARD 0x1008
  30. #define PCI_VENDOR_ID_OROLIA 0x1ad7
  31. #define PCI_DEVICE_ID_OROLIA_ARTCARD 0xa000
  32. #define PCI_VENDOR_ID_ADVA 0xad5a
  33. #define PCI_DEVICE_ID_ADVA_TIMECARD 0x0400
  34. static struct class timecard_class = {
  35. .name = "timecard",
  36. };
  37. struct ocp_reg {
  38. u32 ctrl;
  39. u32 status;
  40. u32 select;
  41. u32 version;
  42. u32 time_ns;
  43. u32 time_sec;
  44. u32 __pad0[2];
  45. u32 adjust_ns;
  46. u32 adjust_sec;
  47. u32 __pad1[2];
  48. u32 offset_ns;
  49. u32 offset_window_ns;
  50. u32 __pad2[2];
  51. u32 drift_ns;
  52. u32 drift_window_ns;
  53. u32 __pad3[6];
  54. u32 servo_offset_p;
  55. u32 servo_offset_i;
  56. u32 servo_drift_p;
  57. u32 servo_drift_i;
  58. u32 status_offset;
  59. u32 status_drift;
  60. };
  61. struct ptp_ocp_servo_conf {
  62. u32 servo_offset_p;
  63. u32 servo_offset_i;
  64. u32 servo_drift_p;
  65. u32 servo_drift_i;
  66. };
  67. #define OCP_CTRL_ENABLE BIT(0)
  68. #define OCP_CTRL_ADJUST_TIME BIT(1)
  69. #define OCP_CTRL_ADJUST_OFFSET BIT(2)
  70. #define OCP_CTRL_ADJUST_DRIFT BIT(3)
  71. #define OCP_CTRL_ADJUST_SERVO BIT(8)
  72. #define OCP_CTRL_READ_TIME_REQ BIT(30)
  73. #define OCP_CTRL_READ_TIME_DONE BIT(31)
  74. #define OCP_STATUS_IN_SYNC BIT(0)
  75. #define OCP_STATUS_IN_HOLDOVER BIT(1)
  76. #define OCP_SELECT_CLK_NONE 0
  77. #define OCP_SELECT_CLK_REG 0xfe
  78. struct tod_reg {
  79. u32 ctrl;
  80. u32 status;
  81. u32 uart_polarity;
  82. u32 version;
  83. u32 adj_sec;
  84. u32 __pad0[3];
  85. u32 uart_baud;
  86. u32 __pad1[3];
  87. u32 utc_status;
  88. u32 leap;
  89. };
  90. #define TOD_CTRL_PROTOCOL BIT(28)
  91. #define TOD_CTRL_DISABLE_FMT_A BIT(17)
  92. #define TOD_CTRL_DISABLE_FMT_B BIT(16)
  93. #define TOD_CTRL_ENABLE BIT(0)
  94. #define TOD_CTRL_GNSS_MASK GENMASK(3, 0)
  95. #define TOD_CTRL_GNSS_SHIFT 24
  96. #define TOD_STATUS_UTC_MASK GENMASK(7, 0)
  97. #define TOD_STATUS_UTC_VALID BIT(8)
  98. #define TOD_STATUS_LEAP_ANNOUNCE BIT(12)
  99. #define TOD_STATUS_LEAP_VALID BIT(16)
  100. struct ts_reg {
  101. u32 enable;
  102. u32 error;
  103. u32 polarity;
  104. u32 version;
  105. u32 __pad0[4];
  106. u32 cable_delay;
  107. u32 __pad1[3];
  108. u32 intr;
  109. u32 intr_mask;
  110. u32 event_count;
  111. u32 __pad2[1];
  112. u32 ts_count;
  113. u32 time_ns;
  114. u32 time_sec;
  115. u32 data_width;
  116. u32 data;
  117. };
  118. struct pps_reg {
  119. u32 ctrl;
  120. u32 status;
  121. u32 __pad0[6];
  122. u32 cable_delay;
  123. };
  124. #define PPS_STATUS_FILTER_ERR BIT(0)
  125. #define PPS_STATUS_SUPERV_ERR BIT(1)
  126. struct img_reg {
  127. u32 version;
  128. };
  129. struct gpio_reg {
  130. u32 gpio1;
  131. u32 __pad0;
  132. u32 gpio2;
  133. u32 __pad1;
  134. };
  135. struct irig_master_reg {
  136. u32 ctrl;
  137. u32 status;
  138. u32 __pad0;
  139. u32 version;
  140. u32 adj_sec;
  141. u32 mode_ctrl;
  142. };
  143. #define IRIG_M_CTRL_ENABLE BIT(0)
  144. struct irig_slave_reg {
  145. u32 ctrl;
  146. u32 status;
  147. u32 __pad0;
  148. u32 version;
  149. u32 adj_sec;
  150. u32 mode_ctrl;
  151. };
  152. #define IRIG_S_CTRL_ENABLE BIT(0)
  153. struct dcf_master_reg {
  154. u32 ctrl;
  155. u32 status;
  156. u32 __pad0;
  157. u32 version;
  158. u32 adj_sec;
  159. };
  160. #define DCF_M_CTRL_ENABLE BIT(0)
  161. struct dcf_slave_reg {
  162. u32 ctrl;
  163. u32 status;
  164. u32 __pad0;
  165. u32 version;
  166. u32 adj_sec;
  167. };
  168. #define DCF_S_CTRL_ENABLE BIT(0)
  169. struct signal_reg {
  170. u32 enable;
  171. u32 status;
  172. u32 polarity;
  173. u32 version;
  174. u32 __pad0[4];
  175. u32 cable_delay;
  176. u32 __pad1[3];
  177. u32 intr;
  178. u32 intr_mask;
  179. u32 __pad2[2];
  180. u32 start_ns;
  181. u32 start_sec;
  182. u32 pulse_ns;
  183. u32 pulse_sec;
  184. u32 period_ns;
  185. u32 period_sec;
  186. u32 repeat_count;
  187. };
  188. struct frequency_reg {
  189. u32 ctrl;
  190. u32 status;
  191. };
  192. struct board_config_reg {
  193. u32 mro50_serial_activate;
  194. };
  195. #define FREQ_STATUS_VALID BIT(31)
  196. #define FREQ_STATUS_ERROR BIT(30)
  197. #define FREQ_STATUS_OVERRUN BIT(29)
  198. #define FREQ_STATUS_MASK GENMASK(23, 0)
  199. struct ptp_ocp_flash_info {
  200. const char *name;
  201. int pci_offset;
  202. int data_size;
  203. void *data;
  204. };
  205. struct ptp_ocp_firmware_header {
  206. char magic[4];
  207. __be16 pci_vendor_id;
  208. __be16 pci_device_id;
  209. __be32 image_size;
  210. __be16 hw_revision;
  211. __be16 crc;
  212. };
  213. #define OCP_FIRMWARE_MAGIC_HEADER "OCPC"
  214. struct ptp_ocp_i2c_info {
  215. const char *name;
  216. unsigned long fixed_rate;
  217. size_t data_size;
  218. void *data;
  219. };
  220. struct ptp_ocp_ext_info {
  221. int index;
  222. irqreturn_t (*irq_fcn)(int irq, void *priv);
  223. int (*enable)(void *priv, u32 req, bool enable);
  224. };
  225. struct ptp_ocp_ext_src {
  226. void __iomem *mem;
  227. struct ptp_ocp *bp;
  228. struct ptp_ocp_ext_info *info;
  229. int irq_vec;
  230. };
  231. enum ptp_ocp_sma_mode {
  232. SMA_MODE_IN,
  233. SMA_MODE_OUT,
  234. };
  235. static struct dpll_pin_frequency ptp_ocp_sma_freq[] = {
  236. DPLL_PIN_FREQUENCY_1PPS,
  237. DPLL_PIN_FREQUENCY_10MHZ,
  238. DPLL_PIN_FREQUENCY_IRIG_B,
  239. DPLL_PIN_FREQUENCY_DCF77,
  240. };
  241. struct ptp_ocp_sma_connector {
  242. enum ptp_ocp_sma_mode mode;
  243. bool fixed_fcn;
  244. bool fixed_dir;
  245. bool disabled;
  246. u8 default_fcn;
  247. struct dpll_pin *dpll_pin;
  248. struct dpll_pin_properties dpll_prop;
  249. };
  250. struct ocp_attr_group {
  251. u64 cap;
  252. const struct attribute_group *group;
  253. };
  254. #define OCP_CAP_BASIC BIT(0)
  255. #define OCP_CAP_SIGNAL BIT(1)
  256. #define OCP_CAP_FREQ BIT(2)
  257. struct ptp_ocp_signal {
  258. ktime_t period;
  259. ktime_t pulse;
  260. ktime_t phase;
  261. ktime_t start;
  262. int duty;
  263. bool polarity;
  264. bool running;
  265. };
  266. struct ptp_ocp_serial_port {
  267. int line;
  268. int baud;
  269. };
  270. #define OCP_BOARD_ID_LEN 13
  271. #define OCP_SERIAL_LEN 6
  272. #define OCP_SMA_NUM 4
  273. enum {
  274. PORT_GNSS,
  275. PORT_GNSS2,
  276. PORT_MAC, /* miniature atomic clock */
  277. PORT_NMEA,
  278. __PORT_COUNT,
  279. };
  280. struct ptp_ocp {
  281. struct pci_dev *pdev;
  282. struct device dev;
  283. spinlock_t lock;
  284. struct ocp_reg __iomem *reg;
  285. struct tod_reg __iomem *tod;
  286. struct pps_reg __iomem *pps_to_ext;
  287. struct pps_reg __iomem *pps_to_clk;
  288. struct board_config_reg __iomem *board_config;
  289. struct gpio_reg __iomem *pps_select;
  290. struct gpio_reg __iomem *sma_map1;
  291. struct gpio_reg __iomem *sma_map2;
  292. struct irig_master_reg __iomem *irig_out;
  293. struct irig_slave_reg __iomem *irig_in;
  294. struct dcf_master_reg __iomem *dcf_out;
  295. struct dcf_slave_reg __iomem *dcf_in;
  296. struct tod_reg __iomem *nmea_out;
  297. struct frequency_reg __iomem *freq_in[4];
  298. struct ptp_ocp_ext_src *signal_out[4];
  299. struct ptp_ocp_ext_src *pps;
  300. struct ptp_ocp_ext_src *ts0;
  301. struct ptp_ocp_ext_src *ts1;
  302. struct ptp_ocp_ext_src *ts2;
  303. struct ptp_ocp_ext_src *ts3;
  304. struct ptp_ocp_ext_src *ts4;
  305. struct ocp_art_gpio_reg __iomem *art_sma;
  306. struct img_reg __iomem *image;
  307. struct ptp_clock *ptp;
  308. struct ptp_clock_info ptp_info;
  309. struct platform_device *i2c_ctrl;
  310. struct platform_device *spi_flash;
  311. struct clk_hw *i2c_clk;
  312. struct timer_list watchdog;
  313. const struct attribute_group **attr_group;
  314. const struct ptp_ocp_eeprom_map *eeprom_map;
  315. struct dentry *debug_root;
  316. bool sync;
  317. time64_t gnss_lost;
  318. struct delayed_work sync_work;
  319. int id;
  320. int n_irqs;
  321. struct ptp_ocp_serial_port port[__PORT_COUNT];
  322. bool fw_loader;
  323. u8 fw_tag;
  324. u16 fw_version;
  325. u8 board_id[OCP_BOARD_ID_LEN];
  326. u8 serial[OCP_SERIAL_LEN];
  327. bool has_eeprom_data;
  328. u32 pps_req_map;
  329. int flash_start;
  330. u32 utc_tai_offset;
  331. u32 ts_window_adjust;
  332. u64 fw_cap;
  333. struct ptp_ocp_signal signal[4];
  334. struct ptp_ocp_sma_connector sma[OCP_SMA_NUM];
  335. const struct ocp_sma_op *sma_op;
  336. struct dpll_device *dpll;
  337. };
  338. #define OCP_REQ_TIMESTAMP BIT(0)
  339. #define OCP_REQ_PPS BIT(1)
  340. struct ocp_resource {
  341. unsigned long offset;
  342. int size;
  343. int irq_vec;
  344. int (*setup)(struct ptp_ocp *bp, struct ocp_resource *r);
  345. void *extra;
  346. unsigned long bp_offset;
  347. const char * const name;
  348. };
  349. static int ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r);
  350. static int ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r);
  351. static int ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r);
  352. static int ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r);
  353. static int ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r);
  354. static int ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
  355. static irqreturn_t ptp_ocp_ts_irq(int irq, void *priv);
  356. static irqreturn_t ptp_ocp_signal_irq(int irq, void *priv);
  357. static int ptp_ocp_ts_enable(void *priv, u32 req, bool enable);
  358. static int ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
  359. struct ptp_perout_request *req);
  360. static int ptp_ocp_signal_enable(void *priv, u32 req, bool enable);
  361. static int ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr);
  362. static int ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
  363. static int ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r);
  364. static const struct ocp_attr_group fb_timecard_groups[];
  365. static const struct ocp_attr_group art_timecard_groups[];
  366. static const struct ocp_attr_group adva_timecard_groups[];
  367. struct ptp_ocp_eeprom_map {
  368. u16 off;
  369. u16 len;
  370. u32 bp_offset;
  371. const void * const tag;
  372. };
  373. #define EEPROM_ENTRY(addr, member) \
  374. .off = addr, \
  375. .len = sizeof_field(struct ptp_ocp, member), \
  376. .bp_offset = offsetof(struct ptp_ocp, member)
  377. #define BP_MAP_ENTRY_ADDR(bp, map) ({ \
  378. (void *)((uintptr_t)(bp) + (map)->bp_offset); \
  379. })
  380. static struct ptp_ocp_eeprom_map fb_eeprom_map[] = {
  381. { EEPROM_ENTRY(0x43, board_id) },
  382. { EEPROM_ENTRY(0x00, serial), .tag = "mac" },
  383. { }
  384. };
  385. static struct ptp_ocp_eeprom_map art_eeprom_map[] = {
  386. { EEPROM_ENTRY(0x200 + 0x43, board_id) },
  387. { EEPROM_ENTRY(0x200 + 0x63, serial) },
  388. { }
  389. };
  390. #define bp_assign_entry(bp, res, val) ({ \
  391. uintptr_t addr = (uintptr_t)(bp) + (res)->bp_offset; \
  392. *(typeof(val) *)addr = val; \
  393. })
  394. #define OCP_RES_LOCATION(member) \
  395. .name = #member, .bp_offset = offsetof(struct ptp_ocp, member)
  396. #define OCP_MEM_RESOURCE(member) \
  397. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_mem
  398. #define OCP_SERIAL_RESOURCE(member) \
  399. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_serial
  400. #define OCP_I2C_RESOURCE(member) \
  401. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_i2c
  402. #define OCP_SPI_RESOURCE(member) \
  403. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_spi
  404. #define OCP_EXT_RESOURCE(member) \
  405. OCP_RES_LOCATION(member), .setup = ptp_ocp_register_ext
  406. /* This is the MSI vector mapping used.
  407. * 0: PPS (TS5)
  408. * 1: TS0
  409. * 2: TS1
  410. * 3: GNSS1
  411. * 4: GNSS2
  412. * 5: MAC
  413. * 6: TS2
  414. * 7: I2C controller
  415. * 8: HWICAP (notused)
  416. * 9: SPI Flash
  417. * 10: NMEA
  418. * 11: Signal Generator 1
  419. * 12: Signal Generator 2
  420. * 13: Signal Generator 3
  421. * 14: Signal Generator 4
  422. * 15: TS3
  423. * 16: TS4
  424. --
  425. * 8: Orolia TS1
  426. * 10: Orolia TS2
  427. * 11: Orolia TS0 (GNSS)
  428. * 12: Orolia PPS
  429. * 14: Orolia TS3
  430. * 15: Orolia TS4
  431. */
  432. static struct ocp_resource ocp_fb_resource[] = {
  433. {
  434. OCP_MEM_RESOURCE(reg),
  435. .offset = 0x01000000, .size = 0x10000,
  436. },
  437. {
  438. OCP_EXT_RESOURCE(ts0),
  439. .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
  440. .extra = &(struct ptp_ocp_ext_info) {
  441. .index = 0,
  442. .irq_fcn = ptp_ocp_ts_irq,
  443. .enable = ptp_ocp_ts_enable,
  444. },
  445. },
  446. {
  447. OCP_EXT_RESOURCE(ts1),
  448. .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
  449. .extra = &(struct ptp_ocp_ext_info) {
  450. .index = 1,
  451. .irq_fcn = ptp_ocp_ts_irq,
  452. .enable = ptp_ocp_ts_enable,
  453. },
  454. },
  455. {
  456. OCP_EXT_RESOURCE(ts2),
  457. .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
  458. .extra = &(struct ptp_ocp_ext_info) {
  459. .index = 2,
  460. .irq_fcn = ptp_ocp_ts_irq,
  461. .enable = ptp_ocp_ts_enable,
  462. },
  463. },
  464. {
  465. OCP_EXT_RESOURCE(ts3),
  466. .offset = 0x01110000, .size = 0x10000, .irq_vec = 15,
  467. .extra = &(struct ptp_ocp_ext_info) {
  468. .index = 3,
  469. .irq_fcn = ptp_ocp_ts_irq,
  470. .enable = ptp_ocp_ts_enable,
  471. },
  472. },
  473. {
  474. OCP_EXT_RESOURCE(ts4),
  475. .offset = 0x01120000, .size = 0x10000, .irq_vec = 16,
  476. .extra = &(struct ptp_ocp_ext_info) {
  477. .index = 4,
  478. .irq_fcn = ptp_ocp_ts_irq,
  479. .enable = ptp_ocp_ts_enable,
  480. },
  481. },
  482. /* Timestamp for PHC and/or PPS generator */
  483. {
  484. OCP_EXT_RESOURCE(pps),
  485. .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
  486. .extra = &(struct ptp_ocp_ext_info) {
  487. .index = 5,
  488. .irq_fcn = ptp_ocp_ts_irq,
  489. .enable = ptp_ocp_ts_enable,
  490. },
  491. },
  492. {
  493. OCP_EXT_RESOURCE(signal_out[0]),
  494. .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
  495. .extra = &(struct ptp_ocp_ext_info) {
  496. .index = 1,
  497. .irq_fcn = ptp_ocp_signal_irq,
  498. .enable = ptp_ocp_signal_enable,
  499. },
  500. },
  501. {
  502. OCP_EXT_RESOURCE(signal_out[1]),
  503. .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
  504. .extra = &(struct ptp_ocp_ext_info) {
  505. .index = 2,
  506. .irq_fcn = ptp_ocp_signal_irq,
  507. .enable = ptp_ocp_signal_enable,
  508. },
  509. },
  510. {
  511. OCP_EXT_RESOURCE(signal_out[2]),
  512. .offset = 0x010F0000, .size = 0x10000, .irq_vec = 13,
  513. .extra = &(struct ptp_ocp_ext_info) {
  514. .index = 3,
  515. .irq_fcn = ptp_ocp_signal_irq,
  516. .enable = ptp_ocp_signal_enable,
  517. },
  518. },
  519. {
  520. OCP_EXT_RESOURCE(signal_out[3]),
  521. .offset = 0x01100000, .size = 0x10000, .irq_vec = 14,
  522. .extra = &(struct ptp_ocp_ext_info) {
  523. .index = 4,
  524. .irq_fcn = ptp_ocp_signal_irq,
  525. .enable = ptp_ocp_signal_enable,
  526. },
  527. },
  528. {
  529. OCP_MEM_RESOURCE(pps_to_ext),
  530. .offset = 0x01030000, .size = 0x10000,
  531. },
  532. {
  533. OCP_MEM_RESOURCE(pps_to_clk),
  534. .offset = 0x01040000, .size = 0x10000,
  535. },
  536. {
  537. OCP_MEM_RESOURCE(tod),
  538. .offset = 0x01050000, .size = 0x10000,
  539. },
  540. {
  541. OCP_MEM_RESOURCE(irig_in),
  542. .offset = 0x01070000, .size = 0x10000,
  543. },
  544. {
  545. OCP_MEM_RESOURCE(irig_out),
  546. .offset = 0x01080000, .size = 0x10000,
  547. },
  548. {
  549. OCP_MEM_RESOURCE(dcf_in),
  550. .offset = 0x01090000, .size = 0x10000,
  551. },
  552. {
  553. OCP_MEM_RESOURCE(dcf_out),
  554. .offset = 0x010A0000, .size = 0x10000,
  555. },
  556. {
  557. OCP_MEM_RESOURCE(nmea_out),
  558. .offset = 0x010B0000, .size = 0x10000,
  559. },
  560. {
  561. OCP_MEM_RESOURCE(image),
  562. .offset = 0x00020000, .size = 0x1000,
  563. },
  564. {
  565. OCP_MEM_RESOURCE(pps_select),
  566. .offset = 0x00130000, .size = 0x1000,
  567. },
  568. {
  569. OCP_MEM_RESOURCE(sma_map1),
  570. .offset = 0x00140000, .size = 0x1000,
  571. },
  572. {
  573. OCP_MEM_RESOURCE(sma_map2),
  574. .offset = 0x00220000, .size = 0x1000,
  575. },
  576. {
  577. OCP_I2C_RESOURCE(i2c_ctrl),
  578. .offset = 0x00150000, .size = 0x10000, .irq_vec = 7,
  579. .extra = &(struct ptp_ocp_i2c_info) {
  580. .name = "xiic-i2c",
  581. .fixed_rate = 50000000,
  582. .data_size = sizeof(struct xiic_i2c_platform_data),
  583. .data = &(struct xiic_i2c_platform_data) {
  584. .num_devices = 2,
  585. .devices = (struct i2c_board_info[]) {
  586. { I2C_BOARD_INFO("24c02", 0x50) },
  587. { I2C_BOARD_INFO("24mac402", 0x58),
  588. .platform_data = "mac" },
  589. },
  590. },
  591. },
  592. },
  593. {
  594. OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
  595. .offset = 0x00160000 + 0x1000, .irq_vec = 3,
  596. .extra = &(struct ptp_ocp_serial_port) {
  597. .baud = 115200,
  598. },
  599. },
  600. {
  601. OCP_SERIAL_RESOURCE(port[PORT_GNSS2]),
  602. .offset = 0x00170000 + 0x1000, .irq_vec = 4,
  603. .extra = &(struct ptp_ocp_serial_port) {
  604. .baud = 115200,
  605. },
  606. },
  607. {
  608. OCP_SERIAL_RESOURCE(port[PORT_MAC]),
  609. .offset = 0x00180000 + 0x1000, .irq_vec = 5,
  610. .extra = &(struct ptp_ocp_serial_port) {
  611. .baud = 57600,
  612. },
  613. },
  614. {
  615. OCP_SERIAL_RESOURCE(port[PORT_NMEA]),
  616. .offset = 0x00190000 + 0x1000, .irq_vec = 10,
  617. },
  618. {
  619. OCP_SPI_RESOURCE(spi_flash),
  620. .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
  621. .extra = &(struct ptp_ocp_flash_info) {
  622. .name = "xilinx_spi", .pci_offset = 0,
  623. .data_size = sizeof(struct xspi_platform_data),
  624. .data = &(struct xspi_platform_data) {
  625. .num_chipselect = 1,
  626. .bits_per_word = 8,
  627. .num_devices = 1,
  628. .force_irq = true,
  629. .devices = &(struct spi_board_info) {
  630. .modalias = "spi-nor",
  631. },
  632. },
  633. },
  634. },
  635. {
  636. OCP_MEM_RESOURCE(freq_in[0]),
  637. .offset = 0x01200000, .size = 0x10000,
  638. },
  639. {
  640. OCP_MEM_RESOURCE(freq_in[1]),
  641. .offset = 0x01210000, .size = 0x10000,
  642. },
  643. {
  644. OCP_MEM_RESOURCE(freq_in[2]),
  645. .offset = 0x01220000, .size = 0x10000,
  646. },
  647. {
  648. OCP_MEM_RESOURCE(freq_in[3]),
  649. .offset = 0x01230000, .size = 0x10000,
  650. },
  651. {
  652. .setup = ptp_ocp_fb_board_init,
  653. .extra = &(struct ptp_ocp_servo_conf) {
  654. .servo_offset_p = 0x2000,
  655. .servo_offset_i = 0x1000,
  656. .servo_drift_p = 0,
  657. .servo_drift_i = 0,
  658. },
  659. },
  660. { }
  661. };
  662. #define OCP_ART_CONFIG_SIZE 144
  663. #define OCP_ART_TEMP_TABLE_SIZE 368
  664. struct ocp_art_gpio_reg {
  665. struct {
  666. u32 gpio;
  667. u32 __pad[3];
  668. } map[4];
  669. };
  670. static struct ocp_resource ocp_art_resource[] = {
  671. {
  672. OCP_MEM_RESOURCE(reg),
  673. .offset = 0x01000000, .size = 0x10000,
  674. },
  675. {
  676. OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
  677. .offset = 0x00160000 + 0x1000, .irq_vec = 3,
  678. .extra = &(struct ptp_ocp_serial_port) {
  679. .baud = 115200,
  680. },
  681. },
  682. {
  683. OCP_MEM_RESOURCE(art_sma),
  684. .offset = 0x003C0000, .size = 0x1000,
  685. },
  686. /* Timestamp associated with GNSS1 receiver PPS */
  687. {
  688. OCP_EXT_RESOURCE(ts0),
  689. .offset = 0x360000, .size = 0x20, .irq_vec = 12,
  690. .extra = &(struct ptp_ocp_ext_info) {
  691. .index = 0,
  692. .irq_fcn = ptp_ocp_ts_irq,
  693. .enable = ptp_ocp_ts_enable,
  694. },
  695. },
  696. {
  697. OCP_EXT_RESOURCE(ts1),
  698. .offset = 0x380000, .size = 0x20, .irq_vec = 8,
  699. .extra = &(struct ptp_ocp_ext_info) {
  700. .index = 1,
  701. .irq_fcn = ptp_ocp_ts_irq,
  702. .enable = ptp_ocp_ts_enable,
  703. },
  704. },
  705. {
  706. OCP_EXT_RESOURCE(ts2),
  707. .offset = 0x390000, .size = 0x20, .irq_vec = 10,
  708. .extra = &(struct ptp_ocp_ext_info) {
  709. .index = 2,
  710. .irq_fcn = ptp_ocp_ts_irq,
  711. .enable = ptp_ocp_ts_enable,
  712. },
  713. },
  714. {
  715. OCP_EXT_RESOURCE(ts3),
  716. .offset = 0x3A0000, .size = 0x20, .irq_vec = 14,
  717. .extra = &(struct ptp_ocp_ext_info) {
  718. .index = 3,
  719. .irq_fcn = ptp_ocp_ts_irq,
  720. .enable = ptp_ocp_ts_enable,
  721. },
  722. },
  723. {
  724. OCP_EXT_RESOURCE(ts4),
  725. .offset = 0x3B0000, .size = 0x20, .irq_vec = 15,
  726. .extra = &(struct ptp_ocp_ext_info) {
  727. .index = 4,
  728. .irq_fcn = ptp_ocp_ts_irq,
  729. .enable = ptp_ocp_ts_enable,
  730. },
  731. },
  732. /* Timestamp associated with Internal PPS of the card */
  733. {
  734. OCP_EXT_RESOURCE(pps),
  735. .offset = 0x00330000, .size = 0x20, .irq_vec = 11,
  736. .extra = &(struct ptp_ocp_ext_info) {
  737. .index = 5,
  738. .irq_fcn = ptp_ocp_ts_irq,
  739. .enable = ptp_ocp_ts_enable,
  740. },
  741. },
  742. {
  743. OCP_SPI_RESOURCE(spi_flash),
  744. .offset = 0x00310000, .size = 0x10000, .irq_vec = 9,
  745. .extra = &(struct ptp_ocp_flash_info) {
  746. .name = "spi_altera", .pci_offset = 0,
  747. .data_size = sizeof(struct altera_spi_platform_data),
  748. .data = &(struct altera_spi_platform_data) {
  749. .num_chipselect = 1,
  750. .num_devices = 1,
  751. .devices = &(struct spi_board_info) {
  752. .modalias = "spi-nor",
  753. },
  754. },
  755. },
  756. },
  757. {
  758. OCP_I2C_RESOURCE(i2c_ctrl),
  759. .offset = 0x350000, .size = 0x100, .irq_vec = 4,
  760. .extra = &(struct ptp_ocp_i2c_info) {
  761. .name = "ocores-i2c",
  762. .fixed_rate = 400000,
  763. .data_size = sizeof(struct ocores_i2c_platform_data),
  764. .data = &(struct ocores_i2c_platform_data) {
  765. .clock_khz = 125000,
  766. .bus_khz = 400,
  767. .num_devices = 1,
  768. .devices = &(struct i2c_board_info) {
  769. I2C_BOARD_INFO("24c08", 0x50),
  770. },
  771. },
  772. },
  773. },
  774. {
  775. OCP_SERIAL_RESOURCE(port[PORT_MAC]),
  776. .offset = 0x00190000, .irq_vec = 7,
  777. .extra = &(struct ptp_ocp_serial_port) {
  778. .baud = 9600,
  779. },
  780. },
  781. {
  782. OCP_MEM_RESOURCE(board_config),
  783. .offset = 0x210000, .size = 0x1000,
  784. },
  785. {
  786. .setup = ptp_ocp_art_board_init,
  787. .extra = &(struct ptp_ocp_servo_conf) {
  788. .servo_offset_p = 0x2000,
  789. .servo_offset_i = 0x1000,
  790. .servo_drift_p = 0,
  791. .servo_drift_i = 0,
  792. },
  793. },
  794. { }
  795. };
  796. static struct ocp_resource ocp_adva_resource[] = {
  797. {
  798. OCP_MEM_RESOURCE(reg),
  799. .offset = 0x01000000, .size = 0x10000,
  800. },
  801. {
  802. OCP_EXT_RESOURCE(ts0),
  803. .offset = 0x01010000, .size = 0x10000, .irq_vec = 1,
  804. .extra = &(struct ptp_ocp_ext_info) {
  805. .index = 0,
  806. .irq_fcn = ptp_ocp_ts_irq,
  807. .enable = ptp_ocp_ts_enable,
  808. },
  809. },
  810. {
  811. OCP_EXT_RESOURCE(ts1),
  812. .offset = 0x01020000, .size = 0x10000, .irq_vec = 2,
  813. .extra = &(struct ptp_ocp_ext_info) {
  814. .index = 1,
  815. .irq_fcn = ptp_ocp_ts_irq,
  816. .enable = ptp_ocp_ts_enable,
  817. },
  818. },
  819. {
  820. OCP_EXT_RESOURCE(ts2),
  821. .offset = 0x01060000, .size = 0x10000, .irq_vec = 6,
  822. .extra = &(struct ptp_ocp_ext_info) {
  823. .index = 2,
  824. .irq_fcn = ptp_ocp_ts_irq,
  825. .enable = ptp_ocp_ts_enable,
  826. },
  827. },
  828. /* Timestamp for PHC and/or PPS generator */
  829. {
  830. OCP_EXT_RESOURCE(pps),
  831. .offset = 0x010C0000, .size = 0x10000, .irq_vec = 0,
  832. .extra = &(struct ptp_ocp_ext_info) {
  833. .index = 5,
  834. .irq_fcn = ptp_ocp_ts_irq,
  835. .enable = ptp_ocp_ts_enable,
  836. },
  837. },
  838. {
  839. OCP_EXT_RESOURCE(signal_out[0]),
  840. .offset = 0x010D0000, .size = 0x10000, .irq_vec = 11,
  841. .extra = &(struct ptp_ocp_ext_info) {
  842. .index = 1,
  843. .irq_fcn = ptp_ocp_signal_irq,
  844. .enable = ptp_ocp_signal_enable,
  845. },
  846. },
  847. {
  848. OCP_EXT_RESOURCE(signal_out[1]),
  849. .offset = 0x010E0000, .size = 0x10000, .irq_vec = 12,
  850. .extra = &(struct ptp_ocp_ext_info) {
  851. .index = 2,
  852. .irq_fcn = ptp_ocp_signal_irq,
  853. .enable = ptp_ocp_signal_enable,
  854. },
  855. },
  856. {
  857. OCP_MEM_RESOURCE(pps_to_ext),
  858. .offset = 0x01030000, .size = 0x10000,
  859. },
  860. {
  861. OCP_MEM_RESOURCE(pps_to_clk),
  862. .offset = 0x01040000, .size = 0x10000,
  863. },
  864. {
  865. OCP_MEM_RESOURCE(tod),
  866. .offset = 0x01050000, .size = 0x10000,
  867. },
  868. {
  869. OCP_MEM_RESOURCE(image),
  870. .offset = 0x00020000, .size = 0x1000,
  871. },
  872. {
  873. OCP_MEM_RESOURCE(pps_select),
  874. .offset = 0x00130000, .size = 0x1000,
  875. },
  876. {
  877. OCP_MEM_RESOURCE(sma_map1),
  878. .offset = 0x00140000, .size = 0x1000,
  879. },
  880. {
  881. OCP_MEM_RESOURCE(sma_map2),
  882. .offset = 0x00220000, .size = 0x1000,
  883. },
  884. {
  885. OCP_SERIAL_RESOURCE(port[PORT_GNSS]),
  886. .offset = 0x00160000 + 0x1000, .irq_vec = 3,
  887. .extra = &(struct ptp_ocp_serial_port) {
  888. .baud = 9600,
  889. },
  890. },
  891. {
  892. OCP_SERIAL_RESOURCE(port[PORT_MAC]),
  893. .offset = 0x00180000 + 0x1000, .irq_vec = 5,
  894. .extra = &(struct ptp_ocp_serial_port) {
  895. .baud = 115200,
  896. },
  897. },
  898. {
  899. OCP_MEM_RESOURCE(freq_in[0]),
  900. .offset = 0x01200000, .size = 0x10000,
  901. },
  902. {
  903. OCP_MEM_RESOURCE(freq_in[1]),
  904. .offset = 0x01210000, .size = 0x10000,
  905. },
  906. {
  907. OCP_SPI_RESOURCE(spi_flash),
  908. .offset = 0x00310400, .size = 0x10000, .irq_vec = 9,
  909. .extra = &(struct ptp_ocp_flash_info) {
  910. .name = "spi_altera", .pci_offset = 0,
  911. .data_size = sizeof(struct altera_spi_platform_data),
  912. .data = &(struct altera_spi_platform_data) {
  913. .num_chipselect = 1,
  914. .num_devices = 1,
  915. .devices = &(struct spi_board_info) {
  916. .modalias = "spi-nor",
  917. },
  918. },
  919. },
  920. },
  921. {
  922. OCP_I2C_RESOURCE(i2c_ctrl),
  923. .offset = 0x150000, .size = 0x100, .irq_vec = 7,
  924. .extra = &(struct ptp_ocp_i2c_info) {
  925. .name = "ocores-i2c",
  926. .fixed_rate = 50000000,
  927. .data_size = sizeof(struct ocores_i2c_platform_data),
  928. .data = &(struct ocores_i2c_platform_data) {
  929. .clock_khz = 50000,
  930. .bus_khz = 100,
  931. .reg_io_width = 4, // 32-bit/4-byte
  932. .reg_shift = 2, // 32-bit addressing
  933. .num_devices = 2,
  934. .devices = (struct i2c_board_info[]) {
  935. { I2C_BOARD_INFO("24c02", 0x50) },
  936. { I2C_BOARD_INFO("24mac402", 0x58),
  937. .platform_data = "mac" },
  938. },
  939. },
  940. },
  941. },
  942. {
  943. .setup = ptp_ocp_adva_board_init,
  944. .extra = &(struct ptp_ocp_servo_conf) {
  945. .servo_offset_p = 0xc000,
  946. .servo_offset_i = 0x1000,
  947. .servo_drift_p = 0,
  948. .servo_drift_i = 0,
  949. },
  950. },
  951. { }
  952. };
  953. static const struct pci_device_id ptp_ocp_pcidev_id[] = {
  954. { PCI_DEVICE_DATA(FACEBOOK, TIMECARD, &ocp_fb_resource) },
  955. { PCI_DEVICE_DATA(CELESTICA, TIMECARD, &ocp_fb_resource) },
  956. { PCI_DEVICE_DATA(OROLIA, ARTCARD, &ocp_art_resource) },
  957. { PCI_DEVICE_DATA(ADVA, TIMECARD, &ocp_adva_resource) },
  958. { }
  959. };
  960. MODULE_DEVICE_TABLE(pci, ptp_ocp_pcidev_id);
  961. static DEFINE_MUTEX(ptp_ocp_lock);
  962. static DEFINE_IDR(ptp_ocp_idr);
  963. struct ocp_selector {
  964. const char *name;
  965. int value;
  966. u64 frequency;
  967. };
  968. static const struct ocp_selector ptp_ocp_clock[] = {
  969. { .name = "NONE", .value = 0 },
  970. { .name = "TOD", .value = 1 },
  971. { .name = "IRIG", .value = 2 },
  972. { .name = "PPS", .value = 3 },
  973. { .name = "PTP", .value = 4 },
  974. { .name = "RTC", .value = 5 },
  975. { .name = "DCF", .value = 6 },
  976. { .name = "REGS", .value = 0xfe },
  977. { .name = "EXT", .value = 0xff },
  978. { }
  979. };
  980. #define SMA_DISABLE BIT(16)
  981. #define SMA_ENABLE BIT(15)
  982. #define SMA_SELECT_MASK GENMASK(14, 0)
  983. static const struct ocp_selector ptp_ocp_sma_in[] = {
  984. { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
  985. { .name = "PPS1", .value = 0x0001, .frequency = 1 },
  986. { .name = "PPS2", .value = 0x0002, .frequency = 1 },
  987. { .name = "TS1", .value = 0x0004, .frequency = 0 },
  988. { .name = "TS2", .value = 0x0008, .frequency = 0 },
  989. { .name = "IRIG", .value = 0x0010, .frequency = 10000 },
  990. { .name = "DCF", .value = 0x0020, .frequency = 77500 },
  991. { .name = "TS3", .value = 0x0040, .frequency = 0 },
  992. { .name = "TS4", .value = 0x0080, .frequency = 0 },
  993. { .name = "FREQ1", .value = 0x0100, .frequency = 0 },
  994. { .name = "FREQ2", .value = 0x0200, .frequency = 0 },
  995. { .name = "FREQ3", .value = 0x0400, .frequency = 0 },
  996. { .name = "FREQ4", .value = 0x0800, .frequency = 0 },
  997. { .name = "None", .value = SMA_DISABLE, .frequency = 0 },
  998. { }
  999. };
  1000. static const struct ocp_selector ptp_ocp_sma_out[] = {
  1001. { .name = "10Mhz", .value = 0x0000, .frequency = 10000000 },
  1002. { .name = "PHC", .value = 0x0001, .frequency = 1 },
  1003. { .name = "MAC", .value = 0x0002, .frequency = 1 },
  1004. { .name = "GNSS1", .value = 0x0004, .frequency = 1 },
  1005. { .name = "GNSS2", .value = 0x0008, .frequency = 1 },
  1006. { .name = "IRIG", .value = 0x0010, .frequency = 10000 },
  1007. { .name = "DCF", .value = 0x0020, .frequency = 77000 },
  1008. { .name = "GEN1", .value = 0x0040 },
  1009. { .name = "GEN2", .value = 0x0080 },
  1010. { .name = "GEN3", .value = 0x0100 },
  1011. { .name = "GEN4", .value = 0x0200 },
  1012. { .name = "GND", .value = 0x2000 },
  1013. { .name = "VCC", .value = 0x4000 },
  1014. { }
  1015. };
  1016. static const struct ocp_selector ptp_ocp_art_sma_in[] = {
  1017. { .name = "PPS1", .value = 0x0001, .frequency = 1 },
  1018. { .name = "10Mhz", .value = 0x0008, .frequency = 1000000 },
  1019. { }
  1020. };
  1021. static const struct ocp_selector ptp_ocp_art_sma_out[] = {
  1022. { .name = "PHC", .value = 0x0002, .frequency = 1 },
  1023. { .name = "GNSS", .value = 0x0004, .frequency = 1 },
  1024. { .name = "10Mhz", .value = 0x0010, .frequency = 10000000 },
  1025. { }
  1026. };
  1027. static const struct ocp_selector ptp_ocp_adva_sma_in[] = {
  1028. { .name = "10Mhz", .value = 0x0000, .frequency = 10000000},
  1029. { .name = "PPS1", .value = 0x0001, .frequency = 1 },
  1030. { .name = "PPS2", .value = 0x0002, .frequency = 1 },
  1031. { .name = "TS1", .value = 0x0004, .frequency = 0 },
  1032. { .name = "TS2", .value = 0x0008, .frequency = 0 },
  1033. { .name = "FREQ1", .value = 0x0100, .frequency = 0 },
  1034. { .name = "FREQ2", .value = 0x0200, .frequency = 0 },
  1035. { .name = "None", .value = SMA_DISABLE, .frequency = 0 },
  1036. { }
  1037. };
  1038. static const struct ocp_selector ptp_ocp_adva_sma_out[] = {
  1039. { .name = "10Mhz", .value = 0x0000, .frequency = 10000000},
  1040. { .name = "PHC", .value = 0x0001, .frequency = 1 },
  1041. { .name = "MAC", .value = 0x0002, .frequency = 1 },
  1042. { .name = "GNSS1", .value = 0x0004, .frequency = 1 },
  1043. { .name = "GEN1", .value = 0x0040 },
  1044. { .name = "GEN2", .value = 0x0080 },
  1045. { .name = "GND", .value = 0x2000 },
  1046. { .name = "VCC", .value = 0x4000 },
  1047. { }
  1048. };
  1049. struct ocp_sma_op {
  1050. const struct ocp_selector *tbl[2];
  1051. void (*init)(struct ptp_ocp *bp);
  1052. u32 (*get)(struct ptp_ocp *bp, int sma_nr);
  1053. int (*set_inputs)(struct ptp_ocp *bp, int sma_nr, u32 val);
  1054. int (*set_output)(struct ptp_ocp *bp, int sma_nr, u32 val);
  1055. };
  1056. static void
  1057. ptp_ocp_sma_init(struct ptp_ocp *bp)
  1058. {
  1059. return bp->sma_op->init(bp);
  1060. }
  1061. static u32
  1062. ptp_ocp_sma_get(struct ptp_ocp *bp, int sma_nr)
  1063. {
  1064. return bp->sma_op->get(bp, sma_nr);
  1065. }
  1066. static int
  1067. ptp_ocp_sma_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
  1068. {
  1069. return bp->sma_op->set_inputs(bp, sma_nr, val);
  1070. }
  1071. static int
  1072. ptp_ocp_sma_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
  1073. {
  1074. return bp->sma_op->set_output(bp, sma_nr, val);
  1075. }
  1076. static const char *
  1077. ptp_ocp_select_name_from_val(const struct ocp_selector *tbl, int val)
  1078. {
  1079. int i;
  1080. for (i = 0; tbl[i].name; i++)
  1081. if (tbl[i].value == val)
  1082. return tbl[i].name;
  1083. return NULL;
  1084. }
  1085. static int
  1086. ptp_ocp_select_val_from_name(const struct ocp_selector *tbl, const char *name)
  1087. {
  1088. const char *select;
  1089. int i;
  1090. for (i = 0; tbl[i].name; i++) {
  1091. select = tbl[i].name;
  1092. if (!strncasecmp(name, select, strlen(select)))
  1093. return tbl[i].value;
  1094. }
  1095. return -EINVAL;
  1096. }
  1097. static ssize_t
  1098. ptp_ocp_select_table_show(const struct ocp_selector *tbl, char *buf)
  1099. {
  1100. ssize_t count;
  1101. int i;
  1102. count = 0;
  1103. for (i = 0; tbl[i].name; i++)
  1104. count += sysfs_emit_at(buf, count, "%s ", tbl[i].name);
  1105. if (count)
  1106. count--;
  1107. count += sysfs_emit_at(buf, count, "\n");
  1108. return count;
  1109. }
  1110. static int
  1111. __ptp_ocp_gettime_locked(struct ptp_ocp *bp, struct timespec64 *ts,
  1112. struct ptp_system_timestamp *sts)
  1113. {
  1114. u32 ctrl, time_sec, time_ns;
  1115. int i;
  1116. ptp_read_system_prets(sts);
  1117. ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
  1118. iowrite32(ctrl, &bp->reg->ctrl);
  1119. for (i = 0; i < 100; i++) {
  1120. ctrl = ioread32(&bp->reg->ctrl);
  1121. if (ctrl & OCP_CTRL_READ_TIME_DONE)
  1122. break;
  1123. }
  1124. ptp_read_system_postts(sts);
  1125. if (sts && bp->ts_window_adjust) {
  1126. s64 ns = timespec64_to_ns(&sts->post_ts);
  1127. sts->post_ts = ns_to_timespec64(ns - bp->ts_window_adjust);
  1128. }
  1129. time_ns = ioread32(&bp->reg->time_ns);
  1130. time_sec = ioread32(&bp->reg->time_sec);
  1131. ts->tv_sec = time_sec;
  1132. ts->tv_nsec = time_ns;
  1133. return ctrl & OCP_CTRL_READ_TIME_DONE ? 0 : -ETIMEDOUT;
  1134. }
  1135. static int
  1136. ptp_ocp_gettimex(struct ptp_clock_info *ptp_info, struct timespec64 *ts,
  1137. struct ptp_system_timestamp *sts)
  1138. {
  1139. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  1140. unsigned long flags;
  1141. int err;
  1142. spin_lock_irqsave(&bp->lock, flags);
  1143. err = __ptp_ocp_gettime_locked(bp, ts, sts);
  1144. spin_unlock_irqrestore(&bp->lock, flags);
  1145. return err;
  1146. }
  1147. static void
  1148. __ptp_ocp_settime_locked(struct ptp_ocp *bp, const struct timespec64 *ts)
  1149. {
  1150. u32 ctrl, time_sec, time_ns;
  1151. u32 select;
  1152. time_ns = ts->tv_nsec;
  1153. time_sec = ts->tv_sec;
  1154. select = ioread32(&bp->reg->select);
  1155. iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
  1156. iowrite32(time_ns, &bp->reg->adjust_ns);
  1157. iowrite32(time_sec, &bp->reg->adjust_sec);
  1158. ctrl = OCP_CTRL_ADJUST_TIME | OCP_CTRL_ENABLE;
  1159. iowrite32(ctrl, &bp->reg->ctrl);
  1160. /* restore clock selection */
  1161. iowrite32(select >> 16, &bp->reg->select);
  1162. }
  1163. static int
  1164. ptp_ocp_settime(struct ptp_clock_info *ptp_info, const struct timespec64 *ts)
  1165. {
  1166. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  1167. unsigned long flags;
  1168. spin_lock_irqsave(&bp->lock, flags);
  1169. __ptp_ocp_settime_locked(bp, ts);
  1170. spin_unlock_irqrestore(&bp->lock, flags);
  1171. return 0;
  1172. }
  1173. static void
  1174. __ptp_ocp_adjtime_locked(struct ptp_ocp *bp, u32 adj_val)
  1175. {
  1176. u32 select, ctrl;
  1177. select = ioread32(&bp->reg->select);
  1178. iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
  1179. iowrite32(adj_val, &bp->reg->offset_ns);
  1180. iowrite32(NSEC_PER_SEC, &bp->reg->offset_window_ns);
  1181. ctrl = OCP_CTRL_ADJUST_OFFSET | OCP_CTRL_ENABLE;
  1182. iowrite32(ctrl, &bp->reg->ctrl);
  1183. /* restore clock selection */
  1184. iowrite32(select >> 16, &bp->reg->select);
  1185. }
  1186. static void
  1187. ptp_ocp_adjtime_coarse(struct ptp_ocp *bp, s64 delta_ns)
  1188. {
  1189. struct timespec64 ts;
  1190. unsigned long flags;
  1191. int err;
  1192. spin_lock_irqsave(&bp->lock, flags);
  1193. err = __ptp_ocp_gettime_locked(bp, &ts, NULL);
  1194. if (likely(!err)) {
  1195. set_normalized_timespec64(&ts, ts.tv_sec,
  1196. ts.tv_nsec + delta_ns);
  1197. __ptp_ocp_settime_locked(bp, &ts);
  1198. }
  1199. spin_unlock_irqrestore(&bp->lock, flags);
  1200. }
  1201. static int
  1202. ptp_ocp_adjtime(struct ptp_clock_info *ptp_info, s64 delta_ns)
  1203. {
  1204. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  1205. unsigned long flags;
  1206. u32 adj_ns, sign;
  1207. if (delta_ns > NSEC_PER_SEC || -delta_ns > NSEC_PER_SEC) {
  1208. ptp_ocp_adjtime_coarse(bp, delta_ns);
  1209. return 0;
  1210. }
  1211. sign = delta_ns < 0 ? BIT(31) : 0;
  1212. adj_ns = sign ? -delta_ns : delta_ns;
  1213. spin_lock_irqsave(&bp->lock, flags);
  1214. __ptp_ocp_adjtime_locked(bp, sign | adj_ns);
  1215. spin_unlock_irqrestore(&bp->lock, flags);
  1216. return 0;
  1217. }
  1218. static int
  1219. ptp_ocp_null_adjfine(struct ptp_clock_info *ptp_info, long scaled_ppm)
  1220. {
  1221. if (scaled_ppm == 0)
  1222. return 0;
  1223. return -EOPNOTSUPP;
  1224. }
  1225. static s32
  1226. ptp_ocp_null_getmaxphase(struct ptp_clock_info *ptp_info)
  1227. {
  1228. return 0;
  1229. }
  1230. static int
  1231. ptp_ocp_null_adjphase(struct ptp_clock_info *ptp_info, s32 phase_ns)
  1232. {
  1233. return -EOPNOTSUPP;
  1234. }
  1235. static int
  1236. ptp_ocp_enable(struct ptp_clock_info *ptp_info, struct ptp_clock_request *rq,
  1237. int on)
  1238. {
  1239. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  1240. struct ptp_ocp_ext_src *ext = NULL;
  1241. u32 req;
  1242. int err;
  1243. switch (rq->type) {
  1244. case PTP_CLK_REQ_EXTTS:
  1245. req = OCP_REQ_TIMESTAMP;
  1246. switch (rq->extts.index) {
  1247. case 0:
  1248. ext = bp->ts0;
  1249. break;
  1250. case 1:
  1251. ext = bp->ts1;
  1252. break;
  1253. case 2:
  1254. ext = bp->ts2;
  1255. break;
  1256. case 3:
  1257. ext = bp->ts3;
  1258. break;
  1259. case 4:
  1260. ext = bp->ts4;
  1261. break;
  1262. case 5:
  1263. ext = bp->pps;
  1264. break;
  1265. }
  1266. break;
  1267. case PTP_CLK_REQ_PPS:
  1268. req = OCP_REQ_PPS;
  1269. ext = bp->pps;
  1270. break;
  1271. case PTP_CLK_REQ_PEROUT:
  1272. switch (rq->perout.index) {
  1273. case 0:
  1274. /* This is a request for 1PPS on an output SMA.
  1275. * Allow, but assume manual configuration.
  1276. */
  1277. if (on && (rq->perout.period.sec != 1 ||
  1278. rq->perout.period.nsec != 0))
  1279. return -EINVAL;
  1280. return 0;
  1281. case 1:
  1282. case 2:
  1283. case 3:
  1284. case 4:
  1285. req = rq->perout.index - 1;
  1286. ext = bp->signal_out[req];
  1287. err = ptp_ocp_signal_from_perout(bp, req, &rq->perout);
  1288. if (err)
  1289. return err;
  1290. break;
  1291. }
  1292. break;
  1293. default:
  1294. return -EOPNOTSUPP;
  1295. }
  1296. err = -ENXIO;
  1297. if (ext)
  1298. err = ext->info->enable(ext, req, on);
  1299. return err;
  1300. }
  1301. static int
  1302. ptp_ocp_verify(struct ptp_clock_info *ptp_info, unsigned pin,
  1303. enum ptp_pin_function func, unsigned chan)
  1304. {
  1305. struct ptp_ocp *bp = container_of(ptp_info, struct ptp_ocp, ptp_info);
  1306. char buf[16];
  1307. switch (func) {
  1308. case PTP_PF_NONE:
  1309. snprintf(buf, sizeof(buf), "IN: None");
  1310. break;
  1311. case PTP_PF_EXTTS:
  1312. /* Allow timestamps, but require sysfs configuration. */
  1313. return 0;
  1314. case PTP_PF_PEROUT:
  1315. /* channel 0 is 1PPS from PHC.
  1316. * channels 1..4 are the frequency generators.
  1317. */
  1318. if (chan)
  1319. snprintf(buf, sizeof(buf), "OUT: GEN%d", chan);
  1320. else
  1321. snprintf(buf, sizeof(buf), "OUT: PHC");
  1322. break;
  1323. default:
  1324. return -EOPNOTSUPP;
  1325. }
  1326. return ptp_ocp_sma_store(bp, buf, pin + 1);
  1327. }
  1328. static const struct ptp_clock_info ptp_ocp_clock_info = {
  1329. .owner = THIS_MODULE,
  1330. .name = KBUILD_MODNAME,
  1331. .max_adj = 100000000,
  1332. .gettimex64 = ptp_ocp_gettimex,
  1333. .settime64 = ptp_ocp_settime,
  1334. .adjtime = ptp_ocp_adjtime,
  1335. .adjfine = ptp_ocp_null_adjfine,
  1336. .adjphase = ptp_ocp_null_adjphase,
  1337. .getmaxphase = ptp_ocp_null_getmaxphase,
  1338. .enable = ptp_ocp_enable,
  1339. .verify = ptp_ocp_verify,
  1340. .pps = true,
  1341. .n_ext_ts = 6,
  1342. .n_per_out = 5,
  1343. };
  1344. static void
  1345. __ptp_ocp_clear_drift_locked(struct ptp_ocp *bp)
  1346. {
  1347. u32 ctrl, select;
  1348. select = ioread32(&bp->reg->select);
  1349. iowrite32(OCP_SELECT_CLK_REG, &bp->reg->select);
  1350. iowrite32(0, &bp->reg->drift_ns);
  1351. ctrl = OCP_CTRL_ADJUST_DRIFT | OCP_CTRL_ENABLE;
  1352. iowrite32(ctrl, &bp->reg->ctrl);
  1353. /* restore clock selection */
  1354. iowrite32(select >> 16, &bp->reg->select);
  1355. }
  1356. static void
  1357. ptp_ocp_utc_distribute(struct ptp_ocp *bp, u32 val)
  1358. {
  1359. unsigned long flags;
  1360. spin_lock_irqsave(&bp->lock, flags);
  1361. bp->utc_tai_offset = val;
  1362. if (bp->irig_out)
  1363. iowrite32(val, &bp->irig_out->adj_sec);
  1364. if (bp->dcf_out)
  1365. iowrite32(val, &bp->dcf_out->adj_sec);
  1366. if (bp->nmea_out)
  1367. iowrite32(val, &bp->nmea_out->adj_sec);
  1368. spin_unlock_irqrestore(&bp->lock, flags);
  1369. }
  1370. static void
  1371. ptp_ocp_watchdog(struct timer_list *t)
  1372. {
  1373. struct ptp_ocp *bp = from_timer(bp, t, watchdog);
  1374. unsigned long flags;
  1375. u32 status, utc_offset;
  1376. status = ioread32(&bp->pps_to_clk->status);
  1377. if (status & PPS_STATUS_SUPERV_ERR) {
  1378. iowrite32(status, &bp->pps_to_clk->status);
  1379. if (!bp->gnss_lost) {
  1380. spin_lock_irqsave(&bp->lock, flags);
  1381. __ptp_ocp_clear_drift_locked(bp);
  1382. spin_unlock_irqrestore(&bp->lock, flags);
  1383. bp->gnss_lost = ktime_get_real_seconds();
  1384. }
  1385. } else if (bp->gnss_lost) {
  1386. bp->gnss_lost = 0;
  1387. }
  1388. /* if GNSS provides correct data we can rely on
  1389. * it to get leap second information
  1390. */
  1391. if (bp->tod) {
  1392. status = ioread32(&bp->tod->utc_status);
  1393. utc_offset = status & TOD_STATUS_UTC_MASK;
  1394. if (status & TOD_STATUS_UTC_VALID &&
  1395. utc_offset != bp->utc_tai_offset)
  1396. ptp_ocp_utc_distribute(bp, utc_offset);
  1397. }
  1398. mod_timer(&bp->watchdog, jiffies + HZ);
  1399. }
  1400. static void
  1401. ptp_ocp_estimate_pci_timing(struct ptp_ocp *bp)
  1402. {
  1403. ktime_t start, end, delay = U64_MAX;
  1404. u32 ctrl;
  1405. int i;
  1406. for (i = 0; i < 3; i++) {
  1407. ctrl = ioread32(&bp->reg->ctrl);
  1408. ctrl = OCP_CTRL_READ_TIME_REQ | OCP_CTRL_ENABLE;
  1409. iowrite32(ctrl, &bp->reg->ctrl);
  1410. start = ktime_get_raw_ns();
  1411. ctrl = ioread32(&bp->reg->ctrl);
  1412. end = ktime_get_raw_ns();
  1413. delay = min(delay, end - start);
  1414. }
  1415. bp->ts_window_adjust = (delay >> 5) * 3;
  1416. }
  1417. static int
  1418. ptp_ocp_init_clock(struct ptp_ocp *bp, struct ptp_ocp_servo_conf *servo_conf)
  1419. {
  1420. struct timespec64 ts;
  1421. u32 ctrl;
  1422. ctrl = OCP_CTRL_ENABLE;
  1423. iowrite32(ctrl, &bp->reg->ctrl);
  1424. /* servo configuration */
  1425. iowrite32(servo_conf->servo_offset_p, &bp->reg->servo_offset_p);
  1426. iowrite32(servo_conf->servo_offset_i, &bp->reg->servo_offset_i);
  1427. iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_p);
  1428. iowrite32(servo_conf->servo_drift_p, &bp->reg->servo_drift_i);
  1429. /* latch servo values */
  1430. ctrl |= OCP_CTRL_ADJUST_SERVO;
  1431. iowrite32(ctrl, &bp->reg->ctrl);
  1432. if ((ioread32(&bp->reg->ctrl) & OCP_CTRL_ENABLE) == 0) {
  1433. dev_err(&bp->pdev->dev, "clock not enabled\n");
  1434. return -ENODEV;
  1435. }
  1436. ptp_ocp_estimate_pci_timing(bp);
  1437. bp->sync = ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC;
  1438. if (!bp->sync) {
  1439. ktime_get_clocktai_ts64(&ts);
  1440. ptp_ocp_settime(&bp->ptp_info, &ts);
  1441. }
  1442. /* If there is a clock supervisor, then enable the watchdog */
  1443. if (bp->pps_to_clk) {
  1444. timer_setup(&bp->watchdog, ptp_ocp_watchdog, 0);
  1445. mod_timer(&bp->watchdog, jiffies + HZ);
  1446. }
  1447. return 0;
  1448. }
  1449. static void
  1450. ptp_ocp_tod_init(struct ptp_ocp *bp)
  1451. {
  1452. u32 ctrl, reg;
  1453. ctrl = ioread32(&bp->tod->ctrl);
  1454. ctrl |= TOD_CTRL_PROTOCOL | TOD_CTRL_ENABLE;
  1455. ctrl &= ~(TOD_CTRL_DISABLE_FMT_A | TOD_CTRL_DISABLE_FMT_B);
  1456. iowrite32(ctrl, &bp->tod->ctrl);
  1457. reg = ioread32(&bp->tod->utc_status);
  1458. if (reg & TOD_STATUS_UTC_VALID)
  1459. ptp_ocp_utc_distribute(bp, reg & TOD_STATUS_UTC_MASK);
  1460. }
  1461. static const char *
  1462. ptp_ocp_tod_proto_name(const int idx)
  1463. {
  1464. static const char * const proto_name[] = {
  1465. "NMEA", "NMEA_ZDA", "NMEA_RMC", "NMEA_none",
  1466. "UBX", "UBX_UTC", "UBX_LS", "UBX_none"
  1467. };
  1468. return proto_name[idx];
  1469. }
  1470. static const char *
  1471. ptp_ocp_tod_gnss_name(int idx)
  1472. {
  1473. static const char * const gnss_name[] = {
  1474. "ALL", "COMBINED", "GPS", "GLONASS", "GALILEO", "BEIDOU",
  1475. "Unknown"
  1476. };
  1477. if (idx >= ARRAY_SIZE(gnss_name))
  1478. idx = ARRAY_SIZE(gnss_name) - 1;
  1479. return gnss_name[idx];
  1480. }
  1481. static const char *
  1482. ptp_ocp_tty_port_name(int idx)
  1483. {
  1484. static const char * const tty_name[] = {
  1485. "GNSS", "GNSS2", "MAC", "NMEA"
  1486. };
  1487. return tty_name[idx];
  1488. }
  1489. struct ptp_ocp_nvmem_match_info {
  1490. struct ptp_ocp *bp;
  1491. const void * const tag;
  1492. };
  1493. static int
  1494. ptp_ocp_nvmem_match(struct device *dev, const void *data)
  1495. {
  1496. const struct ptp_ocp_nvmem_match_info *info = data;
  1497. dev = dev->parent;
  1498. if (!i2c_verify_client(dev) || info->tag != dev->platform_data)
  1499. return 0;
  1500. while ((dev = dev->parent))
  1501. if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
  1502. return info->bp == dev_get_drvdata(dev);
  1503. return 0;
  1504. }
  1505. static inline struct nvmem_device *
  1506. ptp_ocp_nvmem_device_get(struct ptp_ocp *bp, const void * const tag)
  1507. {
  1508. struct ptp_ocp_nvmem_match_info info = { .bp = bp, .tag = tag };
  1509. return nvmem_device_find(&info, ptp_ocp_nvmem_match);
  1510. }
  1511. static inline void
  1512. ptp_ocp_nvmem_device_put(struct nvmem_device **nvmemp)
  1513. {
  1514. if (!IS_ERR_OR_NULL(*nvmemp))
  1515. nvmem_device_put(*nvmemp);
  1516. *nvmemp = NULL;
  1517. }
  1518. static void
  1519. ptp_ocp_read_eeprom(struct ptp_ocp *bp)
  1520. {
  1521. const struct ptp_ocp_eeprom_map *map;
  1522. struct nvmem_device *nvmem;
  1523. const void *tag;
  1524. int ret;
  1525. if (!bp->i2c_ctrl)
  1526. return;
  1527. tag = NULL;
  1528. nvmem = NULL;
  1529. for (map = bp->eeprom_map; map->len; map++) {
  1530. if (map->tag != tag) {
  1531. tag = map->tag;
  1532. ptp_ocp_nvmem_device_put(&nvmem);
  1533. }
  1534. if (!nvmem) {
  1535. nvmem = ptp_ocp_nvmem_device_get(bp, tag);
  1536. if (IS_ERR(nvmem)) {
  1537. ret = PTR_ERR(nvmem);
  1538. goto fail;
  1539. }
  1540. }
  1541. ret = nvmem_device_read(nvmem, map->off, map->len,
  1542. BP_MAP_ENTRY_ADDR(bp, map));
  1543. if (ret != map->len)
  1544. goto fail;
  1545. }
  1546. bp->has_eeprom_data = true;
  1547. out:
  1548. ptp_ocp_nvmem_device_put(&nvmem);
  1549. return;
  1550. fail:
  1551. dev_err(&bp->pdev->dev, "could not read eeprom: %d\n", ret);
  1552. goto out;
  1553. }
  1554. static struct device *
  1555. ptp_ocp_find_flash(struct ptp_ocp *bp)
  1556. {
  1557. struct device *dev, *last;
  1558. last = NULL;
  1559. dev = &bp->spi_flash->dev;
  1560. while ((dev = device_find_any_child(dev))) {
  1561. if (!strcmp("mtd", dev_bus_name(dev)))
  1562. break;
  1563. put_device(last);
  1564. last = dev;
  1565. }
  1566. put_device(last);
  1567. return dev;
  1568. }
  1569. static int
  1570. ptp_ocp_devlink_fw_image(struct devlink *devlink, const struct firmware *fw,
  1571. const u8 **data, size_t *size)
  1572. {
  1573. struct ptp_ocp *bp = devlink_priv(devlink);
  1574. const struct ptp_ocp_firmware_header *hdr;
  1575. size_t offset, length;
  1576. u16 crc;
  1577. hdr = (const struct ptp_ocp_firmware_header *)fw->data;
  1578. if (memcmp(hdr->magic, OCP_FIRMWARE_MAGIC_HEADER, 4)) {
  1579. devlink_flash_update_status_notify(devlink,
  1580. "No firmware header found, cancel firmware upgrade",
  1581. NULL, 0, 0);
  1582. return -EINVAL;
  1583. }
  1584. if (be16_to_cpu(hdr->pci_vendor_id) != bp->pdev->vendor ||
  1585. be16_to_cpu(hdr->pci_device_id) != bp->pdev->device) {
  1586. devlink_flash_update_status_notify(devlink,
  1587. "Firmware image compatibility check failed",
  1588. NULL, 0, 0);
  1589. return -EINVAL;
  1590. }
  1591. offset = sizeof(*hdr);
  1592. length = be32_to_cpu(hdr->image_size);
  1593. if (length != (fw->size - offset)) {
  1594. devlink_flash_update_status_notify(devlink,
  1595. "Firmware image size check failed",
  1596. NULL, 0, 0);
  1597. return -EINVAL;
  1598. }
  1599. crc = crc16(0xffff, &fw->data[offset], length);
  1600. if (be16_to_cpu(hdr->crc) != crc) {
  1601. devlink_flash_update_status_notify(devlink,
  1602. "Firmware image CRC check failed",
  1603. NULL, 0, 0);
  1604. return -EINVAL;
  1605. }
  1606. *data = &fw->data[offset];
  1607. *size = length;
  1608. return 0;
  1609. }
  1610. static int
  1611. ptp_ocp_devlink_flash(struct devlink *devlink, struct device *dev,
  1612. const struct firmware *fw)
  1613. {
  1614. struct mtd_info *mtd = dev_get_drvdata(dev);
  1615. struct ptp_ocp *bp = devlink_priv(devlink);
  1616. size_t off, len, size, resid, wrote;
  1617. struct erase_info erase;
  1618. size_t base, blksz;
  1619. const u8 *data;
  1620. int err;
  1621. err = ptp_ocp_devlink_fw_image(devlink, fw, &data, &size);
  1622. if (err)
  1623. goto out;
  1624. off = 0;
  1625. base = bp->flash_start;
  1626. blksz = 4096;
  1627. resid = size;
  1628. while (resid) {
  1629. devlink_flash_update_status_notify(devlink, "Flashing",
  1630. NULL, off, size);
  1631. len = min_t(size_t, resid, blksz);
  1632. erase.addr = base + off;
  1633. erase.len = blksz;
  1634. err = mtd_erase(mtd, &erase);
  1635. if (err)
  1636. goto out;
  1637. err = mtd_write(mtd, base + off, len, &wrote, data + off);
  1638. if (err)
  1639. goto out;
  1640. off += blksz;
  1641. resid -= len;
  1642. }
  1643. out:
  1644. return err;
  1645. }
  1646. static int
  1647. ptp_ocp_devlink_flash_update(struct devlink *devlink,
  1648. struct devlink_flash_update_params *params,
  1649. struct netlink_ext_ack *extack)
  1650. {
  1651. struct ptp_ocp *bp = devlink_priv(devlink);
  1652. struct device *dev;
  1653. const char *msg;
  1654. int err;
  1655. dev = ptp_ocp_find_flash(bp);
  1656. if (!dev) {
  1657. dev_err(&bp->pdev->dev, "Can't find Flash SPI adapter\n");
  1658. return -ENODEV;
  1659. }
  1660. devlink_flash_update_status_notify(devlink, "Preparing to flash",
  1661. NULL, 0, 0);
  1662. err = ptp_ocp_devlink_flash(devlink, dev, params->fw);
  1663. msg = err ? "Flash error" : "Flash complete";
  1664. devlink_flash_update_status_notify(devlink, msg, NULL, 0, 0);
  1665. put_device(dev);
  1666. return err;
  1667. }
  1668. static int
  1669. ptp_ocp_devlink_info_get(struct devlink *devlink, struct devlink_info_req *req,
  1670. struct netlink_ext_ack *extack)
  1671. {
  1672. struct ptp_ocp *bp = devlink_priv(devlink);
  1673. const char *fw_image;
  1674. char buf[32];
  1675. int err;
  1676. fw_image = bp->fw_loader ? "loader" : "fw";
  1677. sprintf(buf, "%d.%d", bp->fw_tag, bp->fw_version);
  1678. err = devlink_info_version_running_put(req, fw_image, buf);
  1679. if (err)
  1680. return err;
  1681. if (!bp->has_eeprom_data) {
  1682. ptp_ocp_read_eeprom(bp);
  1683. if (!bp->has_eeprom_data)
  1684. return 0;
  1685. }
  1686. sprintf(buf, "%pM", bp->serial);
  1687. err = devlink_info_serial_number_put(req, buf);
  1688. if (err)
  1689. return err;
  1690. err = devlink_info_version_fixed_put(req,
  1691. DEVLINK_INFO_VERSION_GENERIC_BOARD_ID,
  1692. bp->board_id);
  1693. if (err)
  1694. return err;
  1695. return 0;
  1696. }
  1697. static const struct devlink_ops ptp_ocp_devlink_ops = {
  1698. .flash_update = ptp_ocp_devlink_flash_update,
  1699. .info_get = ptp_ocp_devlink_info_get,
  1700. };
  1701. static void __iomem *
  1702. __ptp_ocp_get_mem(struct ptp_ocp *bp, resource_size_t start, int size)
  1703. {
  1704. struct resource res = DEFINE_RES_MEM_NAMED(start, size, "ptp_ocp");
  1705. return devm_ioremap_resource(&bp->pdev->dev, &res);
  1706. }
  1707. static void __iomem *
  1708. ptp_ocp_get_mem(struct ptp_ocp *bp, struct ocp_resource *r)
  1709. {
  1710. resource_size_t start;
  1711. start = pci_resource_start(bp->pdev, 0) + r->offset;
  1712. return __ptp_ocp_get_mem(bp, start, r->size);
  1713. }
  1714. static int
  1715. ptp_ocp_register_spi(struct ptp_ocp *bp, struct ocp_resource *r)
  1716. {
  1717. struct ptp_ocp_flash_info *info;
  1718. struct pci_dev *pdev = bp->pdev;
  1719. struct platform_device *p;
  1720. struct resource res[2];
  1721. resource_size_t start;
  1722. int id;
  1723. start = pci_resource_start(pdev, 0) + r->offset;
  1724. res[0] = DEFINE_RES_MEM(start, r->size);
  1725. res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
  1726. info = r->extra;
  1727. id = pci_dev_id(pdev) << 1;
  1728. id += info->pci_offset;
  1729. p = platform_device_register_resndata(&pdev->dev, info->name, id,
  1730. res, ARRAY_SIZE(res), info->data,
  1731. info->data_size);
  1732. if (IS_ERR(p))
  1733. return PTR_ERR(p);
  1734. bp_assign_entry(bp, r, p);
  1735. return 0;
  1736. }
  1737. static struct platform_device *
  1738. ptp_ocp_i2c_bus(struct pci_dev *pdev, struct ocp_resource *r, int id)
  1739. {
  1740. struct ptp_ocp_i2c_info *info;
  1741. struct resource res[2];
  1742. resource_size_t start;
  1743. info = r->extra;
  1744. start = pci_resource_start(pdev, 0) + r->offset;
  1745. res[0] = DEFINE_RES_MEM(start, r->size);
  1746. res[1] = DEFINE_RES_IRQ(pci_irq_vector(pdev, r->irq_vec));
  1747. return platform_device_register_resndata(&pdev->dev, info->name,
  1748. id, res, ARRAY_SIZE(res),
  1749. info->data, info->data_size);
  1750. }
  1751. static int
  1752. ptp_ocp_register_i2c(struct ptp_ocp *bp, struct ocp_resource *r)
  1753. {
  1754. struct pci_dev *pdev = bp->pdev;
  1755. struct ptp_ocp_i2c_info *info;
  1756. struct platform_device *p;
  1757. struct clk_hw *clk;
  1758. char buf[32];
  1759. int id;
  1760. info = r->extra;
  1761. id = pci_dev_id(bp->pdev);
  1762. sprintf(buf, "AXI.%d", id);
  1763. clk = clk_hw_register_fixed_rate(&pdev->dev, buf, NULL, 0,
  1764. info->fixed_rate);
  1765. if (IS_ERR(clk))
  1766. return PTR_ERR(clk);
  1767. bp->i2c_clk = clk;
  1768. sprintf(buf, "%s.%d", info->name, id);
  1769. devm_clk_hw_register_clkdev(&pdev->dev, clk, NULL, buf);
  1770. p = ptp_ocp_i2c_bus(bp->pdev, r, id);
  1771. if (IS_ERR(p))
  1772. return PTR_ERR(p);
  1773. bp_assign_entry(bp, r, p);
  1774. return 0;
  1775. }
  1776. /* The expectation is that this is triggered only on error. */
  1777. static irqreturn_t
  1778. ptp_ocp_signal_irq(int irq, void *priv)
  1779. {
  1780. struct ptp_ocp_ext_src *ext = priv;
  1781. struct signal_reg __iomem *reg = ext->mem;
  1782. struct ptp_ocp *bp = ext->bp;
  1783. u32 enable, status;
  1784. int gen;
  1785. gen = ext->info->index - 1;
  1786. enable = ioread32(&reg->enable);
  1787. status = ioread32(&reg->status);
  1788. /* disable generator on error */
  1789. if (status || !enable) {
  1790. iowrite32(0, &reg->intr_mask);
  1791. iowrite32(0, &reg->enable);
  1792. bp->signal[gen].running = false;
  1793. }
  1794. iowrite32(0, &reg->intr); /* ack interrupt */
  1795. return IRQ_HANDLED;
  1796. }
  1797. static int
  1798. ptp_ocp_signal_set(struct ptp_ocp *bp, int gen, struct ptp_ocp_signal *s)
  1799. {
  1800. struct ptp_system_timestamp sts;
  1801. struct timespec64 ts;
  1802. ktime_t start_ns;
  1803. int err;
  1804. if (!s->period)
  1805. return 0;
  1806. if (!s->pulse)
  1807. s->pulse = ktime_divns(s->period * s->duty, 100);
  1808. err = ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts);
  1809. if (err)
  1810. return err;
  1811. start_ns = ktime_set(ts.tv_sec, ts.tv_nsec) + NSEC_PER_MSEC;
  1812. if (!s->start) {
  1813. /* roundup() does not work on 32-bit systems */
  1814. s->start = DIV64_U64_ROUND_UP(start_ns, s->period);
  1815. s->start = ktime_add(s->start, s->phase);
  1816. }
  1817. if (s->duty < 1 || s->duty > 99)
  1818. return -EINVAL;
  1819. if (s->pulse < 1 || s->pulse > s->period)
  1820. return -EINVAL;
  1821. if (s->start < start_ns)
  1822. return -EINVAL;
  1823. bp->signal[gen] = *s;
  1824. return 0;
  1825. }
  1826. static int
  1827. ptp_ocp_signal_from_perout(struct ptp_ocp *bp, int gen,
  1828. struct ptp_perout_request *req)
  1829. {
  1830. struct ptp_ocp_signal s = { };
  1831. s.polarity = bp->signal[gen].polarity;
  1832. s.period = ktime_set(req->period.sec, req->period.nsec);
  1833. if (!s.period)
  1834. return 0;
  1835. if (req->flags & PTP_PEROUT_DUTY_CYCLE) {
  1836. s.pulse = ktime_set(req->on.sec, req->on.nsec);
  1837. s.duty = ktime_divns(s.pulse * 100, s.period);
  1838. }
  1839. if (req->flags & PTP_PEROUT_PHASE)
  1840. s.phase = ktime_set(req->phase.sec, req->phase.nsec);
  1841. else
  1842. s.start = ktime_set(req->start.sec, req->start.nsec);
  1843. return ptp_ocp_signal_set(bp, gen, &s);
  1844. }
  1845. static int
  1846. ptp_ocp_signal_enable(void *priv, u32 req, bool enable)
  1847. {
  1848. struct ptp_ocp_ext_src *ext = priv;
  1849. struct signal_reg __iomem *reg = ext->mem;
  1850. struct ptp_ocp *bp = ext->bp;
  1851. struct timespec64 ts;
  1852. int gen;
  1853. gen = ext->info->index - 1;
  1854. iowrite32(0, &reg->intr_mask);
  1855. iowrite32(0, &reg->enable);
  1856. bp->signal[gen].running = false;
  1857. if (!enable)
  1858. return 0;
  1859. ts = ktime_to_timespec64(bp->signal[gen].start);
  1860. iowrite32(ts.tv_sec, &reg->start_sec);
  1861. iowrite32(ts.tv_nsec, &reg->start_ns);
  1862. ts = ktime_to_timespec64(bp->signal[gen].period);
  1863. iowrite32(ts.tv_sec, &reg->period_sec);
  1864. iowrite32(ts.tv_nsec, &reg->period_ns);
  1865. ts = ktime_to_timespec64(bp->signal[gen].pulse);
  1866. iowrite32(ts.tv_sec, &reg->pulse_sec);
  1867. iowrite32(ts.tv_nsec, &reg->pulse_ns);
  1868. iowrite32(bp->signal[gen].polarity, &reg->polarity);
  1869. iowrite32(0, &reg->repeat_count);
  1870. iowrite32(0, &reg->intr); /* clear interrupt state */
  1871. iowrite32(1, &reg->intr_mask); /* enable interrupt */
  1872. iowrite32(3, &reg->enable); /* valid & enable */
  1873. bp->signal[gen].running = true;
  1874. return 0;
  1875. }
  1876. static irqreturn_t
  1877. ptp_ocp_ts_irq(int irq, void *priv)
  1878. {
  1879. struct ptp_ocp_ext_src *ext = priv;
  1880. struct ts_reg __iomem *reg = ext->mem;
  1881. struct ptp_clock_event ev;
  1882. u32 sec, nsec;
  1883. if (ext == ext->bp->pps) {
  1884. if (ext->bp->pps_req_map & OCP_REQ_PPS) {
  1885. ev.type = PTP_CLOCK_PPS;
  1886. ptp_clock_event(ext->bp->ptp, &ev);
  1887. }
  1888. if ((ext->bp->pps_req_map & ~OCP_REQ_PPS) == 0)
  1889. goto out;
  1890. }
  1891. /* XXX should fix API - this converts s/ns -> ts -> s/ns */
  1892. sec = ioread32(&reg->time_sec);
  1893. nsec = ioread32(&reg->time_ns);
  1894. ev.type = PTP_CLOCK_EXTTS;
  1895. ev.index = ext->info->index;
  1896. ev.timestamp = sec * NSEC_PER_SEC + nsec;
  1897. ptp_clock_event(ext->bp->ptp, &ev);
  1898. out:
  1899. iowrite32(1, &reg->intr); /* write 1 to ack */
  1900. return IRQ_HANDLED;
  1901. }
  1902. static int
  1903. ptp_ocp_ts_enable(void *priv, u32 req, bool enable)
  1904. {
  1905. struct ptp_ocp_ext_src *ext = priv;
  1906. struct ts_reg __iomem *reg = ext->mem;
  1907. struct ptp_ocp *bp = ext->bp;
  1908. if (ext == bp->pps) {
  1909. u32 old_map = bp->pps_req_map;
  1910. if (enable)
  1911. bp->pps_req_map |= req;
  1912. else
  1913. bp->pps_req_map &= ~req;
  1914. /* if no state change, just return */
  1915. if ((!!old_map ^ !!bp->pps_req_map) == 0)
  1916. return 0;
  1917. }
  1918. if (enable) {
  1919. iowrite32(1, &reg->enable);
  1920. iowrite32(1, &reg->intr_mask);
  1921. iowrite32(1, &reg->intr);
  1922. } else {
  1923. iowrite32(0, &reg->intr_mask);
  1924. iowrite32(0, &reg->enable);
  1925. }
  1926. return 0;
  1927. }
  1928. static void
  1929. ptp_ocp_unregister_ext(struct ptp_ocp_ext_src *ext)
  1930. {
  1931. ext->info->enable(ext, ~0, false);
  1932. pci_free_irq(ext->bp->pdev, ext->irq_vec, ext);
  1933. kfree(ext);
  1934. }
  1935. static int
  1936. ptp_ocp_register_ext(struct ptp_ocp *bp, struct ocp_resource *r)
  1937. {
  1938. struct pci_dev *pdev = bp->pdev;
  1939. struct ptp_ocp_ext_src *ext;
  1940. int err;
  1941. ext = kzalloc(sizeof(*ext), GFP_KERNEL);
  1942. if (!ext)
  1943. return -ENOMEM;
  1944. ext->mem = ptp_ocp_get_mem(bp, r);
  1945. if (IS_ERR(ext->mem)) {
  1946. err = PTR_ERR(ext->mem);
  1947. goto out;
  1948. }
  1949. ext->bp = bp;
  1950. ext->info = r->extra;
  1951. ext->irq_vec = r->irq_vec;
  1952. err = pci_request_irq(pdev, r->irq_vec, ext->info->irq_fcn, NULL,
  1953. ext, "ocp%d.%s", bp->id, r->name);
  1954. if (err) {
  1955. dev_err(&pdev->dev, "Could not get irq %d\n", r->irq_vec);
  1956. goto out;
  1957. }
  1958. bp_assign_entry(bp, r, ext);
  1959. return 0;
  1960. out:
  1961. kfree(ext);
  1962. return err;
  1963. }
  1964. static int
  1965. ptp_ocp_serial_line(struct ptp_ocp *bp, struct ocp_resource *r)
  1966. {
  1967. struct pci_dev *pdev = bp->pdev;
  1968. struct uart_8250_port uart;
  1969. /* Setting UPF_IOREMAP and leaving port.membase unspecified lets
  1970. * the serial port device claim and release the pci resource.
  1971. */
  1972. memset(&uart, 0, sizeof(uart));
  1973. uart.port.dev = &pdev->dev;
  1974. uart.port.iotype = UPIO_MEM;
  1975. uart.port.regshift = 2;
  1976. uart.port.mapbase = pci_resource_start(pdev, 0) + r->offset;
  1977. uart.port.irq = pci_irq_vector(pdev, r->irq_vec);
  1978. uart.port.uartclk = 50000000;
  1979. uart.port.flags = UPF_FIXED_TYPE | UPF_IOREMAP | UPF_NO_THRE_TEST;
  1980. uart.port.type = PORT_16550A;
  1981. return serial8250_register_8250_port(&uart);
  1982. }
  1983. static int
  1984. ptp_ocp_register_serial(struct ptp_ocp *bp, struct ocp_resource *r)
  1985. {
  1986. struct ptp_ocp_serial_port *p = (struct ptp_ocp_serial_port *)r->extra;
  1987. struct ptp_ocp_serial_port port = {};
  1988. port.line = ptp_ocp_serial_line(bp, r);
  1989. if (port.line < 0)
  1990. return port.line;
  1991. if (p)
  1992. port.baud = p->baud;
  1993. bp_assign_entry(bp, r, port);
  1994. return 0;
  1995. }
  1996. static int
  1997. ptp_ocp_register_mem(struct ptp_ocp *bp, struct ocp_resource *r)
  1998. {
  1999. void __iomem *mem;
  2000. mem = ptp_ocp_get_mem(bp, r);
  2001. if (IS_ERR(mem))
  2002. return PTR_ERR(mem);
  2003. bp_assign_entry(bp, r, mem);
  2004. return 0;
  2005. }
  2006. static void
  2007. ptp_ocp_nmea_out_init(struct ptp_ocp *bp)
  2008. {
  2009. if (!bp->nmea_out)
  2010. return;
  2011. iowrite32(0, &bp->nmea_out->ctrl); /* disable */
  2012. iowrite32(7, &bp->nmea_out->uart_baud); /* 115200 */
  2013. iowrite32(1, &bp->nmea_out->ctrl); /* enable */
  2014. }
  2015. static void
  2016. _ptp_ocp_signal_init(struct ptp_ocp_signal *s, struct signal_reg __iomem *reg)
  2017. {
  2018. u32 val;
  2019. iowrite32(0, &reg->enable); /* disable */
  2020. val = ioread32(&reg->polarity);
  2021. s->polarity = val ? true : false;
  2022. s->duty = 50;
  2023. }
  2024. static void
  2025. ptp_ocp_signal_init(struct ptp_ocp *bp)
  2026. {
  2027. int i;
  2028. for (i = 0; i < 4; i++)
  2029. if (bp->signal_out[i])
  2030. _ptp_ocp_signal_init(&bp->signal[i],
  2031. bp->signal_out[i]->mem);
  2032. }
  2033. static void
  2034. ptp_ocp_attr_group_del(struct ptp_ocp *bp)
  2035. {
  2036. sysfs_remove_groups(&bp->dev.kobj, bp->attr_group);
  2037. kfree(bp->attr_group);
  2038. }
  2039. static int
  2040. ptp_ocp_attr_group_add(struct ptp_ocp *bp,
  2041. const struct ocp_attr_group *attr_tbl)
  2042. {
  2043. int count, i;
  2044. int err;
  2045. count = 0;
  2046. for (i = 0; attr_tbl[i].cap; i++)
  2047. if (attr_tbl[i].cap & bp->fw_cap)
  2048. count++;
  2049. bp->attr_group = kcalloc(count + 1, sizeof(struct attribute_group *),
  2050. GFP_KERNEL);
  2051. if (!bp->attr_group)
  2052. return -ENOMEM;
  2053. count = 0;
  2054. for (i = 0; attr_tbl[i].cap; i++)
  2055. if (attr_tbl[i].cap & bp->fw_cap)
  2056. bp->attr_group[count++] = attr_tbl[i].group;
  2057. err = sysfs_create_groups(&bp->dev.kobj, bp->attr_group);
  2058. if (err)
  2059. bp->attr_group[0] = NULL;
  2060. return err;
  2061. }
  2062. static void
  2063. ptp_ocp_enable_fpga(u32 __iomem *reg, u32 bit, bool enable)
  2064. {
  2065. u32 ctrl;
  2066. bool on;
  2067. ctrl = ioread32(reg);
  2068. on = ctrl & bit;
  2069. if (on ^ enable) {
  2070. ctrl &= ~bit;
  2071. ctrl |= enable ? bit : 0;
  2072. iowrite32(ctrl, reg);
  2073. }
  2074. }
  2075. static void
  2076. ptp_ocp_irig_out(struct ptp_ocp *bp, bool enable)
  2077. {
  2078. return ptp_ocp_enable_fpga(&bp->irig_out->ctrl,
  2079. IRIG_M_CTRL_ENABLE, enable);
  2080. }
  2081. static void
  2082. ptp_ocp_irig_in(struct ptp_ocp *bp, bool enable)
  2083. {
  2084. return ptp_ocp_enable_fpga(&bp->irig_in->ctrl,
  2085. IRIG_S_CTRL_ENABLE, enable);
  2086. }
  2087. static void
  2088. ptp_ocp_dcf_out(struct ptp_ocp *bp, bool enable)
  2089. {
  2090. return ptp_ocp_enable_fpga(&bp->dcf_out->ctrl,
  2091. DCF_M_CTRL_ENABLE, enable);
  2092. }
  2093. static void
  2094. ptp_ocp_dcf_in(struct ptp_ocp *bp, bool enable)
  2095. {
  2096. return ptp_ocp_enable_fpga(&bp->dcf_in->ctrl,
  2097. DCF_S_CTRL_ENABLE, enable);
  2098. }
  2099. static void
  2100. __handle_signal_outputs(struct ptp_ocp *bp, u32 val)
  2101. {
  2102. ptp_ocp_irig_out(bp, val & 0x00100010);
  2103. ptp_ocp_dcf_out(bp, val & 0x00200020);
  2104. }
  2105. static void
  2106. __handle_signal_inputs(struct ptp_ocp *bp, u32 val)
  2107. {
  2108. ptp_ocp_irig_in(bp, val & 0x00100010);
  2109. ptp_ocp_dcf_in(bp, val & 0x00200020);
  2110. }
  2111. static u32
  2112. ptp_ocp_sma_fb_get(struct ptp_ocp *bp, int sma_nr)
  2113. {
  2114. u32 __iomem *gpio;
  2115. u32 shift;
  2116. if (bp->sma[sma_nr - 1].fixed_fcn)
  2117. return (sma_nr - 1) & 1;
  2118. if (bp->sma[sma_nr - 1].mode == SMA_MODE_IN)
  2119. gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
  2120. else
  2121. gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
  2122. shift = sma_nr & 1 ? 0 : 16;
  2123. return (ioread32(gpio) >> shift) & 0xffff;
  2124. }
  2125. static int
  2126. ptp_ocp_sma_fb_set_output(struct ptp_ocp *bp, int sma_nr, u32 val)
  2127. {
  2128. u32 reg, mask, shift;
  2129. unsigned long flags;
  2130. u32 __iomem *gpio;
  2131. gpio = sma_nr > 2 ? &bp->sma_map1->gpio2 : &bp->sma_map2->gpio2;
  2132. shift = sma_nr & 1 ? 0 : 16;
  2133. mask = 0xffff << (16 - shift);
  2134. spin_lock_irqsave(&bp->lock, flags);
  2135. reg = ioread32(gpio);
  2136. reg = (reg & mask) | (val << shift);
  2137. __handle_signal_outputs(bp, reg);
  2138. iowrite32(reg, gpio);
  2139. spin_unlock_irqrestore(&bp->lock, flags);
  2140. return 0;
  2141. }
  2142. static int
  2143. ptp_ocp_sma_fb_set_inputs(struct ptp_ocp *bp, int sma_nr, u32 val)
  2144. {
  2145. u32 reg, mask, shift;
  2146. unsigned long flags;
  2147. u32 __iomem *gpio;
  2148. gpio = sma_nr > 2 ? &bp->sma_map2->gpio1 : &bp->sma_map1->gpio1;
  2149. shift = sma_nr & 1 ? 0 : 16;
  2150. mask = 0xffff << (16 - shift);
  2151. spin_lock_irqsave(&bp->lock, flags);
  2152. reg = ioread32(gpio);
  2153. reg = (reg & mask) | (val << shift);
  2154. __handle_signal_inputs(bp, reg);
  2155. iowrite32(reg, gpio);
  2156. spin_unlock_irqrestore(&bp->lock, flags);
  2157. return 0;
  2158. }
  2159. static void
  2160. ptp_ocp_sma_fb_init(struct ptp_ocp *bp)
  2161. {
  2162. struct dpll_pin_properties prop = {
  2163. .board_label = NULL,
  2164. .type = DPLL_PIN_TYPE_EXT,
  2165. .capabilities = DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE,
  2166. .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
  2167. .freq_supported = ptp_ocp_sma_freq,
  2168. };
  2169. u32 reg;
  2170. int i;
  2171. /* defaults */
  2172. for (i = 0; i < OCP_SMA_NUM; i++) {
  2173. bp->sma[i].default_fcn = i & 1;
  2174. bp->sma[i].dpll_prop = prop;
  2175. bp->sma[i].dpll_prop.board_label =
  2176. bp->ptp_info.pin_config[i].name;
  2177. }
  2178. bp->sma[0].mode = SMA_MODE_IN;
  2179. bp->sma[1].mode = SMA_MODE_IN;
  2180. bp->sma[2].mode = SMA_MODE_OUT;
  2181. bp->sma[3].mode = SMA_MODE_OUT;
  2182. /* If no SMA1 map, the pin functions and directions are fixed. */
  2183. if (!bp->sma_map1) {
  2184. for (i = 0; i < OCP_SMA_NUM; i++) {
  2185. bp->sma[i].fixed_fcn = true;
  2186. bp->sma[i].fixed_dir = true;
  2187. bp->sma[1].dpll_prop.capabilities &=
  2188. ~DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
  2189. }
  2190. return;
  2191. }
  2192. /* If SMA2 GPIO output map is all 1, it is not present.
  2193. * This indicates the firmware has fixed direction SMA pins.
  2194. */
  2195. reg = ioread32(&bp->sma_map2->gpio2);
  2196. if (reg == 0xffffffff) {
  2197. for (i = 0; i < OCP_SMA_NUM; i++)
  2198. bp->sma[i].fixed_dir = true;
  2199. } else {
  2200. reg = ioread32(&bp->sma_map1->gpio1);
  2201. bp->sma[0].mode = reg & BIT(15) ? SMA_MODE_IN : SMA_MODE_OUT;
  2202. bp->sma[1].mode = reg & BIT(31) ? SMA_MODE_IN : SMA_MODE_OUT;
  2203. reg = ioread32(&bp->sma_map1->gpio2);
  2204. bp->sma[2].mode = reg & BIT(15) ? SMA_MODE_OUT : SMA_MODE_IN;
  2205. bp->sma[3].mode = reg & BIT(31) ? SMA_MODE_OUT : SMA_MODE_IN;
  2206. }
  2207. }
  2208. static const struct ocp_sma_op ocp_fb_sma_op = {
  2209. .tbl = { ptp_ocp_sma_in, ptp_ocp_sma_out },
  2210. .init = ptp_ocp_sma_fb_init,
  2211. .get = ptp_ocp_sma_fb_get,
  2212. .set_inputs = ptp_ocp_sma_fb_set_inputs,
  2213. .set_output = ptp_ocp_sma_fb_set_output,
  2214. };
  2215. static const struct ocp_sma_op ocp_adva_sma_op = {
  2216. .tbl = { ptp_ocp_adva_sma_in, ptp_ocp_adva_sma_out },
  2217. .init = ptp_ocp_sma_fb_init,
  2218. .get = ptp_ocp_sma_fb_get,
  2219. .set_inputs = ptp_ocp_sma_fb_set_inputs,
  2220. .set_output = ptp_ocp_sma_fb_set_output,
  2221. };
  2222. static int
  2223. ptp_ocp_set_pins(struct ptp_ocp *bp)
  2224. {
  2225. struct ptp_pin_desc *config;
  2226. int i;
  2227. config = kcalloc(4, sizeof(*config), GFP_KERNEL);
  2228. if (!config)
  2229. return -ENOMEM;
  2230. for (i = 0; i < 4; i++) {
  2231. sprintf(config[i].name, "sma%d", i + 1);
  2232. config[i].index = i;
  2233. }
  2234. bp->ptp_info.n_pins = 4;
  2235. bp->ptp_info.pin_config = config;
  2236. return 0;
  2237. }
  2238. static void
  2239. ptp_ocp_fb_set_version(struct ptp_ocp *bp)
  2240. {
  2241. u64 cap = OCP_CAP_BASIC;
  2242. u32 version;
  2243. version = ioread32(&bp->image->version);
  2244. /* if lower 16 bits are empty, this is the fw loader. */
  2245. if ((version & 0xffff) == 0) {
  2246. version = version >> 16;
  2247. bp->fw_loader = true;
  2248. }
  2249. bp->fw_tag = version >> 15;
  2250. bp->fw_version = version & 0x7fff;
  2251. if (bp->fw_tag) {
  2252. /* FPGA firmware */
  2253. if (version >= 5)
  2254. cap |= OCP_CAP_SIGNAL | OCP_CAP_FREQ;
  2255. } else {
  2256. /* SOM firmware */
  2257. if (version >= 19)
  2258. cap |= OCP_CAP_SIGNAL;
  2259. if (version >= 20)
  2260. cap |= OCP_CAP_FREQ;
  2261. }
  2262. bp->fw_cap = cap;
  2263. }
  2264. /* FB specific board initializers; last "resource" registered. */
  2265. static int
  2266. ptp_ocp_fb_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
  2267. {
  2268. int err;
  2269. bp->flash_start = 1024 * 4096;
  2270. bp->eeprom_map = fb_eeprom_map;
  2271. bp->fw_version = ioread32(&bp->image->version);
  2272. bp->sma_op = &ocp_fb_sma_op;
  2273. ptp_ocp_fb_set_version(bp);
  2274. ptp_ocp_tod_init(bp);
  2275. ptp_ocp_nmea_out_init(bp);
  2276. ptp_ocp_signal_init(bp);
  2277. err = ptp_ocp_attr_group_add(bp, fb_timecard_groups);
  2278. if (err)
  2279. return err;
  2280. err = ptp_ocp_set_pins(bp);
  2281. if (err)
  2282. return err;
  2283. ptp_ocp_sma_init(bp);
  2284. return ptp_ocp_init_clock(bp, r->extra);
  2285. }
  2286. static bool
  2287. ptp_ocp_allow_irq(struct ptp_ocp *bp, struct ocp_resource *r)
  2288. {
  2289. bool allow = !r->irq_vec || r->irq_vec < bp->n_irqs;
  2290. if (!allow)
  2291. dev_err(&bp->pdev->dev, "irq %d out of range, skipping %s\n",
  2292. r->irq_vec, r->name);
  2293. return allow;
  2294. }
  2295. static int
  2296. ptp_ocp_register_resources(struct ptp_ocp *bp, kernel_ulong_t driver_data)
  2297. {
  2298. struct ocp_resource *r, *table;
  2299. int err = 0;
  2300. table = (struct ocp_resource *)driver_data;
  2301. for (r = table; r->setup; r++) {
  2302. if (!ptp_ocp_allow_irq(bp, r))
  2303. continue;
  2304. err = r->setup(bp, r);
  2305. if (err) {
  2306. dev_err(&bp->pdev->dev,
  2307. "Could not register %s: err %d\n",
  2308. r->name, err);
  2309. break;
  2310. }
  2311. }
  2312. return err;
  2313. }
  2314. static void
  2315. ptp_ocp_art_sma_init(struct ptp_ocp *bp)
  2316. {
  2317. struct dpll_pin_properties prop = {
  2318. .board_label = NULL,
  2319. .type = DPLL_PIN_TYPE_EXT,
  2320. .capabilities = 0,
  2321. .freq_supported_num = ARRAY_SIZE(ptp_ocp_sma_freq),
  2322. .freq_supported = ptp_ocp_sma_freq,
  2323. };
  2324. u32 reg;
  2325. int i;
  2326. /* defaults */
  2327. bp->sma[0].mode = SMA_MODE_IN;
  2328. bp->sma[1].mode = SMA_MODE_IN;
  2329. bp->sma[2].mode = SMA_MODE_OUT;
  2330. bp->sma[3].mode = SMA_MODE_OUT;
  2331. bp->sma[0].default_fcn = 0x08; /* IN: 10Mhz */
  2332. bp->sma[1].default_fcn = 0x01; /* IN: PPS1 */
  2333. bp->sma[2].default_fcn = 0x10; /* OUT: 10Mhz */
  2334. bp->sma[3].default_fcn = 0x02; /* OUT: PHC */
  2335. for (i = 0; i < OCP_SMA_NUM; i++) {
  2336. /* If no SMA map, the pin functions and directions are fixed. */
  2337. bp->sma[i].dpll_prop = prop;
  2338. bp->sma[i].dpll_prop.board_label =
  2339. bp->ptp_info.pin_config[i].name;
  2340. if (!bp->art_sma) {
  2341. bp->sma[i].fixed_fcn = true;
  2342. bp->sma[i].fixed_dir = true;
  2343. continue;
  2344. }
  2345. reg = ioread32(&bp->art_sma->map[i].gpio);
  2346. switch (reg & 0xff) {
  2347. case 0:
  2348. bp->sma[i].fixed_fcn = true;
  2349. bp->sma[i].fixed_dir = true;
  2350. break;
  2351. case 1:
  2352. case 8:
  2353. bp->sma[i].mode = SMA_MODE_IN;
  2354. bp->sma[i].dpll_prop.capabilities =
  2355. DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
  2356. break;
  2357. default:
  2358. bp->sma[i].mode = SMA_MODE_OUT;
  2359. bp->sma[i].dpll_prop.capabilities =
  2360. DPLL_PIN_CAPABILITIES_DIRECTION_CAN_CHANGE;
  2361. break;
  2362. }
  2363. }
  2364. }
  2365. static u32
  2366. ptp_ocp_art_sma_get(struct ptp_ocp *bp, int sma_nr)
  2367. {
  2368. if (bp->sma[sma_nr - 1].fixed_fcn)
  2369. return bp->sma[sma_nr - 1].default_fcn;
  2370. return ioread32(&bp->art_sma->map[sma_nr - 1].gpio) & 0xff;
  2371. }
  2372. /* note: store 0 is considered invalid. */
  2373. static int
  2374. ptp_ocp_art_sma_set(struct ptp_ocp *bp, int sma_nr, u32 val)
  2375. {
  2376. unsigned long flags;
  2377. u32 __iomem *gpio;
  2378. int err = 0;
  2379. u32 reg;
  2380. val &= SMA_SELECT_MASK;
  2381. if (hweight32(val) > 1)
  2382. return -EINVAL;
  2383. gpio = &bp->art_sma->map[sma_nr - 1].gpio;
  2384. spin_lock_irqsave(&bp->lock, flags);
  2385. reg = ioread32(gpio);
  2386. if (((reg >> 16) & val) == 0) {
  2387. err = -EOPNOTSUPP;
  2388. } else {
  2389. reg = (reg & 0xff00) | (val & 0xff);
  2390. iowrite32(reg, gpio);
  2391. }
  2392. spin_unlock_irqrestore(&bp->lock, flags);
  2393. return err;
  2394. }
  2395. static const struct ocp_sma_op ocp_art_sma_op = {
  2396. .tbl = { ptp_ocp_art_sma_in, ptp_ocp_art_sma_out },
  2397. .init = ptp_ocp_art_sma_init,
  2398. .get = ptp_ocp_art_sma_get,
  2399. .set_inputs = ptp_ocp_art_sma_set,
  2400. .set_output = ptp_ocp_art_sma_set,
  2401. };
  2402. /* ART specific board initializers; last "resource" registered. */
  2403. static int
  2404. ptp_ocp_art_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
  2405. {
  2406. int err;
  2407. bp->flash_start = 0x1000000;
  2408. bp->eeprom_map = art_eeprom_map;
  2409. bp->fw_cap = OCP_CAP_BASIC;
  2410. bp->fw_version = ioread32(&bp->reg->version);
  2411. bp->fw_tag = 2;
  2412. bp->sma_op = &ocp_art_sma_op;
  2413. /* Enable MAC serial port during initialisation */
  2414. iowrite32(1, &bp->board_config->mro50_serial_activate);
  2415. err = ptp_ocp_set_pins(bp);
  2416. if (err)
  2417. return err;
  2418. ptp_ocp_sma_init(bp);
  2419. err = ptp_ocp_attr_group_add(bp, art_timecard_groups);
  2420. if (err)
  2421. return err;
  2422. return ptp_ocp_init_clock(bp, r->extra);
  2423. }
  2424. /* ADVA specific board initializers; last "resource" registered. */
  2425. static int
  2426. ptp_ocp_adva_board_init(struct ptp_ocp *bp, struct ocp_resource *r)
  2427. {
  2428. int err;
  2429. u32 version;
  2430. bp->flash_start = 0xA00000;
  2431. bp->eeprom_map = fb_eeprom_map;
  2432. bp->sma_op = &ocp_adva_sma_op;
  2433. version = ioread32(&bp->image->version);
  2434. /* if lower 16 bits are empty, this is the fw loader. */
  2435. if ((version & 0xffff) == 0) {
  2436. version = version >> 16;
  2437. bp->fw_loader = true;
  2438. }
  2439. bp->fw_tag = 3;
  2440. bp->fw_version = version & 0xffff;
  2441. bp->fw_cap = OCP_CAP_BASIC | OCP_CAP_SIGNAL | OCP_CAP_FREQ;
  2442. ptp_ocp_tod_init(bp);
  2443. ptp_ocp_nmea_out_init(bp);
  2444. ptp_ocp_signal_init(bp);
  2445. err = ptp_ocp_attr_group_add(bp, adva_timecard_groups);
  2446. if (err)
  2447. return err;
  2448. err = ptp_ocp_set_pins(bp);
  2449. if (err)
  2450. return err;
  2451. ptp_ocp_sma_init(bp);
  2452. return ptp_ocp_init_clock(bp, r->extra);
  2453. }
  2454. static ssize_t
  2455. ptp_ocp_show_output(const struct ocp_selector *tbl, u32 val, char *buf,
  2456. int def_val)
  2457. {
  2458. const char *name;
  2459. ssize_t count;
  2460. count = sysfs_emit(buf, "OUT: ");
  2461. name = ptp_ocp_select_name_from_val(tbl, val);
  2462. if (!name)
  2463. name = ptp_ocp_select_name_from_val(tbl, def_val);
  2464. count += sysfs_emit_at(buf, count, "%s\n", name);
  2465. return count;
  2466. }
  2467. static ssize_t
  2468. ptp_ocp_show_inputs(const struct ocp_selector *tbl, u32 val, char *buf,
  2469. int def_val)
  2470. {
  2471. const char *name;
  2472. ssize_t count;
  2473. int i;
  2474. count = sysfs_emit(buf, "IN: ");
  2475. for (i = 0; tbl[i].name; i++) {
  2476. if (val & tbl[i].value) {
  2477. name = tbl[i].name;
  2478. count += sysfs_emit_at(buf, count, "%s ", name);
  2479. }
  2480. }
  2481. if (!val && def_val >= 0) {
  2482. name = ptp_ocp_select_name_from_val(tbl, def_val);
  2483. count += sysfs_emit_at(buf, count, "%s ", name);
  2484. }
  2485. if (count)
  2486. count--;
  2487. count += sysfs_emit_at(buf, count, "\n");
  2488. return count;
  2489. }
  2490. static int
  2491. sma_parse_inputs(const struct ocp_selector * const tbl[], const char *buf,
  2492. enum ptp_ocp_sma_mode *mode)
  2493. {
  2494. int idx, count, dir;
  2495. char **argv;
  2496. int ret;
  2497. argv = argv_split(GFP_KERNEL, buf, &count);
  2498. if (!argv)
  2499. return -ENOMEM;
  2500. ret = -EINVAL;
  2501. if (!count)
  2502. goto out;
  2503. idx = 0;
  2504. dir = *mode == SMA_MODE_IN ? 0 : 1;
  2505. if (!strcasecmp("IN:", argv[0])) {
  2506. dir = 0;
  2507. idx++;
  2508. }
  2509. if (!strcasecmp("OUT:", argv[0])) {
  2510. dir = 1;
  2511. idx++;
  2512. }
  2513. *mode = dir == 0 ? SMA_MODE_IN : SMA_MODE_OUT;
  2514. ret = 0;
  2515. for (; idx < count; idx++)
  2516. ret |= ptp_ocp_select_val_from_name(tbl[dir], argv[idx]);
  2517. if (ret < 0)
  2518. ret = -EINVAL;
  2519. out:
  2520. argv_free(argv);
  2521. return ret;
  2522. }
  2523. static ssize_t
  2524. ptp_ocp_sma_show(struct ptp_ocp *bp, int sma_nr, char *buf,
  2525. int default_in_val, int default_out_val)
  2526. {
  2527. struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
  2528. const struct ocp_selector * const *tbl;
  2529. u32 val;
  2530. tbl = bp->sma_op->tbl;
  2531. val = ptp_ocp_sma_get(bp, sma_nr) & SMA_SELECT_MASK;
  2532. if (sma->mode == SMA_MODE_IN) {
  2533. if (sma->disabled)
  2534. val = SMA_DISABLE;
  2535. return ptp_ocp_show_inputs(tbl[0], val, buf, default_in_val);
  2536. }
  2537. return ptp_ocp_show_output(tbl[1], val, buf, default_out_val);
  2538. }
  2539. static ssize_t
  2540. sma1_show(struct device *dev, struct device_attribute *attr, char *buf)
  2541. {
  2542. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2543. return ptp_ocp_sma_show(bp, 1, buf, 0, 1);
  2544. }
  2545. static ssize_t
  2546. sma2_show(struct device *dev, struct device_attribute *attr, char *buf)
  2547. {
  2548. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2549. return ptp_ocp_sma_show(bp, 2, buf, -1, 1);
  2550. }
  2551. static ssize_t
  2552. sma3_show(struct device *dev, struct device_attribute *attr, char *buf)
  2553. {
  2554. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2555. return ptp_ocp_sma_show(bp, 3, buf, -1, 0);
  2556. }
  2557. static ssize_t
  2558. sma4_show(struct device *dev, struct device_attribute *attr, char *buf)
  2559. {
  2560. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2561. return ptp_ocp_sma_show(bp, 4, buf, -1, 1);
  2562. }
  2563. static int
  2564. ptp_ocp_sma_store_val(struct ptp_ocp *bp, int val, enum ptp_ocp_sma_mode mode, int sma_nr)
  2565. {
  2566. struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
  2567. if (sma->fixed_dir && (mode != sma->mode || val & SMA_DISABLE))
  2568. return -EOPNOTSUPP;
  2569. if (sma->fixed_fcn) {
  2570. if (val != sma->default_fcn)
  2571. return -EOPNOTSUPP;
  2572. return 0;
  2573. }
  2574. sma->disabled = !!(val & SMA_DISABLE);
  2575. if (mode != sma->mode) {
  2576. if (mode == SMA_MODE_IN)
  2577. ptp_ocp_sma_set_output(bp, sma_nr, 0);
  2578. else
  2579. ptp_ocp_sma_set_inputs(bp, sma_nr, 0);
  2580. sma->mode = mode;
  2581. }
  2582. if (!sma->fixed_dir)
  2583. val |= SMA_ENABLE; /* add enable bit */
  2584. if (sma->disabled)
  2585. val = 0;
  2586. if (mode == SMA_MODE_IN)
  2587. val = ptp_ocp_sma_set_inputs(bp, sma_nr, val);
  2588. else
  2589. val = ptp_ocp_sma_set_output(bp, sma_nr, val);
  2590. return val;
  2591. }
  2592. static int
  2593. ptp_ocp_sma_store(struct ptp_ocp *bp, const char *buf, int sma_nr)
  2594. {
  2595. struct ptp_ocp_sma_connector *sma = &bp->sma[sma_nr - 1];
  2596. enum ptp_ocp_sma_mode mode;
  2597. int val;
  2598. mode = sma->mode;
  2599. val = sma_parse_inputs(bp->sma_op->tbl, buf, &mode);
  2600. if (val < 0)
  2601. return val;
  2602. return ptp_ocp_sma_store_val(bp, val, mode, sma_nr);
  2603. }
  2604. static ssize_t
  2605. sma1_store(struct device *dev, struct device_attribute *attr,
  2606. const char *buf, size_t count)
  2607. {
  2608. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2609. int err;
  2610. err = ptp_ocp_sma_store(bp, buf, 1);
  2611. return err ? err : count;
  2612. }
  2613. static ssize_t
  2614. sma2_store(struct device *dev, struct device_attribute *attr,
  2615. const char *buf, size_t count)
  2616. {
  2617. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2618. int err;
  2619. err = ptp_ocp_sma_store(bp, buf, 2);
  2620. return err ? err : count;
  2621. }
  2622. static ssize_t
  2623. sma3_store(struct device *dev, struct device_attribute *attr,
  2624. const char *buf, size_t count)
  2625. {
  2626. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2627. int err;
  2628. err = ptp_ocp_sma_store(bp, buf, 3);
  2629. return err ? err : count;
  2630. }
  2631. static ssize_t
  2632. sma4_store(struct device *dev, struct device_attribute *attr,
  2633. const char *buf, size_t count)
  2634. {
  2635. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2636. int err;
  2637. err = ptp_ocp_sma_store(bp, buf, 4);
  2638. return err ? err : count;
  2639. }
  2640. static DEVICE_ATTR_RW(sma1);
  2641. static DEVICE_ATTR_RW(sma2);
  2642. static DEVICE_ATTR_RW(sma3);
  2643. static DEVICE_ATTR_RW(sma4);
  2644. static ssize_t
  2645. available_sma_inputs_show(struct device *dev,
  2646. struct device_attribute *attr, char *buf)
  2647. {
  2648. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2649. return ptp_ocp_select_table_show(bp->sma_op->tbl[0], buf);
  2650. }
  2651. static DEVICE_ATTR_RO(available_sma_inputs);
  2652. static ssize_t
  2653. available_sma_outputs_show(struct device *dev,
  2654. struct device_attribute *attr, char *buf)
  2655. {
  2656. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2657. return ptp_ocp_select_table_show(bp->sma_op->tbl[1], buf);
  2658. }
  2659. static DEVICE_ATTR_RO(available_sma_outputs);
  2660. #define EXT_ATTR_RO(_group, _name, _val) \
  2661. struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
  2662. { __ATTR_RO(_name), (void *)_val }
  2663. #define EXT_ATTR_RW(_group, _name, _val) \
  2664. struct dev_ext_attribute dev_attr_##_group##_val##_##_name = \
  2665. { __ATTR_RW(_name), (void *)_val }
  2666. #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
  2667. /* period [duty [phase [polarity]]] */
  2668. static ssize_t
  2669. signal_store(struct device *dev, struct device_attribute *attr,
  2670. const char *buf, size_t count)
  2671. {
  2672. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2673. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2674. struct ptp_ocp_signal s = { };
  2675. int gen = (uintptr_t)ea->var;
  2676. int argc, err;
  2677. char **argv;
  2678. argv = argv_split(GFP_KERNEL, buf, &argc);
  2679. if (!argv)
  2680. return -ENOMEM;
  2681. err = -EINVAL;
  2682. s.duty = bp->signal[gen].duty;
  2683. s.phase = bp->signal[gen].phase;
  2684. s.period = bp->signal[gen].period;
  2685. s.polarity = bp->signal[gen].polarity;
  2686. switch (argc) {
  2687. case 4:
  2688. argc--;
  2689. err = kstrtobool(argv[argc], &s.polarity);
  2690. if (err)
  2691. goto out;
  2692. fallthrough;
  2693. case 3:
  2694. argc--;
  2695. err = kstrtou64(argv[argc], 0, &s.phase);
  2696. if (err)
  2697. goto out;
  2698. fallthrough;
  2699. case 2:
  2700. argc--;
  2701. err = kstrtoint(argv[argc], 0, &s.duty);
  2702. if (err)
  2703. goto out;
  2704. fallthrough;
  2705. case 1:
  2706. argc--;
  2707. err = kstrtou64(argv[argc], 0, &s.period);
  2708. if (err)
  2709. goto out;
  2710. break;
  2711. default:
  2712. goto out;
  2713. }
  2714. err = ptp_ocp_signal_set(bp, gen, &s);
  2715. if (err)
  2716. goto out;
  2717. err = ptp_ocp_signal_enable(bp->signal_out[gen], gen, s.period != 0);
  2718. out:
  2719. argv_free(argv);
  2720. return err ? err : count;
  2721. }
  2722. static ssize_t
  2723. signal_show(struct device *dev, struct device_attribute *attr, char *buf)
  2724. {
  2725. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2726. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2727. struct ptp_ocp_signal *signal;
  2728. struct timespec64 ts;
  2729. ssize_t count;
  2730. int i;
  2731. i = (uintptr_t)ea->var;
  2732. signal = &bp->signal[i];
  2733. count = sysfs_emit(buf, "%llu %d %llu %d", signal->period,
  2734. signal->duty, signal->phase, signal->polarity);
  2735. ts = ktime_to_timespec64(signal->start);
  2736. count += sysfs_emit_at(buf, count, " %ptT TAI\n", &ts);
  2737. return count;
  2738. }
  2739. static EXT_ATTR_RW(signal, signal, 0);
  2740. static EXT_ATTR_RW(signal, signal, 1);
  2741. static EXT_ATTR_RW(signal, signal, 2);
  2742. static EXT_ATTR_RW(signal, signal, 3);
  2743. static ssize_t
  2744. duty_show(struct device *dev, struct device_attribute *attr, char *buf)
  2745. {
  2746. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2747. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2748. int i = (uintptr_t)ea->var;
  2749. return sysfs_emit(buf, "%d\n", bp->signal[i].duty);
  2750. }
  2751. static EXT_ATTR_RO(signal, duty, 0);
  2752. static EXT_ATTR_RO(signal, duty, 1);
  2753. static EXT_ATTR_RO(signal, duty, 2);
  2754. static EXT_ATTR_RO(signal, duty, 3);
  2755. static ssize_t
  2756. period_show(struct device *dev, struct device_attribute *attr, char *buf)
  2757. {
  2758. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2759. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2760. int i = (uintptr_t)ea->var;
  2761. return sysfs_emit(buf, "%llu\n", bp->signal[i].period);
  2762. }
  2763. static EXT_ATTR_RO(signal, period, 0);
  2764. static EXT_ATTR_RO(signal, period, 1);
  2765. static EXT_ATTR_RO(signal, period, 2);
  2766. static EXT_ATTR_RO(signal, period, 3);
  2767. static ssize_t
  2768. phase_show(struct device *dev, struct device_attribute *attr, char *buf)
  2769. {
  2770. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2771. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2772. int i = (uintptr_t)ea->var;
  2773. return sysfs_emit(buf, "%llu\n", bp->signal[i].phase);
  2774. }
  2775. static EXT_ATTR_RO(signal, phase, 0);
  2776. static EXT_ATTR_RO(signal, phase, 1);
  2777. static EXT_ATTR_RO(signal, phase, 2);
  2778. static EXT_ATTR_RO(signal, phase, 3);
  2779. static ssize_t
  2780. polarity_show(struct device *dev, struct device_attribute *attr,
  2781. char *buf)
  2782. {
  2783. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2784. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2785. int i = (uintptr_t)ea->var;
  2786. return sysfs_emit(buf, "%d\n", bp->signal[i].polarity);
  2787. }
  2788. static EXT_ATTR_RO(signal, polarity, 0);
  2789. static EXT_ATTR_RO(signal, polarity, 1);
  2790. static EXT_ATTR_RO(signal, polarity, 2);
  2791. static EXT_ATTR_RO(signal, polarity, 3);
  2792. static ssize_t
  2793. running_show(struct device *dev, struct device_attribute *attr, char *buf)
  2794. {
  2795. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2796. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2797. int i = (uintptr_t)ea->var;
  2798. return sysfs_emit(buf, "%d\n", bp->signal[i].running);
  2799. }
  2800. static EXT_ATTR_RO(signal, running, 0);
  2801. static EXT_ATTR_RO(signal, running, 1);
  2802. static EXT_ATTR_RO(signal, running, 2);
  2803. static EXT_ATTR_RO(signal, running, 3);
  2804. static ssize_t
  2805. start_show(struct device *dev, struct device_attribute *attr, char *buf)
  2806. {
  2807. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2808. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2809. int i = (uintptr_t)ea->var;
  2810. struct timespec64 ts;
  2811. ts = ktime_to_timespec64(bp->signal[i].start);
  2812. return sysfs_emit(buf, "%llu.%lu\n", ts.tv_sec, ts.tv_nsec);
  2813. }
  2814. static EXT_ATTR_RO(signal, start, 0);
  2815. static EXT_ATTR_RO(signal, start, 1);
  2816. static EXT_ATTR_RO(signal, start, 2);
  2817. static EXT_ATTR_RO(signal, start, 3);
  2818. static ssize_t
  2819. seconds_store(struct device *dev, struct device_attribute *attr,
  2820. const char *buf, size_t count)
  2821. {
  2822. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2823. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2824. int idx = (uintptr_t)ea->var;
  2825. u32 val;
  2826. int err;
  2827. err = kstrtou32(buf, 0, &val);
  2828. if (err)
  2829. return err;
  2830. if (val > 0xff)
  2831. return -EINVAL;
  2832. if (val)
  2833. val = (val << 8) | 0x1;
  2834. iowrite32(val, &bp->freq_in[idx]->ctrl);
  2835. return count;
  2836. }
  2837. static ssize_t
  2838. seconds_show(struct device *dev, struct device_attribute *attr, char *buf)
  2839. {
  2840. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2841. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2842. int idx = (uintptr_t)ea->var;
  2843. u32 val;
  2844. val = ioread32(&bp->freq_in[idx]->ctrl);
  2845. if (val & 1)
  2846. val = (val >> 8) & 0xff;
  2847. else
  2848. val = 0;
  2849. return sysfs_emit(buf, "%u\n", val);
  2850. }
  2851. static EXT_ATTR_RW(freq, seconds, 0);
  2852. static EXT_ATTR_RW(freq, seconds, 1);
  2853. static EXT_ATTR_RW(freq, seconds, 2);
  2854. static EXT_ATTR_RW(freq, seconds, 3);
  2855. static ssize_t
  2856. frequency_show(struct device *dev, struct device_attribute *attr, char *buf)
  2857. {
  2858. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2859. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2860. int idx = (uintptr_t)ea->var;
  2861. u32 val;
  2862. val = ioread32(&bp->freq_in[idx]->status);
  2863. if (val & FREQ_STATUS_ERROR)
  2864. return sysfs_emit(buf, "error\n");
  2865. if (val & FREQ_STATUS_OVERRUN)
  2866. return sysfs_emit(buf, "overrun\n");
  2867. if (val & FREQ_STATUS_VALID)
  2868. return sysfs_emit(buf, "%lu\n", val & FREQ_STATUS_MASK);
  2869. return 0;
  2870. }
  2871. static EXT_ATTR_RO(freq, frequency, 0);
  2872. static EXT_ATTR_RO(freq, frequency, 1);
  2873. static EXT_ATTR_RO(freq, frequency, 2);
  2874. static EXT_ATTR_RO(freq, frequency, 3);
  2875. static ssize_t
  2876. ptp_ocp_tty_show(struct device *dev, struct device_attribute *attr, char *buf)
  2877. {
  2878. struct dev_ext_attribute *ea = to_ext_attr(attr);
  2879. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2880. return sysfs_emit(buf, "ttyS%d", bp->port[(uintptr_t)ea->var].line);
  2881. }
  2882. static umode_t
  2883. ptp_ocp_timecard_tty_is_visible(struct kobject *kobj, struct attribute *attr, int n)
  2884. {
  2885. struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
  2886. struct ptp_ocp_serial_port *port;
  2887. struct device_attribute *dattr;
  2888. struct dev_ext_attribute *ea;
  2889. if (strncmp(attr->name, "tty", 3))
  2890. return attr->mode;
  2891. dattr = container_of(attr, struct device_attribute, attr);
  2892. ea = container_of(dattr, struct dev_ext_attribute, attr);
  2893. port = &bp->port[(uintptr_t)ea->var];
  2894. return port->line == -1 ? 0 : 0444;
  2895. }
  2896. #define EXT_TTY_ATTR_RO(_name, _val) \
  2897. struct dev_ext_attribute dev_attr_tty##_name = \
  2898. { __ATTR(tty##_name, 0444, ptp_ocp_tty_show, NULL), (void *)_val }
  2899. static EXT_TTY_ATTR_RO(GNSS, PORT_GNSS);
  2900. static EXT_TTY_ATTR_RO(GNSS2, PORT_GNSS2);
  2901. static EXT_TTY_ATTR_RO(MAC, PORT_MAC);
  2902. static EXT_TTY_ATTR_RO(NMEA, PORT_NMEA);
  2903. static struct attribute *ptp_ocp_timecard_tty_attrs[] = {
  2904. &dev_attr_ttyGNSS.attr.attr,
  2905. &dev_attr_ttyGNSS2.attr.attr,
  2906. &dev_attr_ttyMAC.attr.attr,
  2907. &dev_attr_ttyNMEA.attr.attr,
  2908. NULL,
  2909. };
  2910. static const struct attribute_group ptp_ocp_timecard_tty_group = {
  2911. .name = "tty",
  2912. .attrs = ptp_ocp_timecard_tty_attrs,
  2913. .is_visible = ptp_ocp_timecard_tty_is_visible,
  2914. };
  2915. static ssize_t
  2916. serialnum_show(struct device *dev, struct device_attribute *attr, char *buf)
  2917. {
  2918. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2919. if (!bp->has_eeprom_data)
  2920. ptp_ocp_read_eeprom(bp);
  2921. return sysfs_emit(buf, "%pM\n", bp->serial);
  2922. }
  2923. static DEVICE_ATTR_RO(serialnum);
  2924. static ssize_t
  2925. gnss_sync_show(struct device *dev, struct device_attribute *attr, char *buf)
  2926. {
  2927. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2928. ssize_t ret;
  2929. if (bp->gnss_lost)
  2930. ret = sysfs_emit(buf, "LOST @ %ptT\n", &bp->gnss_lost);
  2931. else
  2932. ret = sysfs_emit(buf, "SYNC\n");
  2933. return ret;
  2934. }
  2935. static DEVICE_ATTR_RO(gnss_sync);
  2936. static ssize_t
  2937. utc_tai_offset_show(struct device *dev,
  2938. struct device_attribute *attr, char *buf)
  2939. {
  2940. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2941. return sysfs_emit(buf, "%d\n", bp->utc_tai_offset);
  2942. }
  2943. static ssize_t
  2944. utc_tai_offset_store(struct device *dev,
  2945. struct device_attribute *attr,
  2946. const char *buf, size_t count)
  2947. {
  2948. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2949. int err;
  2950. u32 val;
  2951. err = kstrtou32(buf, 0, &val);
  2952. if (err)
  2953. return err;
  2954. ptp_ocp_utc_distribute(bp, val);
  2955. return count;
  2956. }
  2957. static DEVICE_ATTR_RW(utc_tai_offset);
  2958. static ssize_t
  2959. ts_window_adjust_show(struct device *dev,
  2960. struct device_attribute *attr, char *buf)
  2961. {
  2962. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2963. return sysfs_emit(buf, "%d\n", bp->ts_window_adjust);
  2964. }
  2965. static ssize_t
  2966. ts_window_adjust_store(struct device *dev,
  2967. struct device_attribute *attr,
  2968. const char *buf, size_t count)
  2969. {
  2970. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2971. int err;
  2972. u32 val;
  2973. err = kstrtou32(buf, 0, &val);
  2974. if (err)
  2975. return err;
  2976. bp->ts_window_adjust = val;
  2977. return count;
  2978. }
  2979. static DEVICE_ATTR_RW(ts_window_adjust);
  2980. static ssize_t
  2981. irig_b_mode_show(struct device *dev, struct device_attribute *attr, char *buf)
  2982. {
  2983. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2984. u32 val;
  2985. val = ioread32(&bp->irig_out->ctrl);
  2986. val = (val >> 16) & 0x07;
  2987. return sysfs_emit(buf, "%d\n", val);
  2988. }
  2989. static ssize_t
  2990. irig_b_mode_store(struct device *dev,
  2991. struct device_attribute *attr,
  2992. const char *buf, size_t count)
  2993. {
  2994. struct ptp_ocp *bp = dev_get_drvdata(dev);
  2995. unsigned long flags;
  2996. int err;
  2997. u32 reg;
  2998. u8 val;
  2999. err = kstrtou8(buf, 0, &val);
  3000. if (err)
  3001. return err;
  3002. if (val > 7)
  3003. return -EINVAL;
  3004. reg = ((val & 0x7) << 16);
  3005. spin_lock_irqsave(&bp->lock, flags);
  3006. iowrite32(0, &bp->irig_out->ctrl); /* disable */
  3007. iowrite32(reg, &bp->irig_out->ctrl); /* change mode */
  3008. iowrite32(reg | IRIG_M_CTRL_ENABLE, &bp->irig_out->ctrl);
  3009. spin_unlock_irqrestore(&bp->lock, flags);
  3010. return count;
  3011. }
  3012. static DEVICE_ATTR_RW(irig_b_mode);
  3013. static ssize_t
  3014. clock_source_show(struct device *dev, struct device_attribute *attr, char *buf)
  3015. {
  3016. struct ptp_ocp *bp = dev_get_drvdata(dev);
  3017. const char *p;
  3018. u32 select;
  3019. select = ioread32(&bp->reg->select);
  3020. p = ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16);
  3021. return sysfs_emit(buf, "%s\n", p);
  3022. }
  3023. static ssize_t
  3024. clock_source_store(struct device *dev, struct device_attribute *attr,
  3025. const char *buf, size_t count)
  3026. {
  3027. struct ptp_ocp *bp = dev_get_drvdata(dev);
  3028. unsigned long flags;
  3029. int val;
  3030. val = ptp_ocp_select_val_from_name(ptp_ocp_clock, buf);
  3031. if (val < 0)
  3032. return val;
  3033. spin_lock_irqsave(&bp->lock, flags);
  3034. iowrite32(val, &bp->reg->select);
  3035. spin_unlock_irqrestore(&bp->lock, flags);
  3036. return count;
  3037. }
  3038. static DEVICE_ATTR_RW(clock_source);
  3039. static ssize_t
  3040. available_clock_sources_show(struct device *dev,
  3041. struct device_attribute *attr, char *buf)
  3042. {
  3043. return ptp_ocp_select_table_show(ptp_ocp_clock, buf);
  3044. }
  3045. static DEVICE_ATTR_RO(available_clock_sources);
  3046. static ssize_t
  3047. clock_status_drift_show(struct device *dev,
  3048. struct device_attribute *attr, char *buf)
  3049. {
  3050. struct ptp_ocp *bp = dev_get_drvdata(dev);
  3051. u32 val;
  3052. int res;
  3053. val = ioread32(&bp->reg->status_drift);
  3054. res = (val & ~INT_MAX) ? -1 : 1;
  3055. res *= (val & INT_MAX);
  3056. return sysfs_emit(buf, "%d\n", res);
  3057. }
  3058. static DEVICE_ATTR_RO(clock_status_drift);
  3059. static ssize_t
  3060. clock_status_offset_show(struct device *dev,
  3061. struct device_attribute *attr, char *buf)
  3062. {
  3063. struct ptp_ocp *bp = dev_get_drvdata(dev);
  3064. u32 val;
  3065. int res;
  3066. val = ioread32(&bp->reg->status_offset);
  3067. res = (val & ~INT_MAX) ? -1 : 1;
  3068. res *= (val & INT_MAX);
  3069. return sysfs_emit(buf, "%d\n", res);
  3070. }
  3071. static DEVICE_ATTR_RO(clock_status_offset);
  3072. static ssize_t
  3073. tod_correction_show(struct device *dev,
  3074. struct device_attribute *attr, char *buf)
  3075. {
  3076. struct ptp_ocp *bp = dev_get_drvdata(dev);
  3077. u32 val;
  3078. int res;
  3079. val = ioread32(&bp->tod->adj_sec);
  3080. res = (val & ~INT_MAX) ? -1 : 1;
  3081. res *= (val & INT_MAX);
  3082. return sysfs_emit(buf, "%d\n", res);
  3083. }
  3084. static ssize_t
  3085. tod_correction_store(struct device *dev, struct device_attribute *attr,
  3086. const char *buf, size_t count)
  3087. {
  3088. struct ptp_ocp *bp = dev_get_drvdata(dev);
  3089. unsigned long flags;
  3090. int err, res;
  3091. u32 val = 0;
  3092. err = kstrtos32(buf, 0, &res);
  3093. if (err)
  3094. return err;
  3095. if (res < 0) {
  3096. res *= -1;
  3097. val |= BIT(31);
  3098. }
  3099. val |= res;
  3100. spin_lock_irqsave(&bp->lock, flags);
  3101. iowrite32(val, &bp->tod->adj_sec);
  3102. spin_unlock_irqrestore(&bp->lock, flags);
  3103. return count;
  3104. }
  3105. static DEVICE_ATTR_RW(tod_correction);
  3106. #define _DEVICE_SIGNAL_GROUP_ATTRS(_nr) \
  3107. static struct attribute *fb_timecard_signal##_nr##_attrs[] = { \
  3108. &dev_attr_signal##_nr##_signal.attr.attr, \
  3109. &dev_attr_signal##_nr##_duty.attr.attr, \
  3110. &dev_attr_signal##_nr##_phase.attr.attr, \
  3111. &dev_attr_signal##_nr##_period.attr.attr, \
  3112. &dev_attr_signal##_nr##_polarity.attr.attr, \
  3113. &dev_attr_signal##_nr##_running.attr.attr, \
  3114. &dev_attr_signal##_nr##_start.attr.attr, \
  3115. NULL, \
  3116. }
  3117. #define DEVICE_SIGNAL_GROUP(_name, _nr) \
  3118. _DEVICE_SIGNAL_GROUP_ATTRS(_nr); \
  3119. static const struct attribute_group \
  3120. fb_timecard_signal##_nr##_group = { \
  3121. .name = #_name, \
  3122. .attrs = fb_timecard_signal##_nr##_attrs, \
  3123. }
  3124. DEVICE_SIGNAL_GROUP(gen1, 0);
  3125. DEVICE_SIGNAL_GROUP(gen2, 1);
  3126. DEVICE_SIGNAL_GROUP(gen3, 2);
  3127. DEVICE_SIGNAL_GROUP(gen4, 3);
  3128. #define _DEVICE_FREQ_GROUP_ATTRS(_nr) \
  3129. static struct attribute *fb_timecard_freq##_nr##_attrs[] = { \
  3130. &dev_attr_freq##_nr##_seconds.attr.attr, \
  3131. &dev_attr_freq##_nr##_frequency.attr.attr, \
  3132. NULL, \
  3133. }
  3134. #define DEVICE_FREQ_GROUP(_name, _nr) \
  3135. _DEVICE_FREQ_GROUP_ATTRS(_nr); \
  3136. static const struct attribute_group \
  3137. fb_timecard_freq##_nr##_group = { \
  3138. .name = #_name, \
  3139. .attrs = fb_timecard_freq##_nr##_attrs, \
  3140. }
  3141. DEVICE_FREQ_GROUP(freq1, 0);
  3142. DEVICE_FREQ_GROUP(freq2, 1);
  3143. DEVICE_FREQ_GROUP(freq3, 2);
  3144. DEVICE_FREQ_GROUP(freq4, 3);
  3145. static ssize_t
  3146. disciplining_config_read(struct file *filp, struct kobject *kobj,
  3147. struct bin_attribute *bin_attr, char *buf,
  3148. loff_t off, size_t count)
  3149. {
  3150. struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
  3151. size_t size = OCP_ART_CONFIG_SIZE;
  3152. struct nvmem_device *nvmem;
  3153. ssize_t err;
  3154. nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
  3155. if (IS_ERR(nvmem))
  3156. return PTR_ERR(nvmem);
  3157. if (off > size) {
  3158. err = 0;
  3159. goto out;
  3160. }
  3161. if (off + count > size)
  3162. count = size - off;
  3163. // the configuration is in the very beginning of the EEPROM
  3164. err = nvmem_device_read(nvmem, off, count, buf);
  3165. if (err != count) {
  3166. err = -EFAULT;
  3167. goto out;
  3168. }
  3169. out:
  3170. ptp_ocp_nvmem_device_put(&nvmem);
  3171. return err;
  3172. }
  3173. static ssize_t
  3174. disciplining_config_write(struct file *filp, struct kobject *kobj,
  3175. struct bin_attribute *bin_attr, char *buf,
  3176. loff_t off, size_t count)
  3177. {
  3178. struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
  3179. struct nvmem_device *nvmem;
  3180. ssize_t err;
  3181. /* Allow write of the whole area only */
  3182. if (off || count != OCP_ART_CONFIG_SIZE)
  3183. return -EFAULT;
  3184. nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
  3185. if (IS_ERR(nvmem))
  3186. return PTR_ERR(nvmem);
  3187. err = nvmem_device_write(nvmem, 0x00, count, buf);
  3188. if (err != count)
  3189. err = -EFAULT;
  3190. ptp_ocp_nvmem_device_put(&nvmem);
  3191. return err;
  3192. }
  3193. static BIN_ATTR_RW(disciplining_config, OCP_ART_CONFIG_SIZE);
  3194. static ssize_t
  3195. temperature_table_read(struct file *filp, struct kobject *kobj,
  3196. struct bin_attribute *bin_attr, char *buf,
  3197. loff_t off, size_t count)
  3198. {
  3199. struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
  3200. size_t size = OCP_ART_TEMP_TABLE_SIZE;
  3201. struct nvmem_device *nvmem;
  3202. ssize_t err;
  3203. nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
  3204. if (IS_ERR(nvmem))
  3205. return PTR_ERR(nvmem);
  3206. if (off > size) {
  3207. err = 0;
  3208. goto out;
  3209. }
  3210. if (off + count > size)
  3211. count = size - off;
  3212. // the configuration is in the very beginning of the EEPROM
  3213. err = nvmem_device_read(nvmem, 0x90 + off, count, buf);
  3214. if (err != count) {
  3215. err = -EFAULT;
  3216. goto out;
  3217. }
  3218. out:
  3219. ptp_ocp_nvmem_device_put(&nvmem);
  3220. return err;
  3221. }
  3222. static ssize_t
  3223. temperature_table_write(struct file *filp, struct kobject *kobj,
  3224. struct bin_attribute *bin_attr, char *buf,
  3225. loff_t off, size_t count)
  3226. {
  3227. struct ptp_ocp *bp = dev_get_drvdata(kobj_to_dev(kobj));
  3228. struct nvmem_device *nvmem;
  3229. ssize_t err;
  3230. /* Allow write of the whole area only */
  3231. if (off || count != OCP_ART_TEMP_TABLE_SIZE)
  3232. return -EFAULT;
  3233. nvmem = ptp_ocp_nvmem_device_get(bp, NULL);
  3234. if (IS_ERR(nvmem))
  3235. return PTR_ERR(nvmem);
  3236. err = nvmem_device_write(nvmem, 0x90, count, buf);
  3237. if (err != count)
  3238. err = -EFAULT;
  3239. ptp_ocp_nvmem_device_put(&nvmem);
  3240. return err;
  3241. }
  3242. static BIN_ATTR_RW(temperature_table, OCP_ART_TEMP_TABLE_SIZE);
  3243. static struct attribute *fb_timecard_attrs[] = {
  3244. &dev_attr_serialnum.attr,
  3245. &dev_attr_gnss_sync.attr,
  3246. &dev_attr_clock_source.attr,
  3247. &dev_attr_available_clock_sources.attr,
  3248. &dev_attr_sma1.attr,
  3249. &dev_attr_sma2.attr,
  3250. &dev_attr_sma3.attr,
  3251. &dev_attr_sma4.attr,
  3252. &dev_attr_available_sma_inputs.attr,
  3253. &dev_attr_available_sma_outputs.attr,
  3254. &dev_attr_clock_status_drift.attr,
  3255. &dev_attr_clock_status_offset.attr,
  3256. &dev_attr_irig_b_mode.attr,
  3257. &dev_attr_utc_tai_offset.attr,
  3258. &dev_attr_ts_window_adjust.attr,
  3259. &dev_attr_tod_correction.attr,
  3260. NULL,
  3261. };
  3262. static const struct attribute_group fb_timecard_group = {
  3263. .attrs = fb_timecard_attrs,
  3264. };
  3265. static const struct ocp_attr_group fb_timecard_groups[] = {
  3266. { .cap = OCP_CAP_BASIC, .group = &fb_timecard_group },
  3267. { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group },
  3268. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
  3269. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
  3270. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal2_group },
  3271. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal3_group },
  3272. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
  3273. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
  3274. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq2_group },
  3275. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq3_group },
  3276. { },
  3277. };
  3278. static struct attribute *art_timecard_attrs[] = {
  3279. &dev_attr_serialnum.attr,
  3280. &dev_attr_clock_source.attr,
  3281. &dev_attr_available_clock_sources.attr,
  3282. &dev_attr_utc_tai_offset.attr,
  3283. &dev_attr_ts_window_adjust.attr,
  3284. &dev_attr_sma1.attr,
  3285. &dev_attr_sma2.attr,
  3286. &dev_attr_sma3.attr,
  3287. &dev_attr_sma4.attr,
  3288. &dev_attr_available_sma_inputs.attr,
  3289. &dev_attr_available_sma_outputs.attr,
  3290. NULL,
  3291. };
  3292. static struct bin_attribute *bin_art_timecard_attrs[] = {
  3293. &bin_attr_disciplining_config,
  3294. &bin_attr_temperature_table,
  3295. NULL,
  3296. };
  3297. static const struct attribute_group art_timecard_group = {
  3298. .attrs = art_timecard_attrs,
  3299. .bin_attrs = bin_art_timecard_attrs,
  3300. };
  3301. static const struct ocp_attr_group art_timecard_groups[] = {
  3302. { .cap = OCP_CAP_BASIC, .group = &art_timecard_group },
  3303. { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group },
  3304. { },
  3305. };
  3306. static struct attribute *adva_timecard_attrs[] = {
  3307. &dev_attr_serialnum.attr,
  3308. &dev_attr_gnss_sync.attr,
  3309. &dev_attr_clock_source.attr,
  3310. &dev_attr_available_clock_sources.attr,
  3311. &dev_attr_sma1.attr,
  3312. &dev_attr_sma2.attr,
  3313. &dev_attr_sma3.attr,
  3314. &dev_attr_sma4.attr,
  3315. &dev_attr_available_sma_inputs.attr,
  3316. &dev_attr_available_sma_outputs.attr,
  3317. &dev_attr_clock_status_drift.attr,
  3318. &dev_attr_clock_status_offset.attr,
  3319. &dev_attr_ts_window_adjust.attr,
  3320. &dev_attr_tod_correction.attr,
  3321. NULL,
  3322. };
  3323. static const struct attribute_group adva_timecard_group = {
  3324. .attrs = adva_timecard_attrs,
  3325. };
  3326. static const struct ocp_attr_group adva_timecard_groups[] = {
  3327. { .cap = OCP_CAP_BASIC, .group = &adva_timecard_group },
  3328. { .cap = OCP_CAP_BASIC, .group = &ptp_ocp_timecard_tty_group },
  3329. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal0_group },
  3330. { .cap = OCP_CAP_SIGNAL, .group = &fb_timecard_signal1_group },
  3331. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq0_group },
  3332. { .cap = OCP_CAP_FREQ, .group = &fb_timecard_freq1_group },
  3333. { },
  3334. };
  3335. static void
  3336. gpio_input_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit,
  3337. const char *def)
  3338. {
  3339. int i;
  3340. for (i = 0; i < 4; i++) {
  3341. if (bp->sma[i].mode != SMA_MODE_IN)
  3342. continue;
  3343. if (map[i][0] & (1 << bit)) {
  3344. sprintf(buf, "sma%d", i + 1);
  3345. return;
  3346. }
  3347. }
  3348. if (!def)
  3349. def = "----";
  3350. strcpy(buf, def);
  3351. }
  3352. static void
  3353. gpio_output_map(char *buf, struct ptp_ocp *bp, u16 map[][2], u16 bit)
  3354. {
  3355. char *ans = buf;
  3356. int i;
  3357. strcpy(ans, "----");
  3358. for (i = 0; i < 4; i++) {
  3359. if (bp->sma[i].mode != SMA_MODE_OUT)
  3360. continue;
  3361. if (map[i][1] & (1 << bit))
  3362. ans += sprintf(ans, "sma%d ", i + 1);
  3363. }
  3364. }
  3365. static void
  3366. _signal_summary_show(struct seq_file *s, struct ptp_ocp *bp, int nr)
  3367. {
  3368. struct signal_reg __iomem *reg = bp->signal_out[nr]->mem;
  3369. struct ptp_ocp_signal *signal = &bp->signal[nr];
  3370. char label[8];
  3371. bool on;
  3372. u32 val;
  3373. if (!signal)
  3374. return;
  3375. on = signal->running;
  3376. sprintf(label, "GEN%d", nr + 1);
  3377. seq_printf(s, "%7s: %s, period:%llu duty:%d%% phase:%llu pol:%d",
  3378. label, on ? " ON" : "OFF",
  3379. signal->period, signal->duty, signal->phase,
  3380. signal->polarity);
  3381. val = ioread32(&reg->enable);
  3382. seq_printf(s, " [%x", val);
  3383. val = ioread32(&reg->status);
  3384. seq_printf(s, " %x]", val);
  3385. seq_printf(s, " start:%llu\n", signal->start);
  3386. }
  3387. static void
  3388. _frequency_summary_show(struct seq_file *s, int nr,
  3389. struct frequency_reg __iomem *reg)
  3390. {
  3391. char label[8];
  3392. bool on;
  3393. u32 val;
  3394. if (!reg)
  3395. return;
  3396. sprintf(label, "FREQ%d", nr + 1);
  3397. val = ioread32(&reg->ctrl);
  3398. on = val & 1;
  3399. val = (val >> 8) & 0xff;
  3400. seq_printf(s, "%7s: %s, sec:%u",
  3401. label,
  3402. on ? " ON" : "OFF",
  3403. val);
  3404. val = ioread32(&reg->status);
  3405. if (val & FREQ_STATUS_ERROR)
  3406. seq_printf(s, ", error");
  3407. if (val & FREQ_STATUS_OVERRUN)
  3408. seq_printf(s, ", overrun");
  3409. if (val & FREQ_STATUS_VALID)
  3410. seq_printf(s, ", freq %lu Hz", val & FREQ_STATUS_MASK);
  3411. seq_printf(s, " reg:%x\n", val);
  3412. }
  3413. static int
  3414. ptp_ocp_summary_show(struct seq_file *s, void *data)
  3415. {
  3416. struct device *dev = s->private;
  3417. struct ptp_system_timestamp sts;
  3418. struct ts_reg __iomem *ts_reg;
  3419. char *buf, *src, *mac_src;
  3420. struct timespec64 ts;
  3421. struct ptp_ocp *bp;
  3422. u16 sma_val[4][2];
  3423. u32 ctrl, val;
  3424. bool on, map;
  3425. int i;
  3426. buf = (char *)__get_free_page(GFP_KERNEL);
  3427. if (!buf)
  3428. return -ENOMEM;
  3429. bp = dev_get_drvdata(dev);
  3430. seq_printf(s, "%7s: /dev/ptp%d\n", "PTP", ptp_clock_index(bp->ptp));
  3431. for (i = 0; i < __PORT_COUNT; i++) {
  3432. if (bp->port[i].line != -1)
  3433. seq_printf(s, "%7s: /dev/ttyS%d\n", ptp_ocp_tty_port_name(i),
  3434. bp->port[i].line);
  3435. }
  3436. memset(sma_val, 0xff, sizeof(sma_val));
  3437. if (bp->sma_map1) {
  3438. u32 reg;
  3439. reg = ioread32(&bp->sma_map1->gpio1);
  3440. sma_val[0][0] = reg & 0xffff;
  3441. sma_val[1][0] = reg >> 16;
  3442. reg = ioread32(&bp->sma_map1->gpio2);
  3443. sma_val[2][1] = reg & 0xffff;
  3444. sma_val[3][1] = reg >> 16;
  3445. reg = ioread32(&bp->sma_map2->gpio1);
  3446. sma_val[2][0] = reg & 0xffff;
  3447. sma_val[3][0] = reg >> 16;
  3448. reg = ioread32(&bp->sma_map2->gpio2);
  3449. sma_val[0][1] = reg & 0xffff;
  3450. sma_val[1][1] = reg >> 16;
  3451. }
  3452. sma1_show(dev, NULL, buf);
  3453. seq_printf(s, " sma1: %04x,%04x %s",
  3454. sma_val[0][0], sma_val[0][1], buf);
  3455. sma2_show(dev, NULL, buf);
  3456. seq_printf(s, " sma2: %04x,%04x %s",
  3457. sma_val[1][0], sma_val[1][1], buf);
  3458. sma3_show(dev, NULL, buf);
  3459. seq_printf(s, " sma3: %04x,%04x %s",
  3460. sma_val[2][0], sma_val[2][1], buf);
  3461. sma4_show(dev, NULL, buf);
  3462. seq_printf(s, " sma4: %04x,%04x %s",
  3463. sma_val[3][0], sma_val[3][1], buf);
  3464. if (bp->ts0) {
  3465. ts_reg = bp->ts0->mem;
  3466. on = ioread32(&ts_reg->enable);
  3467. src = "GNSS1";
  3468. seq_printf(s, "%7s: %s, src: %s\n", "TS0",
  3469. on ? " ON" : "OFF", src);
  3470. }
  3471. if (bp->ts1) {
  3472. ts_reg = bp->ts1->mem;
  3473. on = ioread32(&ts_reg->enable);
  3474. gpio_input_map(buf, bp, sma_val, 2, NULL);
  3475. seq_printf(s, "%7s: %s, src: %s\n", "TS1",
  3476. on ? " ON" : "OFF", buf);
  3477. }
  3478. if (bp->ts2) {
  3479. ts_reg = bp->ts2->mem;
  3480. on = ioread32(&ts_reg->enable);
  3481. gpio_input_map(buf, bp, sma_val, 3, NULL);
  3482. seq_printf(s, "%7s: %s, src: %s\n", "TS2",
  3483. on ? " ON" : "OFF", buf);
  3484. }
  3485. if (bp->ts3) {
  3486. ts_reg = bp->ts3->mem;
  3487. on = ioread32(&ts_reg->enable);
  3488. gpio_input_map(buf, bp, sma_val, 6, NULL);
  3489. seq_printf(s, "%7s: %s, src: %s\n", "TS3",
  3490. on ? " ON" : "OFF", buf);
  3491. }
  3492. if (bp->ts4) {
  3493. ts_reg = bp->ts4->mem;
  3494. on = ioread32(&ts_reg->enable);
  3495. gpio_input_map(buf, bp, sma_val, 7, NULL);
  3496. seq_printf(s, "%7s: %s, src: %s\n", "TS4",
  3497. on ? " ON" : "OFF", buf);
  3498. }
  3499. if (bp->pps) {
  3500. ts_reg = bp->pps->mem;
  3501. src = "PHC";
  3502. on = ioread32(&ts_reg->enable);
  3503. map = !!(bp->pps_req_map & OCP_REQ_TIMESTAMP);
  3504. seq_printf(s, "%7s: %s, src: %s\n", "TS5",
  3505. on && map ? " ON" : "OFF", src);
  3506. map = !!(bp->pps_req_map & OCP_REQ_PPS);
  3507. seq_printf(s, "%7s: %s, src: %s\n", "PPS",
  3508. on && map ? " ON" : "OFF", src);
  3509. }
  3510. if (bp->fw_cap & OCP_CAP_SIGNAL)
  3511. for (i = 0; i < 4; i++)
  3512. _signal_summary_show(s, bp, i);
  3513. if (bp->fw_cap & OCP_CAP_FREQ)
  3514. for (i = 0; i < 4; i++)
  3515. _frequency_summary_show(s, i, bp->freq_in[i]);
  3516. if (bp->irig_out) {
  3517. ctrl = ioread32(&bp->irig_out->ctrl);
  3518. on = ctrl & IRIG_M_CTRL_ENABLE;
  3519. val = ioread32(&bp->irig_out->status);
  3520. gpio_output_map(buf, bp, sma_val, 4);
  3521. seq_printf(s, "%7s: %s, error: %d, mode %d, out: %s\n", "IRIG",
  3522. on ? " ON" : "OFF", val, (ctrl >> 16), buf);
  3523. }
  3524. if (bp->irig_in) {
  3525. on = ioread32(&bp->irig_in->ctrl) & IRIG_S_CTRL_ENABLE;
  3526. val = ioread32(&bp->irig_in->status);
  3527. gpio_input_map(buf, bp, sma_val, 4, NULL);
  3528. seq_printf(s, "%7s: %s, error: %d, src: %s\n", "IRIG in",
  3529. on ? " ON" : "OFF", val, buf);
  3530. }
  3531. if (bp->dcf_out) {
  3532. on = ioread32(&bp->dcf_out->ctrl) & DCF_M_CTRL_ENABLE;
  3533. val = ioread32(&bp->dcf_out->status);
  3534. gpio_output_map(buf, bp, sma_val, 5);
  3535. seq_printf(s, "%7s: %s, error: %d, out: %s\n", "DCF",
  3536. on ? " ON" : "OFF", val, buf);
  3537. }
  3538. if (bp->dcf_in) {
  3539. on = ioread32(&bp->dcf_in->ctrl) & DCF_S_CTRL_ENABLE;
  3540. val = ioread32(&bp->dcf_in->status);
  3541. gpio_input_map(buf, bp, sma_val, 5, NULL);
  3542. seq_printf(s, "%7s: %s, error: %d, src: %s\n", "DCF in",
  3543. on ? " ON" : "OFF", val, buf);
  3544. }
  3545. if (bp->nmea_out) {
  3546. on = ioread32(&bp->nmea_out->ctrl) & 1;
  3547. val = ioread32(&bp->nmea_out->status);
  3548. seq_printf(s, "%7s: %s, error: %d\n", "NMEA",
  3549. on ? " ON" : "OFF", val);
  3550. }
  3551. /* compute src for PPS1, used below. */
  3552. if (bp->pps_select) {
  3553. val = ioread32(&bp->pps_select->gpio1);
  3554. src = &buf[80];
  3555. mac_src = "GNSS1";
  3556. if (val & 0x01) {
  3557. gpio_input_map(src, bp, sma_val, 0, NULL);
  3558. mac_src = src;
  3559. } else if (val & 0x02) {
  3560. src = "MAC";
  3561. } else if (val & 0x04) {
  3562. src = "GNSS1";
  3563. } else {
  3564. src = "----";
  3565. mac_src = src;
  3566. }
  3567. } else {
  3568. src = "?";
  3569. mac_src = src;
  3570. }
  3571. seq_printf(s, "MAC PPS1 src: %s\n", mac_src);
  3572. gpio_input_map(buf, bp, sma_val, 1, "GNSS2");
  3573. seq_printf(s, "MAC PPS2 src: %s\n", buf);
  3574. /* assumes automatic switchover/selection */
  3575. val = ioread32(&bp->reg->select);
  3576. switch (val >> 16) {
  3577. case 0:
  3578. sprintf(buf, "----");
  3579. break;
  3580. case 2:
  3581. sprintf(buf, "IRIG");
  3582. break;
  3583. case 3:
  3584. sprintf(buf, "%s via PPS1", src);
  3585. break;
  3586. case 6:
  3587. sprintf(buf, "DCF");
  3588. break;
  3589. default:
  3590. strcpy(buf, "unknown");
  3591. break;
  3592. }
  3593. seq_printf(s, "%7s: %s, state: %s\n", "PHC src", buf,
  3594. bp->sync ? "sync" : "unsynced");
  3595. if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, &sts)) {
  3596. struct timespec64 sys_ts;
  3597. s64 pre_ns, post_ns, ns;
  3598. pre_ns = timespec64_to_ns(&sts.pre_ts);
  3599. post_ns = timespec64_to_ns(&sts.post_ts);
  3600. ns = (pre_ns + post_ns) / 2;
  3601. ns += (s64)bp->utc_tai_offset * NSEC_PER_SEC;
  3602. sys_ts = ns_to_timespec64(ns);
  3603. seq_printf(s, "%7s: %lld.%ld == %ptT TAI\n", "PHC",
  3604. ts.tv_sec, ts.tv_nsec, &ts);
  3605. seq_printf(s, "%7s: %lld.%ld == %ptT UTC offset %d\n", "SYS",
  3606. sys_ts.tv_sec, sys_ts.tv_nsec, &sys_ts,
  3607. bp->utc_tai_offset);
  3608. seq_printf(s, "%7s: PHC:SYS offset: %lld window: %lld\n", "",
  3609. timespec64_to_ns(&ts) - ns,
  3610. post_ns - pre_ns);
  3611. }
  3612. free_page((unsigned long)buf);
  3613. return 0;
  3614. }
  3615. DEFINE_SHOW_ATTRIBUTE(ptp_ocp_summary);
  3616. static int
  3617. ptp_ocp_tod_status_show(struct seq_file *s, void *data)
  3618. {
  3619. struct device *dev = s->private;
  3620. struct ptp_ocp *bp;
  3621. u32 val;
  3622. int idx;
  3623. bp = dev_get_drvdata(dev);
  3624. val = ioread32(&bp->tod->ctrl);
  3625. if (!(val & TOD_CTRL_ENABLE)) {
  3626. seq_printf(s, "TOD Slave disabled\n");
  3627. return 0;
  3628. }
  3629. seq_printf(s, "TOD Slave enabled, Control Register 0x%08X\n", val);
  3630. idx = val & TOD_CTRL_PROTOCOL ? 4 : 0;
  3631. idx += (val >> 16) & 3;
  3632. seq_printf(s, "Protocol %s\n", ptp_ocp_tod_proto_name(idx));
  3633. idx = (val >> TOD_CTRL_GNSS_SHIFT) & TOD_CTRL_GNSS_MASK;
  3634. seq_printf(s, "GNSS %s\n", ptp_ocp_tod_gnss_name(idx));
  3635. val = ioread32(&bp->tod->version);
  3636. seq_printf(s, "TOD Version %d.%d.%d\n",
  3637. val >> 24, (val >> 16) & 0xff, val & 0xffff);
  3638. val = ioread32(&bp->tod->status);
  3639. seq_printf(s, "Status register: 0x%08X\n", val);
  3640. val = ioread32(&bp->tod->adj_sec);
  3641. idx = (val & ~INT_MAX) ? -1 : 1;
  3642. idx *= (val & INT_MAX);
  3643. seq_printf(s, "Correction seconds: %d\n", idx);
  3644. val = ioread32(&bp->tod->utc_status);
  3645. seq_printf(s, "UTC status register: 0x%08X\n", val);
  3646. seq_printf(s, "UTC offset: %ld valid:%d\n",
  3647. val & TOD_STATUS_UTC_MASK, val & TOD_STATUS_UTC_VALID ? 1 : 0);
  3648. seq_printf(s, "Leap second info valid:%d, Leap second announce %d\n",
  3649. val & TOD_STATUS_LEAP_VALID ? 1 : 0,
  3650. val & TOD_STATUS_LEAP_ANNOUNCE ? 1 : 0);
  3651. val = ioread32(&bp->tod->leap);
  3652. seq_printf(s, "Time to next leap second (in sec): %d\n", (s32) val);
  3653. return 0;
  3654. }
  3655. DEFINE_SHOW_ATTRIBUTE(ptp_ocp_tod_status);
  3656. static struct dentry *ptp_ocp_debugfs_root;
  3657. static void
  3658. ptp_ocp_debugfs_add_device(struct ptp_ocp *bp)
  3659. {
  3660. struct dentry *d;
  3661. d = debugfs_create_dir(dev_name(&bp->dev), ptp_ocp_debugfs_root);
  3662. bp->debug_root = d;
  3663. debugfs_create_file("summary", 0444, bp->debug_root,
  3664. &bp->dev, &ptp_ocp_summary_fops);
  3665. if (bp->tod)
  3666. debugfs_create_file("tod_status", 0444, bp->debug_root,
  3667. &bp->dev, &ptp_ocp_tod_status_fops);
  3668. }
  3669. static void
  3670. ptp_ocp_debugfs_remove_device(struct ptp_ocp *bp)
  3671. {
  3672. debugfs_remove_recursive(bp->debug_root);
  3673. }
  3674. static void
  3675. ptp_ocp_debugfs_init(void)
  3676. {
  3677. ptp_ocp_debugfs_root = debugfs_create_dir("timecard", NULL);
  3678. }
  3679. static void
  3680. ptp_ocp_debugfs_fini(void)
  3681. {
  3682. debugfs_remove_recursive(ptp_ocp_debugfs_root);
  3683. }
  3684. static void
  3685. ptp_ocp_dev_release(struct device *dev)
  3686. {
  3687. struct ptp_ocp *bp = dev_get_drvdata(dev);
  3688. mutex_lock(&ptp_ocp_lock);
  3689. idr_remove(&ptp_ocp_idr, bp->id);
  3690. mutex_unlock(&ptp_ocp_lock);
  3691. }
  3692. static int
  3693. ptp_ocp_device_init(struct ptp_ocp *bp, struct pci_dev *pdev)
  3694. {
  3695. int i, err;
  3696. mutex_lock(&ptp_ocp_lock);
  3697. err = idr_alloc(&ptp_ocp_idr, bp, 0, 0, GFP_KERNEL);
  3698. mutex_unlock(&ptp_ocp_lock);
  3699. if (err < 0) {
  3700. dev_err(&pdev->dev, "idr_alloc failed: %d\n", err);
  3701. return err;
  3702. }
  3703. bp->id = err;
  3704. bp->ptp_info = ptp_ocp_clock_info;
  3705. spin_lock_init(&bp->lock);
  3706. for (i = 0; i < __PORT_COUNT; i++)
  3707. bp->port[i].line = -1;
  3708. bp->pdev = pdev;
  3709. device_initialize(&bp->dev);
  3710. dev_set_name(&bp->dev, "ocp%d", bp->id);
  3711. bp->dev.class = &timecard_class;
  3712. bp->dev.parent = &pdev->dev;
  3713. bp->dev.release = ptp_ocp_dev_release;
  3714. dev_set_drvdata(&bp->dev, bp);
  3715. err = device_add(&bp->dev);
  3716. if (err) {
  3717. dev_err(&bp->dev, "device add failed: %d\n", err);
  3718. goto out;
  3719. }
  3720. pci_set_drvdata(pdev, bp);
  3721. return 0;
  3722. out:
  3723. put_device(&bp->dev);
  3724. return err;
  3725. }
  3726. static void
  3727. ptp_ocp_symlink(struct ptp_ocp *bp, struct device *child, const char *link)
  3728. {
  3729. struct device *dev = &bp->dev;
  3730. if (sysfs_create_link(&dev->kobj, &child->kobj, link))
  3731. dev_err(dev, "%s symlink failed\n", link);
  3732. }
  3733. static void
  3734. ptp_ocp_link_child(struct ptp_ocp *bp, const char *name, const char *link)
  3735. {
  3736. struct device *dev, *child;
  3737. dev = &bp->pdev->dev;
  3738. child = device_find_child_by_name(dev, name);
  3739. if (!child) {
  3740. dev_err(dev, "Could not find device %s\n", name);
  3741. return;
  3742. }
  3743. ptp_ocp_symlink(bp, child, link);
  3744. put_device(child);
  3745. }
  3746. static int
  3747. ptp_ocp_complete(struct ptp_ocp *bp)
  3748. {
  3749. struct pps_device *pps;
  3750. char buf[32];
  3751. sprintf(buf, "ptp%d", ptp_clock_index(bp->ptp));
  3752. ptp_ocp_link_child(bp, buf, "ptp");
  3753. pps = pps_lookup_dev(bp->ptp);
  3754. if (pps)
  3755. ptp_ocp_symlink(bp, &pps->dev, "pps");
  3756. ptp_ocp_debugfs_add_device(bp);
  3757. return 0;
  3758. }
  3759. static void
  3760. ptp_ocp_phc_info(struct ptp_ocp *bp)
  3761. {
  3762. struct timespec64 ts;
  3763. u32 version, select;
  3764. version = ioread32(&bp->reg->version);
  3765. select = ioread32(&bp->reg->select);
  3766. dev_info(&bp->pdev->dev, "Version %d.%d.%d, clock %s, device ptp%d\n",
  3767. version >> 24, (version >> 16) & 0xff, version & 0xffff,
  3768. ptp_ocp_select_name_from_val(ptp_ocp_clock, select >> 16),
  3769. ptp_clock_index(bp->ptp));
  3770. if (!ptp_ocp_gettimex(&bp->ptp_info, &ts, NULL))
  3771. dev_info(&bp->pdev->dev, "Time: %lld.%ld, %s\n",
  3772. ts.tv_sec, ts.tv_nsec,
  3773. bp->sync ? "in-sync" : "UNSYNCED");
  3774. }
  3775. static void
  3776. ptp_ocp_serial_info(struct device *dev, const char *name, int port, int baud)
  3777. {
  3778. if (port != -1)
  3779. dev_info(dev, "%5s: /dev/ttyS%-2d @ %6d\n", name, port, baud);
  3780. }
  3781. static void
  3782. ptp_ocp_info(struct ptp_ocp *bp)
  3783. {
  3784. static int nmea_baud[] = {
  3785. 1200, 2400, 4800, 9600, 19200, 38400,
  3786. 57600, 115200, 230400, 460800, 921600,
  3787. 1000000, 2000000
  3788. };
  3789. struct device *dev = &bp->pdev->dev;
  3790. u32 reg;
  3791. int i;
  3792. ptp_ocp_phc_info(bp);
  3793. for (i = 0; i < __PORT_COUNT; i++) {
  3794. if (i == PORT_NMEA && bp->nmea_out && bp->port[PORT_NMEA].line != -1) {
  3795. bp->port[PORT_NMEA].baud = -1;
  3796. reg = ioread32(&bp->nmea_out->uart_baud);
  3797. if (reg < ARRAY_SIZE(nmea_baud))
  3798. bp->port[PORT_NMEA].baud = nmea_baud[reg];
  3799. }
  3800. ptp_ocp_serial_info(dev, ptp_ocp_tty_port_name(i), bp->port[i].line,
  3801. bp->port[i].baud);
  3802. }
  3803. }
  3804. static void
  3805. ptp_ocp_detach_sysfs(struct ptp_ocp *bp)
  3806. {
  3807. struct device *dev = &bp->dev;
  3808. sysfs_remove_link(&dev->kobj, "ptp");
  3809. sysfs_remove_link(&dev->kobj, "pps");
  3810. }
  3811. static void
  3812. ptp_ocp_detach(struct ptp_ocp *bp)
  3813. {
  3814. int i;
  3815. ptp_ocp_debugfs_remove_device(bp);
  3816. ptp_ocp_detach_sysfs(bp);
  3817. ptp_ocp_attr_group_del(bp);
  3818. if (timer_pending(&bp->watchdog))
  3819. del_timer_sync(&bp->watchdog);
  3820. if (bp->ts0)
  3821. ptp_ocp_unregister_ext(bp->ts0);
  3822. if (bp->ts1)
  3823. ptp_ocp_unregister_ext(bp->ts1);
  3824. if (bp->ts2)
  3825. ptp_ocp_unregister_ext(bp->ts2);
  3826. if (bp->ts3)
  3827. ptp_ocp_unregister_ext(bp->ts3);
  3828. if (bp->ts4)
  3829. ptp_ocp_unregister_ext(bp->ts4);
  3830. if (bp->pps)
  3831. ptp_ocp_unregister_ext(bp->pps);
  3832. for (i = 0; i < 4; i++)
  3833. if (bp->signal_out[i])
  3834. ptp_ocp_unregister_ext(bp->signal_out[i]);
  3835. for (i = 0; i < __PORT_COUNT; i++)
  3836. if (bp->port[i].line != -1)
  3837. serial8250_unregister_port(bp->port[i].line);
  3838. platform_device_unregister(bp->spi_flash);
  3839. platform_device_unregister(bp->i2c_ctrl);
  3840. if (bp->i2c_clk)
  3841. clk_hw_unregister_fixed_rate(bp->i2c_clk);
  3842. if (bp->n_irqs)
  3843. pci_free_irq_vectors(bp->pdev);
  3844. if (bp->ptp)
  3845. ptp_clock_unregister(bp->ptp);
  3846. kfree(bp->ptp_info.pin_config);
  3847. device_unregister(&bp->dev);
  3848. }
  3849. static int
  3850. ptp_ocp_dpll_lock_status_get(const struct dpll_device *dpll, void *priv,
  3851. enum dpll_lock_status *status,
  3852. enum dpll_lock_status_error *status_error,
  3853. struct netlink_ext_ack *extack)
  3854. {
  3855. struct ptp_ocp *bp = priv;
  3856. *status = bp->sync ? DPLL_LOCK_STATUS_LOCKED : DPLL_LOCK_STATUS_UNLOCKED;
  3857. return 0;
  3858. }
  3859. static int ptp_ocp_dpll_state_get(const struct dpll_pin *pin, void *pin_priv,
  3860. const struct dpll_device *dpll, void *priv,
  3861. enum dpll_pin_state *state,
  3862. struct netlink_ext_ack *extack)
  3863. {
  3864. struct ptp_ocp *bp = priv;
  3865. int idx;
  3866. if (bp->pps_select) {
  3867. idx = ioread32(&bp->pps_select->gpio1);
  3868. *state = (&bp->sma[idx] == pin_priv) ? DPLL_PIN_STATE_CONNECTED :
  3869. DPLL_PIN_STATE_SELECTABLE;
  3870. return 0;
  3871. }
  3872. NL_SET_ERR_MSG(extack, "pin selection is not supported on current HW");
  3873. return -EINVAL;
  3874. }
  3875. static int ptp_ocp_dpll_mode_get(const struct dpll_device *dpll, void *priv,
  3876. enum dpll_mode *mode, struct netlink_ext_ack *extack)
  3877. {
  3878. *mode = DPLL_MODE_AUTOMATIC;
  3879. return 0;
  3880. }
  3881. static int ptp_ocp_dpll_direction_get(const struct dpll_pin *pin,
  3882. void *pin_priv,
  3883. const struct dpll_device *dpll,
  3884. void *priv,
  3885. enum dpll_pin_direction *direction,
  3886. struct netlink_ext_ack *extack)
  3887. {
  3888. struct ptp_ocp_sma_connector *sma = pin_priv;
  3889. *direction = sma->mode == SMA_MODE_IN ?
  3890. DPLL_PIN_DIRECTION_INPUT :
  3891. DPLL_PIN_DIRECTION_OUTPUT;
  3892. return 0;
  3893. }
  3894. static int ptp_ocp_dpll_direction_set(const struct dpll_pin *pin,
  3895. void *pin_priv,
  3896. const struct dpll_device *dpll,
  3897. void *dpll_priv,
  3898. enum dpll_pin_direction direction,
  3899. struct netlink_ext_ack *extack)
  3900. {
  3901. struct ptp_ocp_sma_connector *sma = pin_priv;
  3902. struct ptp_ocp *bp = dpll_priv;
  3903. enum ptp_ocp_sma_mode mode;
  3904. int sma_nr = (sma - bp->sma);
  3905. if (sma->fixed_dir)
  3906. return -EOPNOTSUPP;
  3907. mode = direction == DPLL_PIN_DIRECTION_INPUT ?
  3908. SMA_MODE_IN : SMA_MODE_OUT;
  3909. return ptp_ocp_sma_store_val(bp, 0, mode, sma_nr + 1);
  3910. }
  3911. static int ptp_ocp_dpll_frequency_set(const struct dpll_pin *pin,
  3912. void *pin_priv,
  3913. const struct dpll_device *dpll,
  3914. void *dpll_priv, u64 frequency,
  3915. struct netlink_ext_ack *extack)
  3916. {
  3917. struct ptp_ocp_sma_connector *sma = pin_priv;
  3918. struct ptp_ocp *bp = dpll_priv;
  3919. const struct ocp_selector *tbl;
  3920. int sma_nr = (sma - bp->sma);
  3921. int i;
  3922. if (sma->fixed_fcn)
  3923. return -EOPNOTSUPP;
  3924. tbl = bp->sma_op->tbl[sma->mode];
  3925. for (i = 0; tbl[i].name; i++)
  3926. if (tbl[i].frequency == frequency)
  3927. return ptp_ocp_sma_store_val(bp, i, sma->mode, sma_nr + 1);
  3928. return -EINVAL;
  3929. }
  3930. static int ptp_ocp_dpll_frequency_get(const struct dpll_pin *pin,
  3931. void *pin_priv,
  3932. const struct dpll_device *dpll,
  3933. void *dpll_priv, u64 *frequency,
  3934. struct netlink_ext_ack *extack)
  3935. {
  3936. struct ptp_ocp_sma_connector *sma = pin_priv;
  3937. struct ptp_ocp *bp = dpll_priv;
  3938. const struct ocp_selector *tbl;
  3939. int sma_nr = (sma - bp->sma);
  3940. u32 val;
  3941. int i;
  3942. val = bp->sma_op->get(bp, sma_nr + 1);
  3943. tbl = bp->sma_op->tbl[sma->mode];
  3944. for (i = 0; tbl[i].name; i++)
  3945. if (val == tbl[i].value) {
  3946. *frequency = tbl[i].frequency;
  3947. return 0;
  3948. }
  3949. return -EINVAL;
  3950. }
  3951. static const struct dpll_device_ops dpll_ops = {
  3952. .lock_status_get = ptp_ocp_dpll_lock_status_get,
  3953. .mode_get = ptp_ocp_dpll_mode_get,
  3954. };
  3955. static const struct dpll_pin_ops dpll_pins_ops = {
  3956. .frequency_get = ptp_ocp_dpll_frequency_get,
  3957. .frequency_set = ptp_ocp_dpll_frequency_set,
  3958. .direction_get = ptp_ocp_dpll_direction_get,
  3959. .direction_set = ptp_ocp_dpll_direction_set,
  3960. .state_on_dpll_get = ptp_ocp_dpll_state_get,
  3961. };
  3962. static void
  3963. ptp_ocp_sync_work(struct work_struct *work)
  3964. {
  3965. struct ptp_ocp *bp;
  3966. bool sync;
  3967. bp = container_of(work, struct ptp_ocp, sync_work.work);
  3968. sync = !!(ioread32(&bp->reg->status) & OCP_STATUS_IN_SYNC);
  3969. if (bp->sync != sync)
  3970. dpll_device_change_ntf(bp->dpll);
  3971. bp->sync = sync;
  3972. queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
  3973. }
  3974. static int
  3975. ptp_ocp_probe(struct pci_dev *pdev, const struct pci_device_id *id)
  3976. {
  3977. struct devlink *devlink;
  3978. struct ptp_ocp *bp;
  3979. int err, i;
  3980. u64 clkid;
  3981. devlink = devlink_alloc(&ptp_ocp_devlink_ops, sizeof(*bp), &pdev->dev);
  3982. if (!devlink) {
  3983. dev_err(&pdev->dev, "devlink_alloc failed\n");
  3984. return -ENOMEM;
  3985. }
  3986. err = pci_enable_device(pdev);
  3987. if (err) {
  3988. dev_err(&pdev->dev, "pci_enable_device\n");
  3989. goto out_free;
  3990. }
  3991. bp = devlink_priv(devlink);
  3992. err = ptp_ocp_device_init(bp, pdev);
  3993. if (err)
  3994. goto out_disable;
  3995. INIT_DELAYED_WORK(&bp->sync_work, ptp_ocp_sync_work);
  3996. /* compat mode.
  3997. * Older FPGA firmware only returns 2 irq's.
  3998. * allow this - if not all of the IRQ's are returned, skip the
  3999. * extra devices and just register the clock.
  4000. */
  4001. err = pci_alloc_irq_vectors(pdev, 1, 17, PCI_IRQ_MSI | PCI_IRQ_MSIX);
  4002. if (err < 0) {
  4003. dev_err(&pdev->dev, "alloc_irq_vectors err: %d\n", err);
  4004. goto out;
  4005. }
  4006. bp->n_irqs = err;
  4007. pci_set_master(pdev);
  4008. err = ptp_ocp_register_resources(bp, id->driver_data);
  4009. if (err)
  4010. goto out;
  4011. bp->ptp = ptp_clock_register(&bp->ptp_info, &pdev->dev);
  4012. if (IS_ERR(bp->ptp)) {
  4013. err = PTR_ERR(bp->ptp);
  4014. dev_err(&pdev->dev, "ptp_clock_register: %d\n", err);
  4015. bp->ptp = NULL;
  4016. goto out;
  4017. }
  4018. err = ptp_ocp_complete(bp);
  4019. if (err)
  4020. goto out;
  4021. ptp_ocp_info(bp);
  4022. devlink_register(devlink);
  4023. clkid = pci_get_dsn(pdev);
  4024. bp->dpll = dpll_device_get(clkid, 0, THIS_MODULE);
  4025. if (IS_ERR(bp->dpll)) {
  4026. err = PTR_ERR(bp->dpll);
  4027. dev_err(&pdev->dev, "dpll_device_alloc failed\n");
  4028. goto out;
  4029. }
  4030. err = dpll_device_register(bp->dpll, DPLL_TYPE_PPS, &dpll_ops, bp);
  4031. if (err)
  4032. goto out;
  4033. for (i = 0; i < OCP_SMA_NUM; i++) {
  4034. bp->sma[i].dpll_pin = dpll_pin_get(clkid, i, THIS_MODULE, &bp->sma[i].dpll_prop);
  4035. if (IS_ERR(bp->sma[i].dpll_pin)) {
  4036. err = PTR_ERR(bp->sma[i].dpll_pin);
  4037. goto out_dpll;
  4038. }
  4039. err = dpll_pin_register(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops,
  4040. &bp->sma[i]);
  4041. if (err) {
  4042. dpll_pin_put(bp->sma[i].dpll_pin);
  4043. goto out_dpll;
  4044. }
  4045. }
  4046. queue_delayed_work(system_power_efficient_wq, &bp->sync_work, HZ);
  4047. return 0;
  4048. out_dpll:
  4049. while (i) {
  4050. --i;
  4051. dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
  4052. dpll_pin_put(bp->sma[i].dpll_pin);
  4053. }
  4054. dpll_device_put(bp->dpll);
  4055. out:
  4056. ptp_ocp_detach(bp);
  4057. out_disable:
  4058. pci_disable_device(pdev);
  4059. out_free:
  4060. devlink_free(devlink);
  4061. return err;
  4062. }
  4063. static void
  4064. ptp_ocp_remove(struct pci_dev *pdev)
  4065. {
  4066. struct ptp_ocp *bp = pci_get_drvdata(pdev);
  4067. struct devlink *devlink = priv_to_devlink(bp);
  4068. int i;
  4069. cancel_delayed_work_sync(&bp->sync_work);
  4070. for (i = 0; i < OCP_SMA_NUM; i++) {
  4071. if (bp->sma[i].dpll_pin) {
  4072. dpll_pin_unregister(bp->dpll, bp->sma[i].dpll_pin, &dpll_pins_ops, &bp->sma[i]);
  4073. dpll_pin_put(bp->sma[i].dpll_pin);
  4074. }
  4075. }
  4076. dpll_device_unregister(bp->dpll, &dpll_ops, bp);
  4077. dpll_device_put(bp->dpll);
  4078. devlink_unregister(devlink);
  4079. ptp_ocp_detach(bp);
  4080. pci_disable_device(pdev);
  4081. devlink_free(devlink);
  4082. }
  4083. static struct pci_driver ptp_ocp_driver = {
  4084. .name = KBUILD_MODNAME,
  4085. .id_table = ptp_ocp_pcidev_id,
  4086. .probe = ptp_ocp_probe,
  4087. .remove = ptp_ocp_remove,
  4088. };
  4089. static int
  4090. ptp_ocp_i2c_notifier_call(struct notifier_block *nb,
  4091. unsigned long action, void *data)
  4092. {
  4093. struct device *dev, *child = data;
  4094. struct ptp_ocp *bp;
  4095. bool add;
  4096. switch (action) {
  4097. case BUS_NOTIFY_ADD_DEVICE:
  4098. case BUS_NOTIFY_DEL_DEVICE:
  4099. add = action == BUS_NOTIFY_ADD_DEVICE;
  4100. break;
  4101. default:
  4102. return 0;
  4103. }
  4104. if (!i2c_verify_adapter(child))
  4105. return 0;
  4106. dev = child;
  4107. while ((dev = dev->parent))
  4108. if (dev->driver && !strcmp(dev->driver->name, KBUILD_MODNAME))
  4109. goto found;
  4110. return 0;
  4111. found:
  4112. bp = dev_get_drvdata(dev);
  4113. if (add)
  4114. ptp_ocp_symlink(bp, child, "i2c");
  4115. else
  4116. sysfs_remove_link(&bp->dev.kobj, "i2c");
  4117. return 0;
  4118. }
  4119. static struct notifier_block ptp_ocp_i2c_notifier = {
  4120. .notifier_call = ptp_ocp_i2c_notifier_call,
  4121. };
  4122. static int __init
  4123. ptp_ocp_init(void)
  4124. {
  4125. const char *what;
  4126. int err;
  4127. ptp_ocp_debugfs_init();
  4128. what = "timecard class";
  4129. err = class_register(&timecard_class);
  4130. if (err)
  4131. goto out;
  4132. what = "i2c notifier";
  4133. err = bus_register_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
  4134. if (err)
  4135. goto out_notifier;
  4136. what = "ptp_ocp driver";
  4137. err = pci_register_driver(&ptp_ocp_driver);
  4138. if (err)
  4139. goto out_register;
  4140. return 0;
  4141. out_register:
  4142. bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
  4143. out_notifier:
  4144. class_unregister(&timecard_class);
  4145. out:
  4146. ptp_ocp_debugfs_fini();
  4147. pr_err(KBUILD_MODNAME ": failed to register %s: %d\n", what, err);
  4148. return err;
  4149. }
  4150. static void __exit
  4151. ptp_ocp_fini(void)
  4152. {
  4153. bus_unregister_notifier(&i2c_bus_type, &ptp_ocp_i2c_notifier);
  4154. pci_unregister_driver(&ptp_ocp_driver);
  4155. class_unregister(&timecard_class);
  4156. ptp_ocp_debugfs_fini();
  4157. }
  4158. module_init(ptp_ocp_init);
  4159. module_exit(ptp_ocp_fini);
  4160. MODULE_DESCRIPTION("OpenCompute TimeCard driver");
  4161. MODULE_LICENSE("GPL v2");