ptp_sysfs.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482
  1. // SPDX-License-Identifier: GPL-2.0-or-later
  2. /*
  3. * PTP 1588 clock support - sysfs interface.
  4. *
  5. * Copyright (C) 2010 OMICRON electronics GmbH
  6. * Copyright 2021 NXP
  7. */
  8. #include <linux/capability.h>
  9. #include <linux/slab.h>
  10. #include "ptp_private.h"
  11. static ssize_t clock_name_show(struct device *dev,
  12. struct device_attribute *attr, char *page)
  13. {
  14. struct ptp_clock *ptp = dev_get_drvdata(dev);
  15. return sysfs_emit(page, "%s\n", ptp->info->name);
  16. }
  17. static DEVICE_ATTR_RO(clock_name);
  18. static ssize_t max_phase_adjustment_show(struct device *dev,
  19. struct device_attribute *attr,
  20. char *page)
  21. {
  22. struct ptp_clock *ptp = dev_get_drvdata(dev);
  23. return sysfs_emit(page, "%d\n", ptp->info->getmaxphase(ptp->info));
  24. }
  25. static DEVICE_ATTR_RO(max_phase_adjustment);
  26. #define PTP_SHOW_INT(name, var) \
  27. static ssize_t var##_show(struct device *dev, \
  28. struct device_attribute *attr, char *page) \
  29. { \
  30. struct ptp_clock *ptp = dev_get_drvdata(dev); \
  31. return sysfs_emit(page, "%d\n", ptp->info->var); \
  32. } \
  33. static DEVICE_ATTR(name, 0444, var##_show, NULL);
  34. PTP_SHOW_INT(max_adjustment, max_adj);
  35. PTP_SHOW_INT(n_alarms, n_alarm);
  36. PTP_SHOW_INT(n_external_timestamps, n_ext_ts);
  37. PTP_SHOW_INT(n_periodic_outputs, n_per_out);
  38. PTP_SHOW_INT(n_programmable_pins, n_pins);
  39. PTP_SHOW_INT(pps_available, pps);
  40. static ssize_t extts_enable_store(struct device *dev,
  41. struct device_attribute *attr,
  42. const char *buf, size_t count)
  43. {
  44. struct ptp_clock *ptp = dev_get_drvdata(dev);
  45. struct ptp_clock_info *ops = ptp->info;
  46. struct ptp_clock_request req = { .type = PTP_CLK_REQ_EXTTS };
  47. int cnt, enable;
  48. int err = -EINVAL;
  49. cnt = sscanf(buf, "%u %d", &req.extts.index, &enable);
  50. if (cnt != 2)
  51. goto out;
  52. if (req.extts.index >= ops->n_ext_ts)
  53. goto out;
  54. err = ops->enable(ops, &req, enable ? 1 : 0);
  55. if (err)
  56. goto out;
  57. return count;
  58. out:
  59. return err;
  60. }
  61. static DEVICE_ATTR(extts_enable, 0220, NULL, extts_enable_store);
  62. static ssize_t extts_fifo_show(struct device *dev,
  63. struct device_attribute *attr, char *page)
  64. {
  65. struct ptp_clock *ptp = dev_get_drvdata(dev);
  66. struct timestamp_event_queue *queue;
  67. struct ptp_extts_event event;
  68. unsigned long flags;
  69. size_t qcnt;
  70. int cnt = 0;
  71. cnt = list_count_nodes(&ptp->tsevqs);
  72. if (cnt <= 0)
  73. goto out;
  74. /* The sysfs fifo will always draw from the fist queue */
  75. queue = list_first_entry(&ptp->tsevqs, struct timestamp_event_queue,
  76. qlist);
  77. memset(&event, 0, sizeof(event));
  78. spin_lock_irqsave(&queue->lock, flags);
  79. qcnt = queue_cnt(queue);
  80. if (qcnt) {
  81. event = queue->buf[queue->head];
  82. /* Paired with READ_ONCE() in queue_cnt() */
  83. WRITE_ONCE(queue->head, (queue->head + 1) % PTP_MAX_TIMESTAMPS);
  84. }
  85. spin_unlock_irqrestore(&queue->lock, flags);
  86. if (!qcnt)
  87. goto out;
  88. cnt = sysfs_emit(page, "%u %lld %u\n",
  89. event.index, event.t.sec, event.t.nsec);
  90. out:
  91. return cnt;
  92. }
  93. static DEVICE_ATTR(fifo, 0444, extts_fifo_show, NULL);
  94. static ssize_t period_store(struct device *dev,
  95. struct device_attribute *attr,
  96. const char *buf, size_t count)
  97. {
  98. struct ptp_clock *ptp = dev_get_drvdata(dev);
  99. struct ptp_clock_info *ops = ptp->info;
  100. struct ptp_clock_request req = { .type = PTP_CLK_REQ_PEROUT };
  101. int cnt, enable, err = -EINVAL;
  102. cnt = sscanf(buf, "%u %lld %u %lld %u", &req.perout.index,
  103. &req.perout.start.sec, &req.perout.start.nsec,
  104. &req.perout.period.sec, &req.perout.period.nsec);
  105. if (cnt != 5)
  106. goto out;
  107. if (req.perout.index >= ops->n_per_out)
  108. goto out;
  109. enable = req.perout.period.sec || req.perout.period.nsec;
  110. err = ops->enable(ops, &req, enable);
  111. if (err)
  112. goto out;
  113. return count;
  114. out:
  115. return err;
  116. }
  117. static DEVICE_ATTR(period, 0220, NULL, period_store);
  118. static ssize_t pps_enable_store(struct device *dev,
  119. struct device_attribute *attr,
  120. const char *buf, size_t count)
  121. {
  122. struct ptp_clock *ptp = dev_get_drvdata(dev);
  123. struct ptp_clock_info *ops = ptp->info;
  124. struct ptp_clock_request req = { .type = PTP_CLK_REQ_PPS };
  125. int cnt, enable;
  126. int err = -EINVAL;
  127. if (!capable(CAP_SYS_TIME))
  128. return -EPERM;
  129. cnt = sscanf(buf, "%d", &enable);
  130. if (cnt != 1)
  131. goto out;
  132. err = ops->enable(ops, &req, enable ? 1 : 0);
  133. if (err)
  134. goto out;
  135. return count;
  136. out:
  137. return err;
  138. }
  139. static DEVICE_ATTR(pps_enable, 0220, NULL, pps_enable_store);
  140. static int unregister_vclock(struct device *dev, void *data)
  141. {
  142. struct ptp_clock *ptp = dev_get_drvdata(dev);
  143. struct ptp_clock_info *info = ptp->info;
  144. struct ptp_vclock *vclock;
  145. u32 *num = data;
  146. vclock = info_to_vclock(info);
  147. dev_info(dev->parent, "delete virtual clock ptp%d\n",
  148. vclock->clock->index);
  149. ptp_vclock_unregister(vclock);
  150. (*num)--;
  151. /* For break. Not error. */
  152. if (*num == 0)
  153. return -EINVAL;
  154. return 0;
  155. }
  156. static ssize_t n_vclocks_show(struct device *dev,
  157. struct device_attribute *attr, char *page)
  158. {
  159. struct ptp_clock *ptp = dev_get_drvdata(dev);
  160. ssize_t size;
  161. if (mutex_lock_interruptible(&ptp->n_vclocks_mux))
  162. return -ERESTARTSYS;
  163. size = sysfs_emit(page, "%u\n", ptp->n_vclocks);
  164. mutex_unlock(&ptp->n_vclocks_mux);
  165. return size;
  166. }
  167. static ssize_t n_vclocks_store(struct device *dev,
  168. struct device_attribute *attr,
  169. const char *buf, size_t count)
  170. {
  171. struct ptp_clock *ptp = dev_get_drvdata(dev);
  172. struct ptp_vclock *vclock;
  173. int err = -EINVAL;
  174. u32 num, i;
  175. if (kstrtou32(buf, 0, &num))
  176. return err;
  177. if (mutex_lock_interruptible(&ptp->n_vclocks_mux))
  178. return -ERESTARTSYS;
  179. if (num > ptp->max_vclocks) {
  180. dev_err(dev, "max value is %d\n", ptp->max_vclocks);
  181. goto out;
  182. }
  183. /* Need to create more vclocks */
  184. if (num > ptp->n_vclocks) {
  185. for (i = 0; i < num - ptp->n_vclocks; i++) {
  186. vclock = ptp_vclock_register(ptp);
  187. if (!vclock)
  188. goto out;
  189. *(ptp->vclock_index + ptp->n_vclocks + i) =
  190. vclock->clock->index;
  191. dev_info(dev, "new virtual clock ptp%d\n",
  192. vclock->clock->index);
  193. }
  194. }
  195. /* Need to delete vclocks */
  196. if (num < ptp->n_vclocks) {
  197. i = ptp->n_vclocks - num;
  198. device_for_each_child_reverse(dev, &i,
  199. unregister_vclock);
  200. for (i = 1; i <= ptp->n_vclocks - num; i++)
  201. *(ptp->vclock_index + ptp->n_vclocks - i) = -1;
  202. }
  203. /* Need to inform about changed physical clock behavior */
  204. if (!ptp->has_cycles) {
  205. if (num == 0)
  206. dev_info(dev, "only physical clock in use now\n");
  207. else
  208. dev_info(dev, "guarantee physical clock free running\n");
  209. }
  210. ptp->n_vclocks = num;
  211. mutex_unlock(&ptp->n_vclocks_mux);
  212. return count;
  213. out:
  214. mutex_unlock(&ptp->n_vclocks_mux);
  215. return err;
  216. }
  217. static DEVICE_ATTR_RW(n_vclocks);
  218. static ssize_t max_vclocks_show(struct device *dev,
  219. struct device_attribute *attr, char *page)
  220. {
  221. struct ptp_clock *ptp = dev_get_drvdata(dev);
  222. ssize_t size;
  223. size = sysfs_emit(page, "%u\n", ptp->max_vclocks);
  224. return size;
  225. }
  226. static ssize_t max_vclocks_store(struct device *dev,
  227. struct device_attribute *attr,
  228. const char *buf, size_t count)
  229. {
  230. struct ptp_clock *ptp = dev_get_drvdata(dev);
  231. unsigned int *vclock_index;
  232. int err = -EINVAL;
  233. size_t size;
  234. u32 max;
  235. if (kstrtou32(buf, 0, &max) || max == 0)
  236. return -EINVAL;
  237. if (max == ptp->max_vclocks)
  238. return count;
  239. if (mutex_lock_interruptible(&ptp->n_vclocks_mux))
  240. return -ERESTARTSYS;
  241. if (max < ptp->n_vclocks)
  242. goto out;
  243. vclock_index = kcalloc(max, sizeof(int), GFP_KERNEL);
  244. if (!vclock_index) {
  245. err = -ENOMEM;
  246. goto out;
  247. }
  248. size = sizeof(int) * ptp->n_vclocks;
  249. memcpy(vclock_index, ptp->vclock_index, size);
  250. kfree(ptp->vclock_index);
  251. ptp->vclock_index = vclock_index;
  252. ptp->max_vclocks = max;
  253. mutex_unlock(&ptp->n_vclocks_mux);
  254. return count;
  255. out:
  256. mutex_unlock(&ptp->n_vclocks_mux);
  257. return err;
  258. }
  259. static DEVICE_ATTR_RW(max_vclocks);
  260. static struct attribute *ptp_attrs[] = {
  261. &dev_attr_clock_name.attr,
  262. &dev_attr_max_adjustment.attr,
  263. &dev_attr_max_phase_adjustment.attr,
  264. &dev_attr_n_alarms.attr,
  265. &dev_attr_n_external_timestamps.attr,
  266. &dev_attr_n_periodic_outputs.attr,
  267. &dev_attr_n_programmable_pins.attr,
  268. &dev_attr_pps_available.attr,
  269. &dev_attr_extts_enable.attr,
  270. &dev_attr_fifo.attr,
  271. &dev_attr_period.attr,
  272. &dev_attr_pps_enable.attr,
  273. &dev_attr_n_vclocks.attr,
  274. &dev_attr_max_vclocks.attr,
  275. NULL
  276. };
  277. static umode_t ptp_is_attribute_visible(struct kobject *kobj,
  278. struct attribute *attr, int n)
  279. {
  280. struct device *dev = kobj_to_dev(kobj);
  281. struct ptp_clock *ptp = dev_get_drvdata(dev);
  282. struct ptp_clock_info *info = ptp->info;
  283. umode_t mode = attr->mode;
  284. if (attr == &dev_attr_extts_enable.attr ||
  285. attr == &dev_attr_fifo.attr) {
  286. if (!info->n_ext_ts)
  287. mode = 0;
  288. } else if (attr == &dev_attr_period.attr) {
  289. if (!info->n_per_out)
  290. mode = 0;
  291. } else if (attr == &dev_attr_pps_enable.attr) {
  292. if (!info->pps)
  293. mode = 0;
  294. } else if (attr == &dev_attr_n_vclocks.attr ||
  295. attr == &dev_attr_max_vclocks.attr) {
  296. if (ptp->is_virtual_clock)
  297. mode = 0;
  298. } else if (attr == &dev_attr_max_phase_adjustment.attr) {
  299. if (!info->adjphase || !info->getmaxphase)
  300. mode = 0;
  301. }
  302. return mode;
  303. }
  304. static const struct attribute_group ptp_group = {
  305. .is_visible = ptp_is_attribute_visible,
  306. .attrs = ptp_attrs,
  307. };
  308. const struct attribute_group *ptp_groups[] = {
  309. &ptp_group,
  310. NULL
  311. };
  312. static int ptp_pin_name2index(struct ptp_clock *ptp, const char *name)
  313. {
  314. int i;
  315. for (i = 0; i < ptp->info->n_pins; i++) {
  316. if (!strcmp(ptp->info->pin_config[i].name, name))
  317. return i;
  318. }
  319. return -1;
  320. }
  321. static ssize_t ptp_pin_show(struct device *dev, struct device_attribute *attr,
  322. char *page)
  323. {
  324. struct ptp_clock *ptp = dev_get_drvdata(dev);
  325. unsigned int func, chan;
  326. int index;
  327. index = ptp_pin_name2index(ptp, attr->attr.name);
  328. if (index < 0)
  329. return -EINVAL;
  330. if (mutex_lock_interruptible(&ptp->pincfg_mux))
  331. return -ERESTARTSYS;
  332. func = ptp->info->pin_config[index].func;
  333. chan = ptp->info->pin_config[index].chan;
  334. mutex_unlock(&ptp->pincfg_mux);
  335. return sysfs_emit(page, "%u %u\n", func, chan);
  336. }
  337. static ssize_t ptp_pin_store(struct device *dev, struct device_attribute *attr,
  338. const char *buf, size_t count)
  339. {
  340. struct ptp_clock *ptp = dev_get_drvdata(dev);
  341. unsigned int func, chan;
  342. int cnt, err, index;
  343. cnt = sscanf(buf, "%u %u", &func, &chan);
  344. if (cnt != 2)
  345. return -EINVAL;
  346. index = ptp_pin_name2index(ptp, attr->attr.name);
  347. if (index < 0)
  348. return -EINVAL;
  349. if (mutex_lock_interruptible(&ptp->pincfg_mux))
  350. return -ERESTARTSYS;
  351. err = ptp_set_pinfunc(ptp, index, func, chan);
  352. mutex_unlock(&ptp->pincfg_mux);
  353. if (err)
  354. return err;
  355. return count;
  356. }
  357. int ptp_populate_pin_groups(struct ptp_clock *ptp)
  358. {
  359. struct ptp_clock_info *info = ptp->info;
  360. int err = -ENOMEM, i, n_pins = info->n_pins;
  361. if (!n_pins)
  362. return 0;
  363. ptp->pin_dev_attr = kcalloc(n_pins, sizeof(*ptp->pin_dev_attr),
  364. GFP_KERNEL);
  365. if (!ptp->pin_dev_attr)
  366. goto no_dev_attr;
  367. ptp->pin_attr = kcalloc(1 + n_pins, sizeof(*ptp->pin_attr), GFP_KERNEL);
  368. if (!ptp->pin_attr)
  369. goto no_pin_attr;
  370. for (i = 0; i < n_pins; i++) {
  371. struct device_attribute *da = &ptp->pin_dev_attr[i];
  372. sysfs_attr_init(&da->attr);
  373. da->attr.name = info->pin_config[i].name;
  374. da->attr.mode = 0644;
  375. da->show = ptp_pin_show;
  376. da->store = ptp_pin_store;
  377. ptp->pin_attr[i] = &da->attr;
  378. }
  379. ptp->pin_attr_group.name = "pins";
  380. ptp->pin_attr_group.attrs = ptp->pin_attr;
  381. ptp->pin_attr_groups[0] = &ptp->pin_attr_group;
  382. return 0;
  383. no_pin_attr:
  384. kfree(ptp->pin_dev_attr);
  385. no_dev_attr:
  386. return err;
  387. }
  388. void ptp_cleanup_pin_groups(struct ptp_clock *ptp)
  389. {
  390. kfree(ptp->pin_attr);
  391. kfree(ptp->pin_dev_attr);
  392. }