pwm-sprd.c 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296
  1. // SPDX-License-Identifier: GPL-2.0
  2. /*
  3. * Copyright (C) 2019 Spreadtrum Communications Inc.
  4. */
  5. #include <linux/clk.h>
  6. #include <linux/err.h>
  7. #include <linux/io.h>
  8. #include <linux/math64.h>
  9. #include <linux/mod_devicetable.h>
  10. #include <linux/module.h>
  11. #include <linux/platform_device.h>
  12. #include <linux/pwm.h>
  13. #define SPRD_PWM_PRESCALE 0x0
  14. #define SPRD_PWM_MOD 0x4
  15. #define SPRD_PWM_DUTY 0x8
  16. #define SPRD_PWM_ENABLE 0x18
  17. #define SPRD_PWM_MOD_MAX GENMASK(7, 0)
  18. #define SPRD_PWM_DUTY_MSK GENMASK(15, 0)
  19. #define SPRD_PWM_PRESCALE_MSK GENMASK(7, 0)
  20. #define SPRD_PWM_ENABLE_BIT BIT(0)
  21. #define SPRD_PWM_CHN_NUM 4
  22. #define SPRD_PWM_REGS_SHIFT 5
  23. #define SPRD_PWM_CHN_CLKS_NUM 2
  24. #define SPRD_PWM_CHN_OUTPUT_CLK 1
  25. struct sprd_pwm_chn {
  26. struct clk_bulk_data clks[SPRD_PWM_CHN_CLKS_NUM];
  27. u32 clk_rate;
  28. };
  29. struct sprd_pwm_chip {
  30. void __iomem *base;
  31. struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
  32. };
  33. static inline struct sprd_pwm_chip* sprd_pwm_from_chip(struct pwm_chip *chip)
  34. {
  35. return pwmchip_get_drvdata(chip);
  36. }
  37. /*
  38. * The list of clocks required by PWM channels, and each channel has 2 clocks:
  39. * enable clock and pwm clock.
  40. */
  41. static const char * const sprd_pwm_clks[] = {
  42. "enable0", "pwm0",
  43. "enable1", "pwm1",
  44. "enable2", "pwm2",
  45. "enable3", "pwm3",
  46. };
  47. static u32 sprd_pwm_read(struct sprd_pwm_chip *spc, u32 hwid, u32 reg)
  48. {
  49. u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
  50. return readl_relaxed(spc->base + offset);
  51. }
  52. static void sprd_pwm_write(struct sprd_pwm_chip *spc, u32 hwid,
  53. u32 reg, u32 val)
  54. {
  55. u32 offset = reg + (hwid << SPRD_PWM_REGS_SHIFT);
  56. writel_relaxed(val, spc->base + offset);
  57. }
  58. static int sprd_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
  59. struct pwm_state *state)
  60. {
  61. struct sprd_pwm_chip *spc = sprd_pwm_from_chip(chip);
  62. struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
  63. u32 val, duty, prescale;
  64. u64 tmp;
  65. int ret;
  66. /*
  67. * The clocks to PWM channel has to be enabled first before
  68. * reading to the registers.
  69. */
  70. ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
  71. if (ret) {
  72. dev_err(pwmchip_parent(chip), "failed to enable pwm%u clocks\n",
  73. pwm->hwpwm);
  74. return ret;
  75. }
  76. val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_ENABLE);
  77. if (val & SPRD_PWM_ENABLE_BIT)
  78. state->enabled = true;
  79. else
  80. state->enabled = false;
  81. /*
  82. * The hardware provides a counter that is feed by the source clock.
  83. * The period length is (PRESCALE + 1) * MOD counter steps.
  84. * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
  85. * Thus the period_ns and duty_ns calculation formula should be:
  86. * period_ns = NSEC_PER_SEC * (prescale + 1) * mod / clk_rate
  87. * duty_ns = NSEC_PER_SEC * (prescale + 1) * duty / clk_rate
  88. */
  89. val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_PRESCALE);
  90. prescale = val & SPRD_PWM_PRESCALE_MSK;
  91. tmp = (prescale + 1) * NSEC_PER_SEC * SPRD_PWM_MOD_MAX;
  92. state->period = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
  93. val = sprd_pwm_read(spc, pwm->hwpwm, SPRD_PWM_DUTY);
  94. duty = val & SPRD_PWM_DUTY_MSK;
  95. tmp = (prescale + 1) * NSEC_PER_SEC * duty;
  96. state->duty_cycle = DIV_ROUND_CLOSEST_ULL(tmp, chn->clk_rate);
  97. state->polarity = PWM_POLARITY_NORMAL;
  98. /* Disable PWM clocks if the PWM channel is not in enable state. */
  99. if (!state->enabled)
  100. clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
  101. return 0;
  102. }
  103. static int sprd_pwm_config(struct sprd_pwm_chip *spc, struct pwm_device *pwm,
  104. int duty_ns, int period_ns)
  105. {
  106. struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
  107. u32 prescale, duty;
  108. u64 tmp;
  109. /*
  110. * The hardware provides a counter that is feed by the source clock.
  111. * The period length is (PRESCALE + 1) * MOD counter steps.
  112. * The duty cycle length is (PRESCALE + 1) * DUTY counter steps.
  113. *
  114. * To keep the maths simple we're always using MOD = SPRD_PWM_MOD_MAX.
  115. * The value for PRESCALE is selected such that the resulting period
  116. * gets the maximal length not bigger than the requested one with the
  117. * given settings (MOD = SPRD_PWM_MOD_MAX and input clock).
  118. */
  119. duty = duty_ns * SPRD_PWM_MOD_MAX / period_ns;
  120. tmp = (u64)chn->clk_rate * period_ns;
  121. do_div(tmp, NSEC_PER_SEC);
  122. prescale = DIV_ROUND_CLOSEST_ULL(tmp, SPRD_PWM_MOD_MAX) - 1;
  123. if (prescale > SPRD_PWM_PRESCALE_MSK)
  124. prescale = SPRD_PWM_PRESCALE_MSK;
  125. /*
  126. * Note: Writing DUTY triggers the hardware to actually apply the
  127. * values written to MOD and DUTY to the output, so must keep writing
  128. * DUTY last.
  129. *
  130. * The hardware can ensures that current running period is completed
  131. * before changing a new configuration to avoid mixed settings.
  132. */
  133. sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_PRESCALE, prescale);
  134. sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_MOD, SPRD_PWM_MOD_MAX);
  135. sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_DUTY, duty);
  136. return 0;
  137. }
  138. static int sprd_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
  139. const struct pwm_state *state)
  140. {
  141. struct sprd_pwm_chip *spc = sprd_pwm_from_chip(chip);
  142. struct sprd_pwm_chn *chn = &spc->chn[pwm->hwpwm];
  143. struct pwm_state *cstate = &pwm->state;
  144. int ret;
  145. if (state->polarity != PWM_POLARITY_NORMAL)
  146. return -EINVAL;
  147. if (state->enabled) {
  148. if (!cstate->enabled) {
  149. /*
  150. * The clocks to PWM channel has to be enabled first
  151. * before writing to the registers.
  152. */
  153. ret = clk_bulk_prepare_enable(SPRD_PWM_CHN_CLKS_NUM,
  154. chn->clks);
  155. if (ret) {
  156. dev_err(pwmchip_parent(chip),
  157. "failed to enable pwm%u clocks\n",
  158. pwm->hwpwm);
  159. return ret;
  160. }
  161. }
  162. ret = sprd_pwm_config(spc, pwm, state->duty_cycle,
  163. state->period);
  164. if (ret)
  165. return ret;
  166. sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 1);
  167. } else if (cstate->enabled) {
  168. /*
  169. * Note: After setting SPRD_PWM_ENABLE to zero, the controller
  170. * will not wait for current period to be completed, instead it
  171. * will stop the PWM channel immediately.
  172. */
  173. sprd_pwm_write(spc, pwm->hwpwm, SPRD_PWM_ENABLE, 0);
  174. clk_bulk_disable_unprepare(SPRD_PWM_CHN_CLKS_NUM, chn->clks);
  175. }
  176. return 0;
  177. }
  178. static const struct pwm_ops sprd_pwm_ops = {
  179. .apply = sprd_pwm_apply,
  180. .get_state = sprd_pwm_get_state,
  181. };
  182. static int sprd_pwm_clk_init(struct device *dev,
  183. struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM])
  184. {
  185. struct clk *clk_pwm;
  186. int ret, i;
  187. for (i = 0; i < SPRD_PWM_CHN_NUM; i++) {
  188. int j;
  189. for (j = 0; j < SPRD_PWM_CHN_CLKS_NUM; ++j)
  190. chn[i].clks[j].id =
  191. sprd_pwm_clks[i * SPRD_PWM_CHN_CLKS_NUM + j];
  192. ret = devm_clk_bulk_get(dev, SPRD_PWM_CHN_CLKS_NUM,
  193. chn[i].clks);
  194. if (ret) {
  195. if (ret == -ENOENT)
  196. break;
  197. return dev_err_probe(dev, ret,
  198. "failed to get channel clocks\n");
  199. }
  200. clk_pwm = chn[i].clks[SPRD_PWM_CHN_OUTPUT_CLK].clk;
  201. chn[i].clk_rate = clk_get_rate(clk_pwm);
  202. }
  203. if (!i)
  204. return dev_err_probe(dev, -ENODEV, "no available PWM channels\n");
  205. return i;
  206. }
  207. static int sprd_pwm_probe(struct platform_device *pdev)
  208. {
  209. struct pwm_chip *chip;
  210. struct sprd_pwm_chip *spc;
  211. struct sprd_pwm_chn chn[SPRD_PWM_CHN_NUM];
  212. int ret, npwm;
  213. npwm = sprd_pwm_clk_init(&pdev->dev, chn);
  214. if (npwm < 0)
  215. return npwm;
  216. chip = devm_pwmchip_alloc(&pdev->dev, npwm, sizeof(*spc));
  217. if (IS_ERR(chip))
  218. return PTR_ERR(chip);
  219. spc = sprd_pwm_from_chip(chip);
  220. spc->base = devm_platform_ioremap_resource(pdev, 0);
  221. if (IS_ERR(spc->base))
  222. return PTR_ERR(spc->base);
  223. memcpy(spc->chn, chn, sizeof(chn));
  224. chip->ops = &sprd_pwm_ops;
  225. ret = devm_pwmchip_add(&pdev->dev, chip);
  226. if (ret)
  227. dev_err(&pdev->dev, "failed to add PWM chip\n");
  228. return ret;
  229. }
  230. static const struct of_device_id sprd_pwm_of_match[] = {
  231. { .compatible = "sprd,ums512-pwm", },
  232. { },
  233. };
  234. MODULE_DEVICE_TABLE(of, sprd_pwm_of_match);
  235. static struct platform_driver sprd_pwm_driver = {
  236. .driver = {
  237. .name = "sprd-pwm",
  238. .of_match_table = sprd_pwm_of_match,
  239. },
  240. .probe = sprd_pwm_probe,
  241. };
  242. module_platform_driver(sprd_pwm_driver);
  243. MODULE_DESCRIPTION("Spreadtrum PWM Driver");
  244. MODULE_LICENSE("GPL v2");